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Abstract: The accurate mapping and analysis of coastal wetlands and their dynamics are crucial
for local coastal wetland protection, sustainable social development, and biodiversity preservation.
However, detailed mapping and comprehensive analysis of coastal wetlands remain scarce. In this
study, we utilized Landsat-TM/OLI remote sensing data and employed the linear spectral mixture
analysis (LSMA) method to map changes in coastal wetlands and analyze their dynamics in the
Yellow River Delta (YRD) from 1991 to 2020. Our mapping results demonstrate high accuracy and
are consistent with previous studies, boasting an overall accuracy exceeding 96%. During the period
of 19912020, the YRD estuary expanded by approximately 8744.58 ha towards the east and north.
The vegetation of P. australis and S. salsa underwent transformation due to agricultural practices or
degradation to bare flats. Moreover, these areas saw extensive colonization by the invasive species
S. alterniflora. Over the three decades, S. alterniflora expanded approximately 5 km along the coast,
significantly impacting the local coastal wetland biodiversity. Furthermore, a considerable number of
natural wetlands transitioned into human-made wetlands from 1991 to 2014. In particular, bare flats
underwent substantial changes, transforming into aquaculture sites and salt exploitation areas. These
dynamics in coastal wetlands had significant repercussions on local ecosystems, including wetland
fragmentation, biodiversity depletion, and water pollution. However, post-2014, numerous wetland
protection strategies were implemented, resulting in the restoration of natural wetlands. Detailed
wetland mapping and dynamic analysis furnish valuable insights for the management, protection,
and sustainable utilization of diverse coastal wetlands.

Keywords: coastal wetland mapping; dynamic analysis; endmembers (EMs); linear spectral mixture
analysis (LSMA); the Yellow River Delta (YRD)

1. Introduction

Coastal wetlands, acting as natural transition zones between land and sea, play a vital
role in providing crucial ecological services [1-3], encompassing biodiversity maintenance,
carbon sequestration, soil and water control, among other essential, ecosystem services [4,5].
However, due to climate change, natural disturbances, and human activities, coastal
wetlands are currently facing significant challenges globally, such as wetland vegetation
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degradation, biodiversity losses, and environment pollution, putting coastal wetlands at
risk of degradation or disappearance [6-8]. The Ramsar Convention categorizes coastal
wetlands into two types: natural coastal wetlands and human-made coastal wetlands. The
former includes shallow seas, estuary waters, tidal flats, salt marshes, and lakes, while
the latter includes aquaculture areas, salt exploitation sites, reservoirs, and paddy fields.
The invasive species of S. alterniflora extensively displaced the native S. salsa habitat in
the Yancheng National Nature Reserve, resulting in local biodiversity losses [9]. Tidal
flats, despite being habitats for many species, offer limited direct economic benefits and
were extensively exploited for aquaculture in the YRD during the period of 1984-2018 [10].
Coastal land reclamation cumulatively contributed to about 22% of land resources for
aquaculture over the past 30 years [11]. Therefore, accurate mapping of coastal wetland
dynamics is of paramount importance for local environmental protection and sustainable
social development [12].

Traditional field surveys face significant challenges in monitoring coastal wetland
dynamics over a long term and across large areas [13]. Leveraging its wide coverage
and open access, remote sensing data offer real-time dynamic monitoring capabilities
over extensive regions and is extensively utilized for coastal wetland mapping [14,15].
Notably, with Landsat images, Wang et al. (2020) mapped Chinese coastal wetlands in 2018,
including various types, such as evergreen, deciduous, and tidal flats [16]; Sun et al. (2020)
mapped coastal wetlands in the Bohai Rim by the random forest model, including wetland
and water, non-wetland vegetation, and non-vegetated land [17]. While these studies
provided valuable insights into coastal wetland monitoring and conservation, they often
lack detailed information on wetland dynamics, including wetland vegetation changes,
biological invasions, expansion of human-made wetlands, and more. Therefore, it is crucial
to explore coastal wetland dynamics with high spatiotemporal heterogeneity, employing
detailed coastal wetland classification. The linear spectral mixture analysis (LSMA) method,
utilizing spectral endmembers (EMs), enables physics-based standardized quantification of
fractional abundance. This technique proved to be highly effective in detailed land cover
mapping and dynamic analysis [18,19]. By using multi-seasonal images and incorporating
EMs, LSMA can capture phenological information of different land covers, providing
accurate classification results even with limited samples [20]. Given challenges such as
poor accessibility to certain areas and complex conditions related to periodic tides, LSMA
stands out as an advantageous method to map coastal wetland dynamics [21,22].

