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Abstract: Tropical cyclones affecting Shenzhen city have shown a remarkable tendency to increase
in both intensity and quantity, highlighting the urgency of accurate forecasts of storm surges and
flooding for effective planning and mitigation. Utilizing satellite and field observations together
with the advanced high-resolution baroclinic wave–current model (SCHISM), a comprehensive
investigation aimed at storm surge and flooding in Shenzhen was conducted. Statistical work of
historical tropical cyclones revealed that Shenzhen was most vulnerable to cyclones propagating
from the southeast toward the northwest and passing Shenzhen down the Pearl River Estuary. Thus,
a representative, i.e., super typhoon Hato (2017), was selected for further study. Validations of
numerical results suggested satisfactory model performance in mapping the wave, tide, and surge
processes. Remarkable differences in spatiotemporal distribution and intensity of storm surge and
flooding were found along the Shenzhen coast, which was dominated by the propagation of far-
field surge and tidal waves, cooperation between wind direction and coastline orientation, estuary
morphology, and the land terrain. Intervention of wave–current interaction improved the simulation
of the surge and flooding and triggered an earlier occurrence time of the maximum surge in specific
areas. The Pearl River discharge significantly elevated the sea level height inside the estuary and
contributed to a more severe surge. Given the extremely complicated river networks and huge
freshwater flux of Pearl River and the increasing trend of concurrent heavy precipitation of tropical
cyclones, future investigations on compound flooding were suggested.

Keywords: storm surge; flooding; wave–current interaction; typhoon Hato; Pearl River Estuary;
SCHISM

1. Introduction

Storm surge refers to the phenomenon of an abnormal sudden rise or a sudden drop in
the sea surface caused by strong atmospheric disturbances such as typhoons or cold spells.
If a storm surge occurs during the high period of an astronomical tide, the water level will
rise sharply, and even the sea water will rush up to the land, resulting in flooding disasters.
Storm surges and flooding disasters often occur simultaneously and lead to devastating
damage, including, but not limited to, serious loss of life and property in coastal areas [1,2].

The dynamics of storm surges and flooding have attracted extensive attention. Topo-
graphic characteristics are demonstrated as the key factor affecting the spatial and temporal
distribution of storm surges and flooding. In the deep sea, the storm surge generally
changes gently over a broad area; thus, the model with a relatively rough resolution can
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also obtain accurate simulation results [3–7], but in the nearshore or estuaries, a storm surge
often characterizes significant spatial differences in a narrow range due to the complex
changes of coastline and topography, and only high-resolution models simulate reasonable
results [8–11]. Moreover, under the combined action of human activities and natural evolu-
tion, the coastline morphology and coastal water depth keep changing with time, which
will cause spatiotemporal adjustments in storm surges and flooding [6,12].

A storm surge in the nearshore area can be regarded as the superposition of two parts:
one is the locally generated surge by the local strong wind and low pressure; another is the
surge that forms in the far field along the typhoon track and propagates to the local area.
The propagation of far-field surge is affected by the local terrain and coastline, which often
cause significant surge differences between the upper and lower reaches of bays or estuaries.
For instance, Guo et al. [8] reported that under the bell-shaped terrain of Hangzhou Bay,
the intensity of a far-field storm surge doubled as it came from the mouth area to the top
region. In most cases, the storm surges in coastal waters are mainly dominated by far-field
storm surges, while the contribution of a local storm surge is small [13]. However, as
revealed by Jones and Davies [9], the contribution of a local storm surge can equally match
that of a far-field storm surge in the eastern Irish Sea. In fact, except for the topography,
the development of a local storm surge is also largely dependent on the direction of the
typhoon wind [14].

