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Abstract: Magnetic target localization using the magnetic gradient tensor (MGT) plays a significant
role in underwater localization. However, this method inherently has a localization dead zone, which
presents challenges for real-world applications. This paper delves into the root cause of this dead
zone, identifying the non-invertibility of the MGT when the magnetic moment vector is orthogonal
to the position vector from the target to the observation point. To tackle this issue, a method based
on the eigenvector constraints is proposed. By constructing an objective function with eigenvector
constraints and leveraging the property that its gradient at the observation point is zero, we derive an
equivalent expression for the inverse of MGT that always holds and further develop a dead-zone-free
localization method. To validate the robustness and efficacy of the proposed localization method,
a comparative analysis with other methods is conducted. Simulation results in a 10 m × 10 m area
under Gaussian noise demonstrate the proposed method’s capability to eliminate the dead zone
and achieve an average localization error of 0.032 m. Experimental results further demonstrate that
the proposed method eliminates the localization dead zone and exhibits greater robustness than the
dominant method in the normal region. In summation, this paper provides an effective method for
eliminating localization dead zone, offering a more stable and reliable method for magnetic target
localization in practice.

Keywords: magnetic target localization; magnetic gradient tensor; localization dead zone; eigenvector
constraints

1. Introduction

Ferromagnetic materials in the geomagnetic field are magnetized and generate an
induced magnetic field, referred to as the magnetic anomaly. Ferromagnetic materials
can be located by measuring the magnetic anomaly and processing the data accordingly.
Magnetic target localization technology has significant practical applications in various
fields. For instance, in underwater magnetic localization, it aids in mapping the undersea
terrain and identifying buried magnetic objects [1,2]. It is also employed in detecting
unexploded ordnance, where it helps identify and safely remove potential threats [3,4].
In medical interventions, this technology is applied in steering magnetic catheters and
tracking wireless biomedical capsule [5,6]. The dominant approach adopted in magnetic
target localization is the analytical method, which leverages the relationship between the
magnetic field vector, the magnetic gradient tensor (MGT), and the tensor invariant to
derive the localization formula. These formulas, which are straightforward and easy to
solve, generally meet the requirements for real-time operation and accuracy across diverse
application scenarios.

Magnetic target localization based on MGT has been extensively studied. The var-
ious localization methods can be divided into three categories: the single-point tensor
positioning (SPTP), the two-point tensor positioning (TPTP), and the scalar triangulation
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and ranging (STAR). In the SPTP method, Wynn’s pioneering use of MGT for magnetic
target detection showed the apparent advantages and potential of MGT [7]. Following
this, Frahm et al. [8] enhanced the Wynn method by applying MGT in the point-by-point
localization. Since then, numerous scholars and researchers have explored magnetic target
localization to enhance the localization accuracy of the SPTP method. Nara et al. [9] derived
a closed-form linear equation for localizing a magnetic dipole. The magnetic target is
located by multiplying the inverse matrix of MGT with the magnetic anomaly of the target.
Yin et al. [10] developed a MGT system approximating the first-order and second-order
spatial gradients of magnetic field components with finite differences. Sui et al. [11] con-
structed expressions for the second-order and third-order gradient tensors and proposed a
method for extracting these tensors from a uniaxial magnetic field sensor. Wang et al. [12]
proposed a stability optimization algorithm based on the improved central difference
method. These methods have less localization error. However, the high order quantity is
significantly affected by the measurement noise and the geomagnetic field noise.

To address the issue that the SPTP method will be affected by the geomagnetic field
noise, some researchers adopted the TPTP method. Xu et al. [13] proposed a linear localiza-
tion method based on the two-point magnetic gradient full tensor. However, this method
requires the two observation points to be closely spaced to avoid errors. Liu et al. [14]
proposed a new TPTP method based on the magnetic moment constraints and used the
PSO algorithm to optimize the penalty coefficient and localization error. However, due
to the iterative calculations required by the PSO algorithm, the real-time performance
of the localization method is compromised. Liu et al. [15] established a two-point MGT
localization model and derived the localization equations. Although localization can be
obtained accurately by solving these equations, there are some localization dead zones.