The Yellow River Delta (YRD) is situated at a critical convergence point among
mainland, river, and sea, boasting an extensive area of natural coastal wetlands. These
natural coastal wetlands play a vital role in the local ecosystems and are instrumental
for social development. However, they are highly sensitive and vulnerable to climate
change and human disturbances, posing significant challenges and garnering widespread
attention [17,23,24]. Concurrently, the rapid expansion of aquaculture and salt exploitation
sites introduced significant problems, including water pollution, wetland degradation, and
biodiversity losses. Given these challenges, it is urgent to comprehensively explore the
dynamics of coastal wetlands in the YRD.

Therefore, we employed Landsat-TM/OLI remote sensing data and utilized the LSMA
method to map changes in coastal wetlands. Our objective was to conduct a dynamic
analysis to aid in the local protection, management, and sustainable utilization of coastal
wetlands. The specific objectives included: (1) mapping the spatiotemporal changes of
coastal wetlands in the YRD from 1991 to 2020 using the LSMA method, according to
our detailed classification framework; (2) exploring their dynamics and interactions of
natural and human-made coastal wetlands in the YRD over these 30 years from temporal,
spatial, and landscape perspectives; and (3) discussing the impacts of detailed coastal
wetland dynamics in the YRD and providing valuable insights for managing, protecting,
and utilizing diverse coastal wetlands, assisting in making informed decisions regarding
their trade-offs.
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2. Materials
2.1. Study Area

Our study area of YRD is located in Dongying City, Shandong Province and in the
southwest area of the Bohai Sea (118°07'0"-119°19'20"E, 36°55'0""-38°10’0"N), with abun-
dant coastal wetlands there (Figure 1). The YRD is characterized with a warm temperate
continental monsoon climate, with the annual mean temperature of 12.1-12.6 °C and the
annual rainfall of 550 mm. The tides are irregular semidiurnal with an average sea-level
change of 141 cm. Our study area presents flat terrain but complex geological conditions,
and local soil types are dominated by tidal soils and saline soils. Local land use is strongly
affected by the salinization process [25,26], especially in the YRD estuary. The native species
of P. australis and S. salsa, and the invasive species of S. alterniflora are three typical forms of
wetland vegetation there.
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Figure 1. The location of our study area. (a) China, (b) Bohai Sea and YRD, (c) true color composites
of red, green and blue bands (Landsat-8 OLI).

The YRD is the youngest wetland ecosystem in China, but it plays an important role
in global climate change, biodiversity conservation, and wetland conservation [27,28].
Furthermore, Dongying City was listed as one of international wetland cities in 2018. With
high sediment-laden content, the Yellow River transports a large amount of sediment to
the estuary each year. The Yellow River and tidal movements have great influences on
regional hydrological processes and the evolution of coastal wetlands. In recent years,
intensive natural and human disturbance changed local coastal wetlands dynamics (such
as natural coastal wetland losses, human-made wetland, and invasive species expansion),
which greatly impacted local coastal ecosystem and social development.

2.2. Data Sources and Pre-Processing
2.2.1. Remote Sensing Data

The remote sensing data of Landsat-5 TM and Landsat-8 OLI were derived from the
Landsat Collection 2 Level-2 Science Products (https:/ /earthexplorer.usgs.gov/, (accessed
on 20 June 2022)), which was uniformly preprocessed. A total of 19 Landsat TM/OLI
images covered our study area, including two image scenes (path 121, row 034 and path
121, row 035) (detailed see the Table S1). The spatial resolution of all images is 30 m. It
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is hard to obtain high-quality images in coastal areas, and thus some images in different
years for costal wetland mapping for the same year. Furthermore, the ENVI 5.3.1 software
was used for image cropping to obtain surface reflectance data in our study area.

2.2.2. Training and Validation Samples

Training and validation sample data were obtained based on field surveys, Google
Earth, Landsat satellite images, and published literature (detailed see the Table S2). Hand-
held GPS was used to locate coastal wetlands during field surveys, and their distribution
was also recorded and photographed. A total of 687 sample points were included by field
survey in different years. Among them, 328 field samples were provided by the Yellow
River Estuary Land-Sea Interaction Field Research Station. Furthermore, we also conducted
interviews to understand the historical information and spatial distribution of different
coastal wetlands, as well as to local landscape and classification knowledge.

3. Methods

We developed a novel detailed coastal wetland classification framework using Landsat
images in a multi-seasonal spectral EM space (Figure 2). Initially, we employed principal
component (PC) transformation on multi-seasonal remote sensing images to identify di-
mensions of the spectral mixing space and define spectral EMs. Subsequently, considering
the seasonal variation in different EMs, we determined the purest pixel using the vertex
of the polygonal scatter diagram, calculating the average reflectance of the EM pixel as
the standard EM spectrum. Following this, a fully constrained LSMA model was applied
using the four-EM standard spectral library to acquire spectral EM fraction images. Lastly,
utilizing the multi-seasonal spectral EM fraction images, we employed the random forest
(RF) model to map detailed coastal wetlands spanning from 1991 to 2020.