Under a strong weather process (e.g., typhoon or cold spell), intense ocean waves
and currents will develop, and therefore, remarkable two-way interactions between them
occur. Wave–current interaction is well known to considerably modify the intensity of
storm surges and flooding. When waves enter the shallow area, the wave height increases
and the wave slope steepens and finally breaks up to produce a shoreward mass flux
and changes the sea surface height, i.e., wave setup and wave setdown [15]. Beardsley
et al. [11] pointed out that the maximum surge height increased by 8 cm and became closer
to the observation after considering wave–current interaction; meanwhile, the simulated
inundation area expanded significantly. A statistical investigation of wave setup triggered
by historical cyclones revealed that the magnitude of the largest wave setup along most
parts of the eastern United States coast was 0.1 m [16]. Wave force plays a decisive role in
the momentum balance under the forcing of a typhoon, and a simulation of a storm surge
can be considerably improved when wave force is introduced using the radiation stress
scheme or the vortex force scheme [17]. Moreover, in some extreme cases, the contribution
of wave setup can even reach up to 40% of the total surge height [18]. Hence, wave–current
interaction is a critical factor for high prediction skill of storm surge and flooding.

In the context of global warming, sea level rise will also modify the storm surge and
flooding [4,19]. Scholars estimated that the average sea level rise in 100 years will be
between 0.22 m and 1.90 m [20–23]. Sea level rise may adjust the relative contribution of
near-field and far-field atmospheric forcing to storm surges, thereby changing the spatial
distribution of maximum storm surges [24]. In addition, the resolution of the computational
grid largely determines the ability of the model to describe the real terrain during the
numerical simulation of storm surges and flooding, which in turn affects the simulation
accuracy of storm surges and flooding [11].

Shenzhen city is located to the north of the South China Sea, which extends from
the east shore of the Pearl River Estuary to the north coasts of Dapeng Bay and Daya Bay
(Figure 1a–c). Shenzhen is one of China’s three major national financial centers and one
of the four major central cities in the Guangdong–Hong Kong–Macao Greater Bay Area.
However, statistical results reveal that there are 5.83 tropical cyclones affecting the Greater
Bay Area per year on average, and 46.62% of them reach the level of typhoon; moreover, the
frequency of strong typhoons impacting the Greater Bay Area has increased significantly in
the past decade [25]. Therefore, Shenzhen is also a vulnerable disaster-bearing body under
the severe threat of storm surges and flooding.
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Figure 1. (a) Topography and SCHISM computational grid of the study domain. (b) Zoom-in of
the grid in Pearl River Estuary, purple and black lines mark off the coastline and 10 m isoheight,
respectively. (c) Zoom-in of the grid around Shenzhen city; green diamonds show locations of tide
stations; PRE, SZB, DPB, and DYB are abbreviations for Pearl River Estuary, Shenzhen Bay, Dapeng
Bay, and Daya Bay, respectively.

To date, there are few specific investigations aimed at storm surges and flooding in
the coastal area of Shenzhen, but most of them are mainly based on barotropic numerical
models and ignore the flooding process, and some of them do not even consider the contri-
bution of wave–current interaction. To achieve a better understanding of the storm surge
and flooding in Shenzhen, a comprehensive study based on satellite and field observations
together with an advanced high-resolution baroclinic wave–current model has been con-
ducted. The remaining parts of this paper are organized as follows: Section 2 illustrates
the data and method employed in this work; Section 3 mainly documents a storm surge
and flooding event in Shenzhen from various aspects; Section 4 discusses the controlling
factors of storm surge and flooding in the study domain; and finally, Section 5 presents a
brief conclusion of this work.

2. Materials and Methods
2.1. Remote-Sensed Significant Wave Height

Satellite-observed significant wave height (Hs) is a powerful and widely used material
for studying the ocean environment [26–29]. In this work, we employed the Level-2 along-
track Hs products provided by the NOAA Laboratory for Satellite Altimetry (LSA) to inves-
tigate the typhoon waves as well as examine the model performance in simulating ocean
waves. Moreover, Hs from satellites Jason-2, Sentinel-3A, CryoSat-2, and SARAL through
August 2017 with a 2 km+ spatial resolution were all used to enrich the data quantities.
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Detailed introduction and data access are available at https://coastwatch.noaa.gov/cwn/
products/along-track-significant-wave-height-wind-speed-and-sea-level-anomaly-multiple-
altimeters.html (accessed on 16 January 2023).