Through the exploration of MGT, some researchers discovered that tensor invariant
might provide novel localization ideas. Wiegert et al. [16–18] proposed a new magnetic
dipole localization method called STAR, which constructs equations based on spatial
variations of the MGT invariant. This independence from the geomagnetic field is a
significant advantage. However, the STAR method assumes that the tensor invariant is a
perfect sphere, leading to asphericity errors in the localization. Wang et al. [19] adopted
an iterative algorithm to compensate for the asphericity errors of the STAR method and
reduced the relative localization error. Though the methods previously discussed are
effective, they necessitate the use of multiple gradiometers for measurements, which limits
their widespread application.

The three methods, SPTP, TPTP, and STAR, have their own advantages and disad-
vantages. However, the majority of these methods involve the computation of the inverse
matrix of MGT. If MGT is non-invertible, these localization methods will fail, leading to
localization dead zones. To tackle this issue, some scholars have proposed localization
methods with no dead zones. Nara et al. [20] improved the localization method by using
the Moore–Penrose generalized inverse matrix instead of the inverse matrix. However,
the determination of the singularity of the matrix can be easily affected by measurement
noise. Higuchi et al. [21] adopted truncated singular value decomposition approach to
propose a new localization equation. Yin et al. [22] proposed a new close-form formula
for magnetic dipole localization. However, these two methods are derived from the basis
of the SPTP method and are not applicable to TPTP and STAR. Pei et al. [23] adopted a
regularization method to address the non-invertibility issue of MGT, but the localization
error remains significant.

In summary, all three methods encounter dead zone issues due to the non-invertibility
of MGT. To address this shortcoming, a localization method based on eigenvector con-
straints with the dead zone free is proposed. Additionally, this method is can be used to
eliminate dead zones in other localization methods. A regularization term based on the
eigenvector constraints is introduced into the objective function which is constructed with
Euler’s equation. As the objective function gradient at the observation point is zero, the
equivalent expression of the inverse MGT and the localization equation without a dead
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zone are derived. Through the algebraic operation, the localization equation will not fail at
arbitrary points in space, thereby eliminating the localization dead zone. Simulation and
experimental results demonstrate that the localization equation is more accurate and robust.

2. Localization Dead Zone Analysis

When the detection distance significantly surpasses the size of the magnetic target, it is
feasible to simplify the magnetic target into a magnetic dipole model. The spatial Cartesian
coordinate system is established to define the magnetic field and MGT, taking the magnetic
target as the origin. A schematic diagram is depicted in Figure 1. In this system, according
to the Biot–Savart Law, the magnetic field at the observation point is given by:

B =
µ0

4π

3(M · nr)nr −M
r3 (1)

where B represents the magnetic field intensity, µ0 represents the vacuum permeability,
M represents the magnetic moment of the magnetic target, and r is the position vector
extending from the magnetic target to the observation point. The unit vector of r is
represented by nr, and r signifies the length of r.

Figure 1. Schematic diagram of the magnetic target localization.

Assume that the magnetic field at the adjacent observation point, r + dr, is B′. The
magnetic field difference between these two positions is:

B′ − B =
µ0

4π
[3(M · nr)nr −M]

[
1

(r + dr)3 −
1
r3

]
=

µ0

4π
[3(M · nr)nr −M]

∂

∂r

(
1
r3

)
dr = −3

r
Bdr

(2)

Alternatively, the magnetic field intensity difference between the two points can also
be given as:

B′ − B =


∂Bx
∂x

∂Bx
∂y

∂Bx
∂z

∂By
∂x

∂By
∂y

∂By
∂z

∂Bz
∂x

∂Bz
∂v

∂Bz
∂z

nrdr = Gnrdr (3)



Remote Sens. 2023, 15, 4959 4 of 17

where G denotes MGT. Considering both Equations (2) and (3), the localization formula
based on MGT can be expressed as:

r = −3G−1B (4)