3.1. Coastal Wetland Classification System

We defined a comprehensive coastal wetland classification system for the Yellow
River Delta (YRD) based on guidelines from the Ramsar Convention and China’s National
Standard of Wetland Classification (GB/T 24708-2009 [29]). This system took into account
the unique hydrological, soil, and biological conditions specific to the YRD (Table 1).
Coastal wetlands in the YRD were categorized into two main types: natural wetlands and
human-made wetlands. Natural wetlands encompassed wetland vegetation (S. alterniflora,
P. australis, and S. salsa), tidal flats (bare flat and wet tidal flat), as well as river and lake
areas. On the other hand, human-made wetlands included aquaculture, salt exploitation
sites, reservoirs, and paddy fields. Additionally, we identified two non-wetland categories:
arable land and built-up areas.

3.2. The Methods of Coastal Wetland Mapping
3.2.1. Linear Spectral Mixture Analysis (LSMA)

The accurate identification of decomposable spectral endmember (EM) types is crucial
for linear spectral mixture analysis (LSMA) [30]. In this study, we utilized the principal
component (PC) transformation of multi-seasonal remote sensing images to determine
the dimensions of the spectral mixing space and identify the number and type of spectral
EMs [30-32]. The first three principal components of remote sensing images contributed
more than 98% (Figure S1), indicating that the intrinsic dimension of the spectral space was
three [31]. Hence, we selected four standard EMs in this study (the number of endmembers
is generally one more than the intrinsic dimensionality of the spectral space): bare soil (SL),
saline (SA), green vegetation (GV), and dark surface (DA, including water and shadow).
The LSMA method is defined as follows:

n
Rij =) FixEx;+e¢i, 1)
k=1
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where R; ; is the spectral reflectance of the ih pixel at the band j, n is the total number of
endmembers, F; is the fraction of the k" endmember in the it" pixel, Ey,j represents the

spectral reflectance of the k' endmember in the j band. ¢;j is the residual error of the
LSMA model.

Table 1. The coastal wetland classification system in our study.

Category I Category 11 Category III Description Landsat-8 OLI

Image Example Field Photo Example

S. alterniflora mainly grows in the
S. alterniflora middle and low tide areas, with its
growing season from April to October.

P. australis is mainly distributed in the
riverbanks, with its growing season
from April to October.

Wetland P. australis
vegetation

S. salsa is mainly distributed in
mid-tide or high-tide area with
various coverage, with its growing

Natural season of May to November.
wetlands

S. salsa

Bare flat is located in the mid-tide to
high-tide area, with lower water
content but higher soil salinization
than wet tidal flat.

Bare flat

Tidal flats

Wet tidal flat is located in the low tide
Wet tidal flat area, has no vegetation cover, and is
periodically immerged in water.

Permanent or intermittent riverine

Rivers ancllakes and lacustrine wetland.

Artificial wetlands for
Aquaculture fish/shrimp/crab/sea cucumber
farming.

Salt exploitation sites Artificial wetlands for salt production.

Human-
made
wetlands

Reservoirs Artificial wetlands for water storage.

Paddy fields are mainly distributed
Paddy field near rivers anc.l v1lllages, anFl the
single-season rice is grown in our
study area.
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Figure 2. The new detailed coastal wetland classification framework based on EMs space.

The endmembers (EMs) of DA and SA exhibit high purity in spring or early summer,
while the EMs of GV and SL can be obtained in summer and winter (or autumn) due to
their seasonal variation. Consequently, using the principal component (PC) transformation
of Landsat-5 TM images, DA and SA in June 1999, GV in August 1999, and SL in November
2000 were chosen to run the LSMA model for mapping in 1991, 2000, and 2008. Similarly,
based on the PC transformation of Landsat-8 OLI images, DA and SA in March 2014, GV in
July 2014, and SL in December 2014 were selected for the LSMA models in 2014 and 2020.
The selected EMs were derived from the vertices of the scatter plots (Figures S2 and S3). To
ensure stability and variability of the EMs in our study area, we selected 200 to 400 pixels
for each EM, and the average reflectance of these pixels was calculated as the standard EM
spectrum (Figure 3).
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Figure 3. The standard spectra of four EMs, including bare soil (SL), saline (SA), green vegetation
(GV), and dark surfaces (DA). (a) the standard spectra of Landsat-5 TM, (b) the standard spectra of
Landsat-8 OLL

The LSMA model was demonstrated to effectively analyze the spatiotemporal varia-
tion between spectral EMs [20,32]. In our study, a fully-constrained LSMA model utilizing
four EMs (SL, SA, GV, and DA) was employed to acquire accurate and physically meaning-
ful spectral EM fraction images spanning from 1991 to 2020. The root mean square error
(RMSE) for all spectral mixed analysis images was found to be less than 0.01, underscoring
the excellent applicability of the LSMA model within our study area [18].