2.2. Typhoon Data

Located in the tropical region, storm surges and flooding in Shenzhen are mainly
triggered by typhoons. To understand the characteristics of historical typhoons that affected
Shenzhen, we utilized the version 4 typhoon product from the International Best Track
Archive for Climate Stewardship (IBTrACS) project, which is the most complete global
collection of tropical cyclones available. IBTrACS Version 4 merges recent and historical
tropical cyclone data from multiple agencies; their extensive usage in typhoon-associated
studies has proven their high quality. These data can be acquired from the National Centers
for Environmental Information (https://www.ncei.noaa.gov/products/international-best-
track-archive, accessed on 10 January 2023).

2.3. Tide Station Data

The evolution of storm surge and flooding processes can be directly reflected in the
variation of sea level height (SLH). The SLH data observed at 11 tide stations (Figure 1c)
were used to validate the model and discuss the storm surge and flooding processes
in Shenzhen. The hourly SLH from 15 April to 25 April 2015 at stations T1–T9 was
acquired from the Hong Kong Observatory (https://www.hko.gov.hk/en/index.html,
accessed on 25 April 2015), while the SLH from 21 August to 25 August 2017 with a 10 min
interval at stations T10 and T11 was provided by coastal marine stations Dongshan and
Nanao, respectively.

2.4. Numerical Modeling

In addition to multi-source observations, we have implemented the Semi-implicit
Cross-scale Hydroscience Integrated System Model (SCHISM) [30] for the South China
Sea (Figure 1a). SCHISM is a seamless creek-to-ocean 3D hydrodynamic model with
accurate, robust, and efficient semi-implicit time stepping; in the horizontal dimension, it
supports hybrid finite-element/finite-volume methods on hybrid triangular–quadrangular
unstructured grids (i.e., SCHISM enables users to conduct variable-resolution modeling);
while in the vertical direction, a highly flexible terrain-following vertical gridding system
(LSC2) [31] is applied. There have been worldwide successful applications of SCHISM
since its release; further information on SCHISM can be found at http://ccrm.vims.edu/
schismweb/ (accessed on 16 January 2022).

A set of wet–dry triangular grids covering the entire South China Sea with local
refinement in the Pearl River Estuary and its adjacent seas was designed (Figure 1a,b). In
the modeling domain, there are 116,414 triangular elements and 62,209 nodes, making
the horizontal resolution in the Shenzhen coastal area reach up to 180 m. Moreover, the
grid extends from sea to the land by 10 m isoheight to fully resolve the flooding process in
the Pearl River Estuary and its adjacent areas (Figure 1b). Taking advantage of SCHISM’s
polymorphism, the number of vertical layers varies depending on local water depth, with
a maximum of 57 layers in the deepest region. Topography of the grid was obtained by
merging the SRTM15 + V2.1 product (https://doi.org/10.5069/G92R3PT9, accessed on
25 July 2022) together with local electronic nautical charts. SRTM15 + V2.1 is a broadly
used global bathymetry and topography grid with a spatial sampling interval of 15 arc
seconds, of which the bathymetry originates from the combination of shipboard soundings
and depths predicted using satellite altimetry.

Tidal harmonic constants of M2, S2, N2, K2, K1, O1, P1, Q1, Mf, and Mm tidal constituents
interpolated from FES2014 were adopted as tidal forcing. Initial and boundary conditions
(when needed) were both interpolated from the GLOBAL_MULTIYEAR_PHY_001_030 prod-
uct provided by Copernicus Marine Service Information (CMEMS); this is a global reanal-
ysis displayed on a standard regular grid at 1/12◦ (~8 km) and on 50 standard levels.