This formula is the localization formula of the Nara method. It shows that if MGT and
the magnetic field are known, the position can be determined. This formula is straightfor-
ward and involves only the inversion and multiplication of third-order matrices. However,
it should be noted that MGT is not always invertible, and the method have a localization
dead zone. To fully understand the applicability of the algorithm, the analytical expression
of the MGT matrix is given by:

Gij = −
3µ0

4π

(M · r)
(
5rirj − r2δij

)
− r2(ri Mj + rj Mi

)
r7 (5)

where δij is the Kronecker delta and i, j represent x, y, and z in the spatial Cartesian
coordinate system.

To simplify the computation, the Cartesian coordinate system is redefined, which is
shown in the Figure 2.

Figure 2. Schematic diagram of the magnetic target localization.The magnetic target is set as the
origin of coordinates. The x-axis forwards coincides with the direction of the position vector. The
magnetic moment vector is in the x-y plane.

In this spatial Cartesian coordinate system, the magnetic target becomes the origin.
The x-axis aligns with the direction of the position vector, and the magnetic moment vector
lies in the x-y plane. θ represents the angle between the position vector and the magnetic
moment vector. The position vector is expressed as r = (r, 0, 0), and the magnetic moment
vector as M = (M cos θ, M sin θ, 0). The MGT at the observation point is then expressed as:

G =
3µ0M
4πr4

 −2 cos θ sin θ 0
sin θ cos θ 0

0 0 cos θ

 (6)

When θ equals 90◦, the matrix G becomes non-invertible, causing the localization
method to fail. In space, all points satisfying θ = 90◦ will form a plane, representing the
theoretical dead zone of the localization algorithm. Moreover, points near the dead zone
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may also cause the determinant of MGT to approach zero due to calculational precision
and processor capabilities, thereby expanding the dead zone. To address this issue, it
becomes necessary to identify a formula independent of the computation’s angle. The
relationship between the eigenvalues and the eigenvectors is used to propose the method
for eliminating dead zone, which is detailed in the next section. The expressions of the
eigenvalues and the eigenvectors are given by:

λ1 = 3µ0 M
8πr4

(
− cos θ +

√
5 cos2 θ + 4

)
λ2 = 3µ0 M

4πr4 cos θ

λ3 = 3µ0 M
8πr4

(
− cos θ −

√
5 cos2 θ + 4

) (7)


v1 = (2 sin θ, 3 cos θ −

√
5 cos2 θ + 4, 0)T

v2 = (0, 0, 1)T

v3 = (2 sin θ, 3 cos θ +
√

5 cos2 θ + 4, 0)T

(8)

where λi (i = 1, 2, 3) denote the eigenvalues of G, and vi (i = 1, 2, 3) represent the cor-
responding eigenvectors. It is important to note that the three eigenvalues satisfy the
relationship λ1 ≥ λ2 ≥ λ3. Furthermore, in terms of absolute values, |λ1| ≥ |λ2| and
|λ3| ≥ |λ2|. With these established relationships, λ2 can be determined by sorting the
eigenvalues and calculate the corresponding eigenvector v2. It is worth mentioning that v2
satisfies the equation:

vT
2 r = 0 (9)

It is worth noting that while Equation (9) was derived in the coordinate system
presented in Figure 2, it remains valid in any coordinate system. The tensor is a quantity
that remains invariant with respect to changes in the coordinate system. Once the magnetic
moment intensity and direction of the magnetic target and the relative position of the
observation point to the magnetic target are determined, MGT is a fixed value. This can
also be verified from Equation (6). Therefore, to simplify the calculation process, the spatial
Cartesian coordinate system shown in Figure 2 is chosen. This coordinate system has three
characteristics: firstly, it takes the magnetic target as the origin; secondly, the observation
point is in the positive direction of the x-axis; and thirdly, the magnetic moment vector lies
within the x–y plane. In this system, the expression for the second eigenvector of MGT
can be conveniently derived, further proving that this eigenvector is orthogonal to the
plane formed by the position vector and the magnetic moment vector. This conclusion is
universally true and remains invariant regardless of changes in the coordinate system.