3.2.2. Mapping Costal Wetland

Random forest (RF) is a powerful ensemble learning method that aggregates multiple
decision trees to generate outputs, utilizing the concepts of ensemble learning and random
space theory. RF is widely used for tasks such as land cover classification and regression
prediction [33,34]. In our study, we set the number of decision trees to 800, considering it as
a crucial parameter for the RF model. The other parameters were kept at default values as
they are already well-suited for the RF model [27]. We utilized the multi-seasonal spectral
EM fraction images we constructed as the input variables for the RF model to map coastal
wetlands in the YRD.

During the visual inspection of coastal wetland mapping results [35], some inevitable
errors were identified in the automatic classification results of the RF model. For instance,
misclassifications occurred between aquaculture and reservoirs, and misclassifications were
observed in adjacent areas among different wetlands. To ensure the highest coastal wetland
classification accuracy, we corrected these misclassifications by leveraging extensive field
data, local expert knowledge, and additional references [12,36]. Additionally, to enhance
the robustness of coastal wetland mapping, we employed a majority filter analysis using
5 x 5 moving windows in the ENVI 5.3.1 software used [37].

3.3. Mapping Accuracy Assessment

The confusion matrix is a widely utilized method for assessing mapping accuracy [28].
In our study, we employed several key metrics for accuracy assessment of coastal wetland
mapping: overall accuracy (OA), Kappa coefficient (KC), producer’s accuracy (PA), and
user’s accuracy (UA) [38]. Overall accuracy (OA): this metric represents the ratio of
the number of pixels that were correctly classified to the total number of pixels. Kappa
coefficient (KC): KC measures the consistency between the classification results and the
actual types, providing a valuable assessment of classification quality. Producer’s accuracy
(PA): PA represents the probability that a verification sample pixel is consistent with the
classification result, focusing on the accuracy of the classification process. User’s accuracy
(UA): UA signifies the ratio of the number of correctly classified pixels to the total number
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of pixels assigned to a particular category, indicating the reliability of the classification for
specific categories.

3.4. Landscape Indices of Coastal Wetlands

Landscape indices effectively encapsulate a diverse array of information regarding
various landscapes, encompassing their structural composition and spatial heterogeneity.
In our analysis, we selected eight indices at both the landscape and type levels, namely
number of patches (NP) and patch density (PD): reflecting fragmentation levels, where
a higher value indicates greater fragmentation. Largest patch index (LPI): indicates the
dominance of each landscape. Landscape shape index (LSI): characterizes landscape
complexity, with a larger LSI denoting higher complexity. Perimeter-area fractal dimension
(PAFRAC): reflects the impact of human activities on landscapes. Shannon’s diversity
index (SHDI) and Shannon’s evenness lidex (SHEI): describe diversity, uniformity, and
heterogeneity of each landscape. Aggregation index (Al): reflects the degree of patch
aggregation. The calculation of these landscape indices was performed using Fragstats
v4.2.1 software.

4. Results
4.1. Accuracy Assessment of Coastal Wetland Mapping

The accuracy of our coastal wetland mapping in the Yellow River Delta (YRD) for
the period 1991-2020 demonstrated high precision, with an overall accuracy consistently
exceeding 96% (Table S3). Both producer’s and user’s accuracies consistently surpassed
90%, indicating the reliability of our results. The Kappa coefficient, measuring the con-
sistency between classification outcomes and actual types, stood at an impressive 0.96,
affirming strong agreement with the sample data. In terms of accuracies related to wetland
types, natural coastal wetlands exhibited generally higher producer’s and user’s accuracies
compared to human-made wetlands. Human-made wetlands, being more susceptible to
human-induced disturbances, showed accuracies ranging from 92% to 99%. Specifically,
natural wetland vegetation, including S. alterniflora, P. australis, and S. salsa, displayed
slightly higher mapping accuracies than bare flats and wet tidal flats. In the year 2020, the
producer’s accuracies for wetland vegetation were consistently around 97%. Notably, the
user’s accuracy for S. salsa was the highest, reaching 99%, likely attributed to its unique
physiological and spectral characteristics in high-salinity environments.