https://coastwatch.noaa.gov/cwn/products/along-track-significant-wave-height-wind-speed-and-sea-level-anomaly-multiple-altimeters.html
https://coastwatch.noaa.gov/cwn/products/along-track-significant-wave-height-wind-speed-and-sea-level-anomaly-multiple-altimeters.html
https://coastwatch.noaa.gov/cwn/products/along-track-significant-wave-height-wind-speed-and-sea-level-anomaly-multiple-altimeters.html
https://www.ncei.noaa.gov/products/international-best-track-archive
https://www.ncei.noaa.gov/products/international-best-track-archive
https://www.hko.gov.hk/en/index.html
http://ccrm.vims.edu/schismweb/
http://ccrm.vims.edu/schismweb/
https://doi.org/10.5069/G92R3PT9
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Air–sea heat, momentum, and freshwater fluxes (when needed) were all derived from the
CFSv2 6-hourly reanalyzed product (https://rda.ucar.edu/datasets/ds094.0/, accessed on
20 July 2022).

To examine the model reliability in simulating the tidal dynamics and explore the
roles of wave–current interaction and river discharge playing in storm surge and flood-
ing, four numerical experiments named “Barotropic”, “Uncoupled”, “Coupled”, and
“Coupled + River” were conducted, of which the detailed configurations are listed in
Table 1. Note that the feedback from current to wave was turned off to focus on the
contribution of wave–current interaction to storm surge.

Table 1. Model configurations of all numerical experiments.

Configuration
Case Name Barotropic Uncoupled Coupled Coupled + River

Initial condition Motionless; constant
temperature and salinity CMEMS CMEMS CMEMS

Boundary condition N/A CMEMS CMEMS CMEMS

Tidal forcing FES2014 FES2014 FES2014 FES2014

Air–sea fluxes N/A CFSv2 CFSv2 CFSv2

Wave–current interaction N/A Off On On

Pearl River discharge N/A Off Off On

Modeling period 20140301–20140430 20170701–20170831 20170701–20170831 20170701–20170831

2.5. Model Skill Assessment

To objectively examine the performance of the model in reproducing local hydrody-
namics, a widely-used skill assessment parameter [26,32–36] is defined as the following:

SKILL = 1− ∑N
i=1(ηmodel − ηobserved)

2

∑N
i=1(|ηmodel − ηobserved|+ |ηobserved − ηobserved|)2 ,

where ηmodel and ηobserved are the simulated and observed values, respectively; the overbar
denotes the temporal average; and SKILL = 1 means perfect simulation, while SKILL = 0
indicates the worst simulation.

Meanwhile, the root mean square error (RMSE), which indicates the average distance
between the modeled and observed values, was used:

RMSE =
√

∑N
i=1(ηmodel − ηobserved)

2/N.

To further measure the linear dependence between the modeled and observed values,
the correlation coefficient (CC) is defined as the following:

CC =
1

N− 1

N

∑
i=1

(
ηmodel − µmodel

σmodel

)(
ηobserved − µobserved

σobserved

)
,

where µmodel and σmodel are the mean and standard deviation of modeled values, while
µobserved and σobserved are the mean and standard deviation of observed values.

3. Results
3.1. Tropical Cyclones Affecting Shenzhen

For a specific coastal region, the typhoon track is a critical factor in determining the
intensity and spatiotemporal distribution of storm surges [24]. Based on the IBTrACS
Version 4 data, we analyzed the tropical cyclones passing the South China Sea during
1842–2019. Tropical cyclones that transited through the circle area, of which the center is
located in the middle of Pearl River Estuary mouth with a radius of 200 km, are defined as

https://rda.ucar.edu/datasets/ds094.0/
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cyclones potentially triggering storm surges and flooding in Shenzhen. Taking the track as a
criterion, tropical cyclones that affected Shenzhen can be sorted into 15 categories: SE-NW-
DOWN, SE-NW-UP, SE-NW-MIDDLE, SW-NE-DOWN, SW-NE-UP, SW-NE-MIDDLE, S-N-
LEFT, S-N-RIGHT, E-W-DOWN, E-W-MIDDLE, E-W-UP, W-E-DOWN, NE-SW-DOWN,
NE-SW-UP, and OTHERS (for instance, SE-NW-DOWN means the cyclone propagates
from the southeast toward the northwest and passing Shenzhen down the Pearl River
Estuary; the type OTHERS indicates the track of the cyclone is very irregular and hardly
to categorize).