3. Eigenvector-Constrained Method for Dead Zone Elimination

Based on the analysis of the preceding section, the Nara method is straightforward for
magnetic target localization. However, when the position vector and the magnetic moment
vector are orthogonal, the analytical solution is unstable, leading to a localization dead zone
algorithmically. Therefore, the Tikhonov regularization technique is employed to address
the issues of unstable solutions in this paper. The objective function can be constructed
as follows:

f = min ‖Gr + 3B‖2
2 (10)

In the system shown in Figure 2, the Hessian matrix, denoted as H, of f is:

H =
9µ2

0M2

8π2r8

 3 cos2 θ + 1 sin θ cos θ 0
sin θ cos θ 1 0

0 0 cos2 θ

 (11)
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The eigenvalues of matrix H can be computed as:
λH1 = cos2 θ

λH2 = 3 cos2 θ
2 − cos θ

√
5 cos2 θ+4

2 + 1

λH3 = 3 cos2 θ
2 + cos θ

√
5 cos2 θ+4

2 + 1

(12)

Through algebraic operations, it show that the eigenvalue λH1 is non-negative, and the
remaining two eigenvalues are positive. Hence, the Hessian matrix is positive semidefinite,
indicating that the objective function is convex.

r, denoting the position vector, satisfies Equations (2) and (3). Thus, the value of
the objective function f is zero. Otherwise, the value of f exceeds zero. As such, the
objective function reaches the unique global minimum solely at the observation point,
where the gradient is zero. This conclusion implies that the position vector satisfies the
following relationship:

∂ f
∂r

= 2GTGr + 6GTB = 0 (13)

This relationship derives the formula for the position vector:

r = −3
(

GTG
)−1

GTB (14)

However, G becomes singular when the position vector and the magnetic moment
vector are orthogonal. Consequently, the solution of Equation (14) is unstable. The issue
that the matrix singularity leads to the unstable solution has been addressed in numerous
previous studies, which have demonstrated that introducing a Tikhonov regularization
term to the objective function can stabilize the solution [24]. Based on Equation (9), the new
objective function is constructed as follows:

f = min
(
‖Gr + 3B‖2

2 + α
∥∥∥vT

2 r
∥∥∥2

2

)
(15)

where α is the penalty coefficient used to adjust the intensity of the regularization term.
This objective function will still reach a unique global minimum at the location of the
magnetic target; thereby, the formula of the position vector is yielded:

r = −3
(

G2 + αv2vT
2

)−1
GB (16)

To guarantee a stable solution for Equation (16), it is crucial to validate whether
the term G2 + αv2vT

2 is singular. In the system in Figure 2, the determinant of the term
G2 + αv2vT

2 is given by:

|G2 + αv2vT
2 | =

(
3µ0M
4πr4

)6(
sin2 θ − 2

)2(
cos2 θ + α

)
(17)

Clearly, if α is positive, the determinant of G2 + αv2vT
2 remains positive, ensuring

the stable solution for Equation (16). This proposed method effectively eliminates the
localization dead zone in magnetic target localization based on MGT.

Furthermore, as the α approaches 0, the expression
(
G2 + αv2vT

2
)−1G can be effectively

represented as the expression G−1. Specifically, both expression
(
G2 + αv2vT

2
)−1G and

expression G−1 are third-order matrices. They only differ in the ninth element, which are
cos θ

cos2 θ+α
and 1

cos θ , respectively. Therefore, when α is sufficiently small,
(
G2 + αv2vT

2
)−1G

can be used in place of G−1 for calculations, effectively eliminating the dead zone in the
magnetic target localization without affecting localization accuracy.
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As regards selecting the penalty coefficient, the L-curve method a commonly used
method in Tikhonov regularization. This method graphically determines the optimal
penalty coefficient by plotting the trade-off between the solution norm

∥∥vT
2 r
∥∥2

2 and the
residual norm ‖Gr + 3B‖2

2. As the penalty coefficient changes, the regularized solutions are
computed, and the norms are plotted, forming an L-shaped curve. The corner of this curve
signifies a balance between data misfit and solution complexity, representing the optimal
penalty coefficient. This approach efficiently finds the optimal penalty coefficient.