4.2. Coastal Wetland Dynamics during 1991-2020 in the YRD

During 1991-2008, coastal wetlands experienced increased human disturbances, ev-
ident from the rise in the PAFRAC, suggesting alterations in their structural complex-
ity (Table S4). This period saw a decline in P. australis, S. salsa, and bare flat areas of
20.14 x 10% ha, 6.62 x 10° ha, and 38.16 x 103, respectively (Figure S4). The coastal wet-
lands suffered fragmentation, as indicated by the elevated NP and PD. The LPI showed
a decreasing trend, signifying reduced dominance of coastal wetlands. Furthermore, nat-
ural wetlands were transformed into human-made wetlands, arable land, and built-up
areas due to local utilization and economic activities. Particularly, 87.78 x 10° ha of tidal
flats were converted into built-up areas, aquaculture, and salt exploitation sites, notably
in the north and east of the YRD. Over the 30-year span, there was an increase in land-
scape types and the heterogeneity of coastal wetlands, reflected in the rise of SHDI and
SHEI. In 2020, following wetland protection strategies post-2018, natural wetlands were
restored, encompassing an area of 12.83 x 10% ha (Figure S4). In 2020, coastal natural
wetlands were primarily concentrated in the eastern coastal zone, especially in the YRD
estuary, comprising areas occupied by the S. alterniflora (5.18 x 10° ha), the P. australis
(9.62 x 103 ha), the S. salsa (9.40 x 103 ha), the bare flat (35.62 x 103 ha), and the wet tidal
flat (21.82 x 10° ha). On the other hand, human-made coastal wetlands predominantly
existed in the eastern and northern nearshore regions, with a notable increase over the
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30-year period. In 2020, 84.30% of these human-made wetlands constituted aquaculture
and salt exploitation sites.

4.3. The Evolution Dynamics of Different Wetland Vegetation in the YRD Estuary

The native coastal wetland vegetation in the Yellow River Delta (YRD) primarily
comprised the P. australis and the S. salsa, with areas of 38.88 x 10% ha and 19.08 x 103 ha,
respectively (Figure 54). These two native species had distinct distributions based on their
growth preferences. The P. australis thrived in humid areas near riverbanks and the YRD
estuary (Figure 4); however, its area diminished by approximately 29.26 x 10° ha over
30 years, primarily due to encroachment by arable land and the invasive species S. alterni-
flora. On the other hand, the S. salsa showed high susceptibility to local environmental
conditions, preferring areas with high salinity and humidity, primarily distributed in the
eastern coastal region, especially the YRD estuary. However, changes in soil and water
conditions led to significant spatial distribution variations in S. salsa, with some areas de-
grading into bare flats (Figure S5). Additionally, parts of the S. salsa habitat were overtaken
by S. alterniflora, particularly in the YRD estuary from 2008 to 2020. During the 30-year pe-
riod, the largest patch index (LPI) of S. alterniflora rapidly increased, while that of P. australis
decreased (Table S5). The LPI of S. salsa fluctuated due to its sensitivity to environmental
changes. This suggested that S. alterniflora became the dominant invasive species in coastal
wetland vegetation, encroaching on the habitat of native species. However, the landscape
shape index (LSI) of P. australis and S. salsa remained significantly higher than that of S.
alterniflora from 1991 to 2020, indicating greater landscape complexity for the native species.

S. alterniflora R P qustralis S.salsa Bare flat Wet tidal flat mmRivers and lakes

= Aquaculture

Salt exploitation sites ®mReservoirs Paddy field =~ Arable land ™ Built-up areas

Figure 4. Classification maps of coastal wetlands in the YRD from 1991 to 2020. (a) 1991, (b) 2000,
(c) 2008, (d) 2014, (e) 2020, (f) the YRD estuary in 1991, (g) the YRD estuary in 2000, (h) the YRD
estuary in 2008, (i) the YRD estuary in 2014, (j) the YRD estuary in 2020.

As an invasive species, the S. alterniflora was introduced as a silt-promoting and
beach-protecting species in 1990, initially limited to the north bank of the YRD estuary
in 1991 (A in Figure 5a), covering an area of 0.16 x 10° ha (Figure S4). Subsequently, its
expansion was gradual, primarily occurring in the northern estuary from 1991 to 2008
(A in Figure 5a—c). However, from 2008 onwards, the S. alterniflora rapidly expanded
in the northern and eastern estuary (B in Figure 5c—e) due to robust reproduction and a
lack of natural predators. It also appeared in the southern area of the YRD estuary by
2020 (C in Figure 5e). The increase in its aggregation index (Al) indicated agglomerative
expansion (Table S5). Over the 30-year span, the area of S. alterniflora expanded more than
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30-fold, significantly impacting local coastal wetland biodiversity. Notably, S. alterniflora
encroached upon 1190.58 ha of S. salsa and 72.10 ha of P. australis during this period,
particularly between 2008 and 2020.