Figure 2a,b show the statistics of tropical cyclones with different tracks and the rep-
resentative track of each kind, respectively. As revealed, tropical cyclones of the SE-NW-
DOWN category are absolutely dominant and account for 47.2% of the total numbers.
Therefore, super typhoon Hato (storm ID: 2017232N19130; Figures 2b and 3a), one of the
SE-NW-DOWN category cyclones, was selected as a representative to explore storm surge
and flooding in Shenzhen.
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The track and intensity of Hato are displayed in Figure 3a; it developed over the
northwest Pacific and entered the South China Sea on 22 August through the Luzon Strait.
Later, the maximum wind speed increased from 33 m/s to 52 m/s in one day as Hato
propagated toward the northwest. Finally, the eye of Hato landed at the southwest of Pearl
River Estuary with a 45 m/s gust at 0400 UTC on 23 August 2017, leading to immeasurable
damage and becoming one the most intense and severe typhoons striking China ever.

3.2. Validation of Wave Simulation

The significant wave height (Hs) is one of the most representative characteristics of
waves. As Hato entered South China, the wave field would remarkably adjust in response
to typhoon force. We first examined the simulated Hs during 22–23 August 2017, i.e.,
the typhoon forcing period. Satellites Jason-2, Sentinel-3A, CryoSat-2, and SARAL were
found to be observed during this period; their ground tracks are shown in Figure 3a using
different colors. The along-track comparisons of observed and modeled Hs are displayed
in Figure 3b–e, respectively. Generally, the modeled Hs agree well with the observations
both in intensity and spatial distribution along all tracks. The model skill originated from
the comparisons based on Jason-2, Sentinel-3A, CryoSat-2, and SARAL Hs observations are
0.95, 0.97, 0.88, and 0.92, respectively, proving a satisfying model ability in mapping the
wave dynamics under typhoons.

Further, Hs observations with Jason-2, Jason-3, Sentinel-3A, CryoSat-2, and SARAL
through August 2017 were utilized to conduct an enhanced validation of the model.
Figure 4a shows the ground tracks of five altimeters, while the comparison results are
presented in Figure 4b. The model skill is 0.92 over a total number of 36,253 point-to-
point contrasts. Moreover, the RMSE and CC between the modeled and observed Hs are
0.34 m and 0.86, respectively. Thus, as Figures 3 and 4 revealed, the model can accurately
simulate the waves not only under normal weather conditions but also applicable to the
typhoon process.
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3.3. Validation of Tide Simulation

The sea level height (SLH) in nearshore areas is mainly dominated by the tides. Thus,
the reliable tidal performance of the model is necessary for accurate storm surge and
flooding simulation. Comparisons between SLH observations and simulations (results
from the barotropic case) at tide stations T1–T9 (Figure 1c) are shown in Figure 5a–i,
respectively. As displayed, the model can reasonably present the magnitude as well as the
phase of periodically fluctuating SLH; the model skills at tide stations T1–T9 are 0.96, 0.94,
0.95, 0.93, 0.92, 0.96, 0.96, 0.96, and 0.94, respectively, showing satisfying tidal performance.

3.4. Validation of Surge Simulation

Tide stations T10 and T11 (Figure 1c) completely recorded the variation of SLH through-
out the strike of Hato, and these data were used to examine the model performance in the
surge process. As Figure 6 displayed, the model (Couple + River case) reasonably hindcasts
the abnormal high SLH (i.e., storm surge) by Hato: the maximum observed and simulated
SLH are 3.40 m (3.89 m) and 3.39 m (3.83 m), respectively at station T10 (T11), producing
a 0.01 m (0.06 m) model error. Therefore, the reliable model performance is qualified for
further explorations.