4. Numerical Simulations
4.1. Magnetic Target Localization Dead Zone

To verify that the condition for the formation of the localization dead zone is the
orthogonality between the position vector and the magnetic moment vector, simulations
were conducted on the widely-used Nara method [9]. In these simulations, a magnetic
dipole was situated at the origin of a spatial Cartesian coordinate system. In this system,
the magnetic moment vector of the dipole was defined as (−327,−425, 132) Am2. The
localization results were tested at multiple observation points within a rectangular region
situated 3 m above the origin. The coordinates of the four vertices of this rectangle are
(−5, −5, 3) m, (−5, 5, 3) m, (5, −5, 3) m, and (5, 5, 3) m. The intervals between observation
points in both the x and y directions are 0.02 m. According to Equation (4), to achieve
magnetic target localization, it is necessary to measure the magnetic field intensity and
MGT. Therefore, the magnetic sensor array structure shown in Figure 3 was employed to
measure these two quantities.

Figure 3. Array structure of the magnetic gradient sensor.

In this array, each dark square represents a three-axis magnetic sensor, which measures
the magnetic field component at its position. The formulas for the magnetic field intensity
and the MGT are given by:
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B =
B1 + B2 + B3 + B4

4
(18)

G =

∣∣∣∣∣∣
B1x − B3x B2x − B4x B1z − B3z
B2x − B4x B2y − B4y B2z − B4z
B1z − B3z B2z − B4z B4y + B3x − B2y − B1x

∣∣∣∣∣∣ (19)

The total localization error, denoted as ε, is used to reflect the localization performance
at each point. The formula for the total localization error is as follows:

ε =
√

ε2
x + ε2

y + ε2
z (20)

where εx denotes the localization error in x-axis, εy denotes the localization error in y-axis,
εz denotes the localization error in z-axis,

Figure 4 illustrates the distribution of the total localization error across the simulation
region. The maximum observed localization error is substantial, reaching up to 11,284.5 m.
To emphasize the characteristics of the error distribution, all error results are transformed
using a base-10 logarithm. In the figure, most of the region is shaded in blue, which signifies
that the localization error in these areas is less than 1 m. A prominent line is visible in the
image, representing locations with a significantly larger localization error. This highlights
limitations in the Nara method, suggesting that it may not provide reliable results at these
specific points.

Figure 4. Distribution of the localization error of the Nara method in plane.

All observation points with a localization error greater than 2 m were extracted.
Subsequently, the angles between the magnetic moment vectors and position vectors at
these points were computed. A histogram was then created for these angles, followed by a
normal distribution fitting, with the results displayed in the Figure 5.

Through an integrated analysis of observation points within the dead zone, angles
corresponding to the position vectors and the magnetic moment vectors were computed.
A statistical representation of these angles was visualized using a histogram, which was
subsequently fitted with a normal distribution curve in red. When the number of bins is
set to 9, the fit to the normal distribution is improved. At this setting, the mean of the
normal distribution is 90.6◦, with a standard deviation of 1.3◦. This result illustrates the
orthogonality relationship between the position vectors and the magnetic moment vectors
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within the dead zone. It provides compelling evidence that the formation of the localization
dead zone is attributed to this orthogonal relationship.

Figure 5. Histogram of the angular distribution between the position vector and magnetic moment
vector at observation points within the dead zone.

4.2. Optimization of the Penalty Coefficient

The penalty coefficient plays a pivotal role in regularized solutions by balancing the
trade-off between the fit to the data and the complexity of the solution. Its value determines
the extent to which the regularization term influences the solution. The L-curve method is
a common graphical tool utilized to identify the optimal penalty coefficient. By plotting the
solution norm against the residuals norm, an L-shaped curve emerges. The corner of this
curve typically signifies the optimal penalty coefficient, striking a balance between solution
smoothness and data fidelity.