© 2014 @y

S. alterniflora wa P. qustralis S.salsa Bare flat Wet tidal flat = Rivers and lakes

W Aquaculture

Salt exploitation sites = Reservoirs Paddy field = Arable land ™= Built-up areas

Figure 5. Coastal wetland vegetation in the YRD estuary from 1991 to 2020. (a) 1991, (b) 2000,
(c) 2008, (d) 2014, (e) 2020.

4.4. Bare Flat and Human-Made Wetland Dynamics in the YRD

The bare flat, despite providing essential ecosystem services, had limited economic
benefits. As a result, it was extensively utilized for aquaculture and salt exploitation in
our study area (Figure 4). The bare flat area significantly reduced by about 77.81 x 10% ha
in the northern and eastern YRD from 2000 to 2020. Aquaculture experienced a rapid
increase from 1991 to 2008 due to high economic benefits and increasing demand for
aquatic products. During this period, 75.71% of the expansion was attributed to the
conversion of bare flat to aquaculture. The landscape patch index (LPI) of aquaculture
showed a continuous increase in both 2014 and 2020, signifying a sustained enhancement of
aquaculture dominance (Table S5). By 2020, aquaculture was predominantly concentrated
in the eastern and northern parts of our study area. However, the rate of aquaculture
expansion significantly declined from 2008 to 2020 due to constraints such as limited water
resources, stringent environmental regulations, and aquaculture limitations. Furthermore,
the perimeter—area fractal dimension (PAFRAC) increased from 1991 to 2008 and then
decreased from 2008 to 2020, indicating a changing extent of disturbance to aquaculture by
human activities during these periods.

Salt exploitation sites were another significant human-made wetland in our study area.
Initially limited to the southeast coast in 1991, their distribution expanded widely along the
northern and eastern coasts by 2020 (Figure 4). Over 30 years, the area of salt exploitation
sites increased by 20.15 x 10° ha (Figure S4). The increase in the aggregation index (Al)
for salt exploitation sites indicated a higher degree of aggregation compared to previous
years (Table S5). Interestingly, during 2008-2020, 13,687.40 ha of aquaculture areas were
transformed into salt exploitation sites, while only 3114.33 ha of salt exploitation sites were
converted into aquaculture (Figure S5).

5. Discussion
5.1. Comparison with Other Coastal Wetland Results in the YRD

We conducted a comparative analysis with several global and regional datasets to
validate the accuracy and consistency of our coastal wetland mapping in the Yellow River
Delta (YRD) with the global intertidal change dataset (GIT dataset), the typical salt-marsh
vegetation dataset (MTS dataset), and the GlobeLand30.

The GIT dataset was produced at 3-year intervals (https://www.intertidal.app/
download, accessed on 10 January 2023), covering the 30-year period of 1984-2016 [39].
According to GIT’s definition, the intertidal data correspond to tidal flats in our study.
We mapped coastal wetlands for the years 1991, 2000, 2008, 2014, and 2020 in our study
area, comparing our results with GIT maps for 1990-1992, 1999-2001, 2008-2010, and
2014-2016. The tidal flat area in our YRD dataset for 2008 and 2014 closely matched GIT’s
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data, showing good spatial alignment (Figure 6a-h). However, our dataset showed more
tidal flats in 1991 and 2000 than in the GIT dataset. This discrepancy was mainly due to GIT
being a global dataset based on Landsat images using 56 spectral classification variables
(such as NDWI and NDVI), while we used fractional images obtained through the LSMA
method. Consequently, some areas classified as tidal flats in the GIT dataset, including
aquaculture and reservoirs, differed from our classification [16,40]. Nonetheless, our YRD
dataset generally exhibited good consistency with the GIT data, despite these differences.