Further, tidal harmonic analysis was conducted at stations T1–T11 using the SLH
modeled using the barotropic case. Thus, the astronomic tides during the studied period
can be calculated based on existing tidal harmonic constants. Then, the surge height can be
obtained through deducting the SLH induced by astronomic tides from the total SLH, and
the time series of surge height at stations T10 and T11 modeled using different numerical
cases during the passage of typhoon Hato are displayed in Figure 6c,d, respectively. As
revealed, the surge first appeared at 00:00 on 21 August and gradually strengthened
until 16:00 on 22 August, then a sharp increase occurred, and the surge height reached
its peak around 03:00 on 23 August. Following the peak, the surge height mainly kept
lowering till 00:00 on 24 August. Note that there were fluctuations in both the rising and
lowering phases.

There are little differences among the surges modeled using various numerical cases
during the period 12 h before or after the peak surge. At stations T10 and T11, the maximum
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surge modeled with the Uncoupled case is 0.01–0.06 m lower than that using the Coupled
case. Meanwhile, there is a minor difference between the Coupled and Coupled + River
cases (Figure 6c,d). Given that the maximum SLH produced with Coupled + River is slightly
lower than the observations (Figure 6a,b), it could be inferred that wave–current interaction
improves the model skill for the surge at stations T10 and T11, but the contribution of the
Pearl River discharge is insignificant there, and this will be further discussed in Section 4.

3.5. Storm Surge along Shenzhen Coast

There are five coastal districts, Dapeng, Yantian, Futian, Nanshan, and Baoan, in
Shenzhen city (Figure 7k); they extend from the east shore of Pearl River Estuary to the
north of Dapeng Bay and Daya Bay with significant separation by Hong Kong in the middle.
To understand the spatiotemporal differences of storm surge along the Shenzhen coast,
10 representative coastal stations (S1–S10) are selected, and their locations are shown in
Figure 7k, while the surge height modeled with different numerical cases at stations S1–S10
are shown in Figure 7a–j, respectively.
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Figure 6. (a,b) show the comparisons between observed sea level height and modeled result (Coupled
+ River case) at tide stations T10 and T11 shown in Figure 1c during the strike of super typhoon Hato
(2017), respectively. (c,d) display time series of surge height simulated using different numerical
cases at stations T10 and T11, respectively.

From the perspective of time, as shown in Figure 7, the maximum storm surge outside
the Pearl River Estuary occurred about 7 h earlier than that inside the estuary. Meanwhile,
the occurrence time of a maximum storm surge is gradually postponed as it comes from
the middle estuary to the upper estuary.

From the perspective of space, in the stations adjacent to Dapeng Bay and Daya Bay
(S1–S6), the storm surge at stations on the windward side (S1, S2, and S6) was significantly
higher than those stations on the leeward side (S3–S5) during the strike of super typhoon
Hato. Meanwhile, the maximum surge height inside the Pearl River Estuary was generally
larger compared with the surge along the coast of the Dapeng and Yantian districts.

Further, Figure 7 also suggests that the maximum surge height increased by
0.02–0.08 m after taking wave–current interaction into consideration; outside the Pearl
River Estuary, wave–current interaction contributed to an average of 0.05 m surge over six
stations (S1–S6); however, only an average of 0.02 m surge was triggered via wave–current
interaction over stations (S7–S10) inside the estuary. In addition, the maximum surge
height was 0.01–0.13 m higher when adding the discharge of Pearl River into the model; on
average, 0.11 m and 0.01 m increases in surge height were found inside and outside the
Pearl River Estuary, respectively.
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3.6. Flooding along the Shenzhen Coast