To determine the optimal penalty coefficient for the proposed method, all observation
points within the simulation plane from the previous chapter were utilized. Based on
preliminary analysis, the range for the penalty coefficient was set between 10−16 and
10 with 100 logarithmically spaced values. Each value was then incorporated into the
proposed method, localizing all observation points, and the average solution norm

∥∥vT
2 r
∥∥2

2
and the average residual norm ‖Gr+ 3B‖2

2 were computed. Ultimately, plotting the average
solution norm against the average residual norm for these varying coefficients yielded
Figure 6.

From the Figure 6, it is evident that the curve exhibits a distinct L-shape. Moreover, the
elbow of the L-curve is positioned where the residual norm ‖Gr + 3B‖2

2 is about 3.71× 10−9

and the solution norm
∥∥vT

2 r
∥∥2

2 is about 3.40× 10−15. At this point, a balance between the
solution norm and the residual norm is achieved. Hence, the optimal penalty coefficient
is 0.2154.
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Figure 6. The L-curve corresponding to all observation points within the simulation plane.

4.3. Proposed Magnetic Target Localization Method

To validate the proposed localization method, a series of numerical simulations were
conducted. The magnetic dipole was positioned at the origin of a spatial Cartesian coor-
dinate system, with its magnetic moment vector set to (−327,−425, 132) Am2 within this
system. Observation points, arranged with a grid spacing of 0.02 m, were situated on a
10 m × 10 m plane elevated at a height of 3 m. To assess the robustness, the Gaussian
noise was introduced into the two measurements of the magnetic field vector and the MGT.
To analyze the effectiveness and robustness of the proposed method, the Nara method
and the Pei method were chosen for comparison. the Nara method is currently the widely
adopted method, while the Pei method addresses the dead zone issue using the Tikhonov
regularization technique.

Figure 7 illustrates the distribution of localization errors for the three methods under
different geomagnetic field noise levels. Table 1 displays the mean and standard deviation
of localization errors for the three methods under different geomagnetic field noise levels.
Due to the presence of localization dead zones, the Nara method exhibits instances of very
large localization errors. For ease of comparison, data with a localization error exceeding
1 m is not displayed and is excluded from statistical analysis.

Table 1. Statistical results of localization errors of three methods under different magnetic field noises.

Methods Geomagnetic Field Noise Mean Std

Nara
0.01 nT 0.0449 m 0.0858 m
0.1 nT 0.0452 m 0.0860 m
1 nT 0.0682 m 0.1110 m

Pei
0.01 nT 0.4824 m 0.0969 m
0.1 nT 0.4824 m 0.0969 m
1 nT 0.4828 m 0.0983 m

Proposed
0.01 nT 0.0197 m 0.0081 m
0.1 nT 0.0198 m 0.0081 m
1 nT 0.0304 m 0.0192 m
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While the Nara method has apparent localization dead zones, statistical data indi-
cate that its localization error within normal regions is relatively small. The Pei method
effectively eliminates localization error, but its error diverges at a faster rate as distance in-
creases, leading to larger mean and standard deviation values for the localization error. The
proposed method not only effectively eradicates localization dead zones but also exhibits a
slower divergence rate of localization error with increasing distance. Under a geomagnetic
field noise with a standard deviation of 1 nT, the localization error at the farthest point does
not exceed 0.25 m.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Localization errors of the three methods under different magnetic field noises. (a) Nara
method under 0.01 nT geomagnetic field noise. (b) Pei method under 0.01 nT geomagnetic field
noise. (c) Proposed method under 0.01 nT geomagnetic field noise. (d) Nara method under 0.1 nT
geomagnetic field noise. (e) Pei method under 0.1 nT geomagnetic field noise. (f) Proposed method
under 0.1 nT geomagnetic field noise. (g) Nara method under 1 nT geomagnetic field noise. (h) Pei
method under 1 nT geomagnetic field noise. (i) Proposed method under 1 nT geomagnetic field noise.