B S. alterniflora
P. australis

B S salsa

i

GlbeLand30

Cultivated land
= Wetland
= Water bodies
= Artificial surfaces§| |

Figure 6. Comparison with other mapping coastal wetlands in the YRD, (a-h) the tidal flats from our
YRD dataset and the GIT dataset, (i-p) the S. alterniflora, P. australis and S. salsa from our YRD dataset
and the MTS dataset, and (q,r) the YRD dataset and the GlobeLand30 dataset in 2020.
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The MTS dataset was produced with the optical data of Landsat TM/ETM/OLI and
Sentinel-2 MSI, as well as Sentinel-1 SAR radar data [28]. The three typical salt marsh
vegetation types identified in the MTS dataset align with the categories defined in our
study, encompassing S. alterniflora, P. australis, and S. salsa. The distribution of S. alterniflora
in our YRD dataset for 2014 and 2020 closely corresponds with that in the MTS dataset
(Figure 6i-p). Wang et al. noted that S. alterniflora was introduced to our study area in
1990, and its area measured 66.78 ha in our 2000 study [27]. Interestingly, S. alterniflora was
absent in the MTS dataset at that time. Moreover, the area covered by S. alterniflora (7.47 ha)
in the 2008 MTS dataset was smaller than in our dataset (407.61 ha). While the P. australis
areas in the YRD and MTS datasets for 2008 and 2014 showed a good match, our P. australis
area was 2938.27 ha larger than the MTS dataset for 2000, particularly in the northwest of
our study area. Additionally, the MTS dataset indicated approximately 1574.03 ha more
P. australis than our result for 2020, though the spatial distribution of S. salsa was generally
consistent in both datasets. These discrepancies could be attributed to variations in remote
sensing imagery, resolutions, and classification variables between the two datasets [41].

We compared our results in the Yellow River Delta (YRD) with the classification system
based on GlobeLand30 (http:/ /www.globallandcover.com/, accessed on 10 January 2023)
(Table S6). The wetland area in our study exhibited high consistency with GlobeLand30
in 2020, and the spatial distribution also matched well (Figure 6q,r). However, there were
discrepancies between these two datasets due to variations in remote sensing images and
classification methods [21]. Specifically, the cultivated land area in the GlobeLand30 dataset
exceeded our result by 45,236.25 ha, while the artificial surfaces were 51,219.99 ha less in
the GlobeLand30 dataset. Furthermore, the water bodies” area in the GlobeLand30 dataset
was 10,715.67 ha smaller than that in our YRD dataset. In terms of overall accuracy (OA)
and Kappa coefficient (KC), the GlobeLand30 dataset for 2020 reported an OA of 85.72%
and a KC of 0.82. In comparison, our 2020 coastal wetland mapping achieved a higher
OA of 97.30% and a higher KC of 0.97, emphasizing the accuracy and precision of our
mapping approach.

5.2. The Impacts of Coastal Wetland Dynamics in the YRD Area

Over the past 30 years, the extensive spread of S. alterniflora brought about adverse
effects. For instance, S. alterniflora alters the flow patterns and trajectories of water bodies,
leading to shifts in local sediment dynamics within the YRD estuary. This, in turn, modified
the evolution of the local estuary, posing a threat to the coastal environment [10]. Addition-
ally, S. alterniflora encroached upon the natural habitats of native species such as P. australis
and S. salsa due to its favorable environment and lack of natural predators. Consequently,
this invasion resulted in significant losses in biodiversity within our study area [10]. Vari-
ous strategies and measures, such as physical removal, chemical treatment, and biological
control, were implemented to curb the further invasion of S. alterniflora [10,42]. Our study,
by providing a detailed analysis of the dynamics of different wetland vegetation, can play
a critical role in monitoring the invasion of S. alterniflora and issuing early warnings.

Apart from invasive species, human activities also contributed to the depletion of
natural coastal wetlands [16]. Wu et al. highlighted that the expansion of coastal construc-
tion resulted in the loss and fragmentation of natural wetlands in China, elevating the
risk of coastal disasters such as storm surges and tsunamis [43]. Oil exploitation further
encroached upon natural coastal wetlands, such as P. australis in the YRD, causing degrada-
tion and secondary salinization [44]. Furthermore, cropland cultivation, often accompanied
by excessive water usage, accelerated the degradation of natural wetlands due to water
scarcity, especially affecting wetland vegetation such as P. australis [44].

In a study by Wang et al., aquaculture was identified as the primary cause of tidal
flat loss in the YRD, contributing to significant environmental challenges [10]. Excessive
use of aquaculture facilities such as fences and cages led to wetland reduction and water
pollution [45]. Intensive aquaculture practices, including high-density breeding, over-
feeding, and excessive chemical usage, resulted in substantial nitrogen and phosphorus
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accumulation in the local watershed and soil, posing a high risk of eutrophication and
environmental contamination [11]. Therefore, improving aquaculture efficiency and devel-
oping environmentally sustainable aquaculture systems are of paramount importance [43].
However, it is critical to strike a balance between local economic development and wet-
land protection, as aquaculture yielded substantial economic gains at the cost of natural
wetlands [46]. Hence, a detailed monitoring of coastal wetland dynamics can provide
valuable insights to navigate the trade-offs between different coastal wetland management,
protection, and utilization strategies.