Based on the Coupled + River case, we then explored the spatiotemporal characteristics
of flooding in the coastal zone of Shenzhen. The maximum flooding area, its occurrence
time, and the flood depth of Dapeng, Yantian, Futian, Nanshan, and Baoan districts are
displayed in Figure 8. In the districts inside Pearl River Estuary, the occurrence time of
maximum flooding falls behind those outside the estuary, indicating that the surge signal
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propagated from east toward west under the forcing of Hato. Note that the occurrence time
of maximum flooding was not the same as that of maximum surge height; this is easy to
understand: maximum surge height does not equal the highest SLH.
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The inundation area of districts inside the Pearl River Estuary was generally broader
than those outside the estuary. Meanwhile, the most and second severe flooding occurred
in Baoan and Nanshan, with inundation areas of 23.8 and 10.7 km2, respectively. Compared
with Baoan and Nanshan, the flooding in Futian, Dapeng, and Yantian was much weaker,
and the inundation area was about one order of magnitude smaller than the former ones.

4. Discussion
4.1. Occurrence Time of Maximum Surge and Flooding

During the strike of Hato, Figure 7 reveals a significant difference in the occurrence
time of maximum surge in different areas of Shenzhen. On one hand, Hato propagated
along an SE-NW track (Figure 3a); thus, a far-field surge signal would first arrive at the
eastern shore of Shenzhen and then enter the Pearl River Estuary to reach the western shore
of the city. On the other hand, a typhoon wind field usually characterizes a spiral structure,
as shown in Figure 9. Shoreward winds, in favor of the development of local surge, also
first appeared in the eastern parts of Shenzhen and dominated the districts adjacent to Pearl
River Estuary later. The cooperation between wind direction and coastline orientation plays
a vital role in the occurrence time of maximum surge in different areas, and that is why
previous investigations emphasized the importance of typhoon tracks on storm surge [24].
Moreover, the low sea surface air pressure at the typhoon center is also a key contributor
to storm surge because it will help the SLH to rise. As typhoon Hato propagated from
southeast to northwest, the far-field surge signal generated by low air pressure in the open
sea would also propagate toward the coast and first arrive at the eastern shore of Shenzhen
for a shorter distance, which is also in favor of the earlier occurrence time of maximum
surge there compared with the areas inside the Pearl River Estuary.
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Figure 9. (a–d) show 10 m wind vectors superposed on sea surface air pressure (data originated from
CFSv2 product) at 18:00 22 August, 00:00 23 August, 06:00 23 August, and 12:00 23 August 2017,
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The occurrence time of maximum flooding was also gradually postponed from the
east coast of Shenzhen to the west (Figure 8). One reason is that, as discussed above, the
maximum surge occurred earlier in the northern Dapeng Bay and Daya Bay than in the
eastern Pearl River Estuary. However, maximum surge is not necessarily in sync with
maximum SLH, and maximum SLH depends on the cooperation between storm surge and
astronomic tides.

The tidal system in the Pearl River Estuary is mainly driven by tidal energy from the
West Pacific through the Luzon Strait: both diurnal and semi-diurnal tidal waves propagate
toward the southwest as they enter the South China Sea, passing by the eastern shore of
Shenzhen and then arriving at the estuary. Figure 10a–d display spatial distribution of tidal
phases of M2, S2, K1, and O1 constituents, respectively. As revealed, the tidal phases of M2,
S2, K1, and O1 constituents along the western coast of Shenzhen approximately lag behind
those along the eastern shore by 55◦, 80◦, 25◦, and 35◦ (i.e., 1.83 h, 2.76 h, 1.66 h, and 2.51 h
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time lag in respective high tide), respectively. Thus, the spatial difference of the tidal phase
is another reason for the varying occurrence time of maximum flooding.
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4.2. Role of Topography

Figure 11 shows the altitude of five coastal districts of Shenzhen. As Figures 8 and 10
revealed, the distributions of maximum flooding are in good agreement with the low-lying
areas in these coastal districts. Under the strong forcing of Hato, flooding in Shenzhen
barely broke through the 5 m altitude line. For the Baoan district, there are broad, low-
lying coastal areas, which explains why the maximum flooding occurred there to a large
extent. Another reason is that Baoan is located in the top region of the bell-shaped Pearl
River Estuary, where the stormwater from the open sea will be easily accumulated by
the shrinking terrain and, in turn, produce higher SLH. Results suggested that Baoan,
followed by Nanshan and Yantian, should enhance the embankment work aimed at those
low-lying zones.