From the perspective of robustness, under the noise levels of 0.1 nT and 0.01 nT, the
distribution of localization error for the proposed method remains consistent. This indicates
that the localization error at this point mainly stems from the localization method itself. At
a noise level of 1 nT, the localization error is predominantly influenced by geomagnetic
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noise interference. Nevertheless, the localization error is still lower than that of the other
two methods.

Figure 8 displays the distribution of localization errors for the three methods under
varying levels of magnetic gradient noises. Table 2 presents the corresponding mean and
standard deviation of the localization error. Both Figure 8 and Table 2 similarly confirm
that the proposed method not only effectively eliminates localization dead zones but also
possesses stronger robustness. However, it is distinct that magnetic gradient noise of the
same intensity has a greater impact on localization than magnetic field noise. Under 0.01 nT
and 0.1 nT noise levels, this observation is not as pronounced because the localization error
induced by the noise is lesser than the inherent error of the localization method itself. At
1 nT magnetic field noise, both the mean and standard deviation of the localization error are
noticeably lower than those under 1 nT magnetic gradient noise. This underscores that the
proposed localization method is more sensitive to magnetic gradient noise. Nonetheless, the
localization performance of the proposed method still outperforms the other two methods.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Localization errors of the three methods under different magnetic gradient noises. (a) Nara
method under 0.01 nT magnetic gradient noise. (b) Pei method under 0.01 nT magnetic gradient noise.
(c) Proposed method under 0.01 nT magnetic gradient noise. (d) Nara method under 0.1 nT magnetic
gradient noise. (e) Pei method under 0.1 nT magnetic gradient noise. (f) Proposed method under
0.1 nT magnetic gradient noise. (g) Nara method under 1 nT magnetic gradient noise. (h) Pei method
under 1 nT magnetic gradient noise. (i) Proposed method under 1 nT magnetic gradient noise.
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Table 2. Statistical results of localization errors of three methods under different magnetic gradient
noises.

Methods Magnetic Gradient Noise Mean Std

Nara
0.01 nT 0.0449 m 0.0858 m
0.1 nT 0.0471 m 0.0881 m
1 nT 0.0957 m 0.1375 m

Pei
0.01 nT 0.4824 m 0.0969 m
0.1 nT 0.4824 m 0.0970 m
1 nT 0.4851 m 0.1039 m

Proposed
0.01 nT 0.0197 m 0.0081 m
0.1 nT 0.0205 m 0.0090 m
1 nT 0.0523 m 0.0498 m

5. Experiments
5.1. Localization Error in the Localization Dead Zone

To validate the efficacy of the proposed method, a field experiment was performed
in an area characterized by a relatively stable magnetic field. As shown in Figure 9, the
MGT measurement system comprises three main components: a magnetic target, a planar
cross-shaped MGT measurement array, and a data processor. The magnetic target is a
neodymium magnet, emitting a magnetic field intensity of approximately 2500 Gauss. The
direction of the magnetic moment is also illustrated in Figure 9. The planar cross-shaped
MGT measurement array consists of four triaxial fluxgate magnetometers secured to a
cross-shaped bracket. This bracket stands 0.45 m high, with each magnetometer positioned
0.25 m from the bracket’s center. The data processor’s role is to capture the magnetic data
and implement the localization method.

Figure 9. Measurement system and experiment setup.

Several measures have been taken to minimize interference from magnetic fields not
generated by magnetic targets. The cross-shaped bracket for the magnetic sensor array is
made of resin material to ensure that it does not produce any additional magnetic fields.
The test environment was carefully chosen to be an open area, ensuring a relatively stable
ambient magnetic field. All magnetic objects were distanced from the measurement area to
mitigate magnetic interference. To further eliminate interference from the environmental
magnetic field, the background magnetic field was measured at the same point before and
after the magnetic target’s placement. The magnetic gradient of the magnetic target was
then determined by subtracting the magnetic data obtained from these two conditions.