5.3. Advantage, Limitation and Future Study

Previous studies primarily focused on fine-classifying coastal wetlands based on
differences in band spectral indices [47]. For instance, Yin et al. mapped S. salsa from 1990
to 2020 in the Bohai Bay using spectral indices and a decision tree algorithm applied to
Landsat images [41]. Zhang et al. mapped typical salt marsh species in the YRD utilizing
temporal-spatial-spectral multidimensional features [28]. However, these studies were
largely specific to certain wetlands and did not consider the broader spectrum of coastal
wetlands and their dynamics. This is due to the challenge of exploring complex coastal
wetlands with similar spectral information, particularly achieving fine classification amidst
high spatiotemporal heterogeneity [48,49].

In our study, we established four standard spectral endmembers (EMs) of SL, SA, GV,
and DA in the YRD. The LSMA method enabled the transformation of original spectral
images into fractional values in the standard EM spectral space, enhancing the interpretabil-
ity and understanding of the spectrum [19]. Multi-seasonal GV effectively differentiates
wetland vegetation from other types, facilitating the accurate distinction of wetland veg-
etation (such as P. australis) with similar spectral characteristics [50]. Additionally, SA
rapidly identifies salt exploitation sites with highly fractional values [18]. The fractional
proportions of different EMs also aid in distinguishing aquaculture from other coastal
wetlands (such as rivers and lakes).

However, there are certain limitations in our study. Due to restricted samples and
remote sensing image availability, there were some misclassifications in coastal wetland
mapping. The spatial resolution limitation (30 m) led to the merging of small patches, such
as P. australis and S. salsa. To address this, future research could optimize samples and
integrate higher-resolution satellite images (e.g., Sentinel-2) to obtain more detailed spectral
information and enhance the accuracy of coastal wetland mapping. Tidal flats, being highly
complex due to tidal and climatic influences, present another challenge. Future endeavors
could incorporate additional auxiliary data such as climate and tides to further enhance the
accuracy of tidal flat mapping. Moreover, our study did not conduct quantitative analyses
on the drivers of coastal wetland dynamics and changes in ecosystem services. Future
work could leverage detailed socioeconomic data to investigate these intriguing questions.

6. Conclusions

Detailed classification of coastal wetlands is crucial for local sustainable development
and wetland protection. Despite some limitations, our study successfully mapped coastal
wetland changes and conducted dynamic analysis from 1991 to 2020 using the LSMA
method. The accuracy of our coastal wetland mapping in the YRD was high, with an
overall accuracy exceeding 96%. Notably, the YRD estuary saw significant expansion of
approximately 8744.58 ha to the east and north during 1991-2020, resulting in substantial
spatial morphology changes.

During 1991-2008, numerous natural wetlands transitioned into human-made wet-
lands such as aquaculture, arable land, and built-up areas. However, after 2014, some
natural wetlands underwent restoration. The invasion of the invasive species S. alterniflora
significantly impacted two forms of native wetland vegetation, P. australis and S. salsa, with
substantial encroachment during 2008-2020. S. alterniflora expanded rapidly during this
period, advancing about 5 km off the coast over three decades.
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The transformation of bare flat areas into aquaculture and salt exploitation sites was
notable due to their high economic value. Despite different methodologies and remote
sensing data, our mapping results are highly consistent with previous findings from the
GIT dataset, the MTS dataset, and the GlobeLand30. Coastal wetland dynamics have
significant impacts on local ecosystem services, including fragmented natural coastal
wetlands, reduced biodiversity, and environmental pollution, even though some human-
made wetlands generated economic benefits. Balancing the protection of natural wetlands
with local social development is a crucial consideration for the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/1s15205003/s1, Figure S1: Eigenvalues ordered highest to zero,
and cumulative PC variance (%). The cumulative variance of the three primary PCs (PC1 to PC3),
was greater than 98%, meaning nearly all the image parameter information can be represented by
these PCs; Figure S2: Scatter plot for TM endmember spectral extraction; Figure S3: Scatter plot
for OLI endmember spectral extraction; Figure S4: Area and proportion of coastal wetlands in the
YRD from 1991 to 2020; Figure S5: The transitions of coastal wetlands in the YRD from 1991 to 2020;
Table S1: List of remote sensing image data; Table S2: Training and validation samples (pixels) for
coastal wetlands during the period of 1991-2020; Table S3: Accuracy assessment of coastal wetlands
classification during the period of 1991-2020; Table S4: Landscape-level indices for coastal wetlands
during the period of 1991-2020; Table S5: Class-level indices for coastal wetlands during the period
of 1991-2020; Table S6: Classification system based on GlobeLand30 for comparison.
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