4.3. Role of Wave–Current Interaction and River Discharge

The increase in surge height via wave–current interaction outside Pearl River Estuary
is larger than that outside the estuary, which was reported in Section 3.5. The main reason
is that waves inside the estuary are weaker than those outside the estuary (not shown) due
to the shallow and semi-enclosed topography, and thus the wave-setup process is much
weaker. Table 2 lists the observed and modeled maximum SLH at stations T10 and T11;
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as suggested, consideration of wave–current interaction improves model performance at
both stations.
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Table 2. Observed and modeled maximum SLH at stations T10 and T11 (unit: m); values in brackets
are simulating errors.

Station
Case Observation Uncoupled Coupled Coupled + River

T10 3.40 3.34 (0.06) 3.39 (0.01) 3.39 (0.01)

T11 3.89 3.82 (0.07) 3.83 (0.06) 3.83 (0.06)

Another interesting point lies in the different occurrence times of maximum surge
triggered via wave–current interaction. Figure 7g reveals that the maximum surge occurred
1 h earlier at station S7 as wave–current interaction was considered. This reminds us of
the importance of using the wave–current coupled model in forecasting storm surge and
flooding because the accurate prediction of maximum surge and flooding occurrence time
is crucial for formulating disaster response plans and, thus, for saving lives and properties.

In terms of river discharge, Pearl River is the second largest river in China, with an
annual average flux of 1× 104 m3/s, which is a dominant factor for the ocean biogeochemi-
cal environment in the estuary and its adjacent seas. A strong salinity front is one of the
most typical phenomena triggered by continuously incoming fresh water (Figure 12a). In
Section 3.5, a significant increase (0.11 m) in surge height by the river discharge was found
inside the estuary. Therefore, we examined the SLH difference between the Coupled and
Coupled + River numerical cases before the strike of Hato, and the result is displayed in
Figure 12b. The intervention of Pearl River discharge elevated SLH by ~0.1 m in the estuary
but ~0 m in the far field, which well explains the spatial difference of river discharge’s
contribution (Figures 7 and 12b).
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5. Conclusions

Recent tropical cyclones affecting Shenzhen have shown a remarkable tendency to
increase in both intensity and quantity [25], highlighting the urgency of accurate forecasts of
storm surges and flooding for effective planning and mitigation. Hence, we have conducted
a comprehensive study based on satellite and field observations together with an advanced
high-resolution baroclinic wave–current model to gain a better understanding of the storm
surge and flooding in Shenzhen; the major new findings are as follows:

(1) Classification of historical tropical cyclones reveals that Shenzhen city is most vulner-
able to cyclones propagating from the southeast toward the northwest and passing
Shenzhen down the Pearl River Estuary (i.e., type SE-NW-DOWN);

(2) Propagation of far-field surge and tidal waves, cooperation between wind direction
and coastline orientation, estuary morphology, and land terrain together dominate the
spatiotemporal distribution and intensity of storm surge and flooding in Shenzhen;

(3) We highlight the importance of wave–current interaction and river discharge in the
forecast of storm surge and flooding in Shenzhen: wave–current interaction improves
the simulation of storm surge and may modify the occurrence time of maximum surge
height, while river discharge can elevate the background SLH, particularly in the
inner estuary.

Actually, there are three types of flooding processes threatening coastal areas: storm
surge and flooding, precipitation-driven flooding, and river flooding. Their compound
effects have been proven to play a vital role in estuaries [37,38]. Given the extremely
complicated river networks and huge freshwater flux of Pearl River and the increasing
trend of concurrent heavy precipitation of tropical cyclones [39], compound flooding should
be investigated in further investigations.
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