In this experiment, the setup was designed to ensure that the position vector and the
magnetic moment vector were orthogonal, as illustrated in Figure 9. The projection of the
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center of the cross-shaped MGT measurement array onto the ground served as the origin,
establishing a Cartesian coordinate system. The measurement line, extending 2.4 m along
the y-axis, had 12 test points (excluding the origin) placed at intervals of 0.2 m and marked
by the red circle in Figure 9. The positions of these test points were calculated using both
the Nara method and the proposed method in this study for comparison.

The results of different localization methods are displayed in Figure 10, while Figure 11
presents the corresponding localization errors. In Figure 10, the actual test points and the
localization points calculated by the three methods are indicated using different markers.
Since the test points are all located within the dead zone, the localization points from
the Nara method are significantly distant from the test points, while those from the Pei
method and the proposed method are close to the test points. Figure 11 provides a more
detailed depiction of the localization errors of these three methods. For comparison, the
y axis is represented in logarithmic scale. The localization error of the proposed method
is noticeably superior to the Pei method when the magnetic target is close to the MGT
measurement device, but at a slightly greater distance, the localization errors of the two
methods are almost the same level.

Figure 10. Comparison of the localization results of three methods in the localization dead zone.

Figure 11. Comparison of the localization errors of three methods in the localization dead zone.
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5.2. Localization Error in Normal Region

To assess the precision of the proposed localization method under more diverse
conditions, a line was established to ensure that the position vector and the magnetic
moment vector were not orthogonal. The coordinates of this measurement line’s endpoints
were set at (−0.6, 1, 0) m and (0.6, 1, 0) m, respectively. A total of 9 test points were set
along this line, spaced at 0.15 m intervals.

In Figure 12, the test points and the localization points from the three methods are
marked using different indicators. The localization points from all three methods are
primarily close to the test points, indicating that they all possess certain localization ca-
pabilities. For a more detailed comparison of the localization errors, Figure 13 uses three
distinct markers to represent the localization errors for each measurement point according
to the three methods. It is evident that the localization error of the proposed method is
significantly smaller than the other two methods, especially in positions close to the MGT
measurement device.

Figure 12. Comparison of the localization results of three methods in the normal region.

Figure 13. Comparison of the localization errors of three methods in the normal region.
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From the above two experiments, it can be discerned that both the proposed method
and the Pei method effectively eliminate localization dead zones. However, the proposed
method demonstrates higher localization accuracy and robustness than the Pei method,
making it more suitable for practical applications.

6. Conclusions

Magnetic target localization, a critical task with implications across various fields,
relies heavily on MGT-based methods. However, this paper reveals a significant limitation
of magnetic target localization, specifically its failure in the region where the position vector
and the magnetic target’s magnetic moment vector are orthogonal, resulting in a singular
MGT and an unstable solution. To address this issue, a eigenvector constraint-based
magnetic target localization method is proposed. This method circumvents the singularity
of MGT by introducing the regularization term, which is constrained by the eigenvector into
the objective function for localization. The localization formula is derived from this objective
function based on the property that the gradient of the objective function at the observation
point is zero. This novel method ensures that the matrix’s determinant consistently exceeds
zero, thereby eliminating the localization dead zone. The proposed method’s robustness
is demonstrated through simulations and experiments. The Nara method and the Pei
method are chosen for comparison. The Nara method is a widely adopted localization
technique, yet it has localization dead zones. The Pei method effectively eliminates these
dead zones. Simulations and experiments both confirm that the proposed method not only
effectively removes localization dead zones but also exhibits higher localization accuracy
and robustness than the Pei method, making it more suitable for practical applications.
While the proposed method still inherits the limitations of the SPTP approach and is not
suitable for areas with dramatic magnetic field variations, it provides a more reliable
magnetic target localization technique for regions with relatively stable magnetic fields,
such as underwater environments.
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