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Abstract: The past decade has witnessed remarkable economic development, marked by rapid
industrialization and urbanization across Asian regions. This surge in economic activity has led
to significant emissions, resulting in alarming levels of air pollution. Our study comprehensively
assessed the spatial and temporal trends of key pollutants, namely nitrogen dioxide (NO2), sulfur
dioxide (SO2), and aerosol (using aerosol optical depth (AOD) at 550 nm as an indicator), from 2011
to 2021. The data sources utilized include OMI onboard the Aura satellite for NO2 and SO2, as well
as MODIS onboard Terra and Aqua satellites for AOD. The results from spatial and temporal trend
analyses of the three parameters show that there is a clear declining trend over China and Republic
of Korea (e.g., NO2 is declining with an overall rate of −7.8 × 1012 molecules/cm2/year over China)
due to the strict implementation of air pollution control policies. However, it is essential to note
that both countries still grapple with substantial pollution levels, with proportions exceeding 0.5,
indicating that air quality is improving but has not yet reached a safe threshold. In contrast, South
Asian regions, including Bangladesh, Pakistan, and India, are experiencing an increasing trend (e.g.,
NO2 is increasing with an overall rate of 1.2 × 1012 molecules/cm2/year in Bangladesh), primarily
due to the lack of rigorous air pollution control policies. The average emissions of NO2 and SO2

were remarkably higher in winter than in summer. Notably, the identified hotspots are statistically
significant and predominantly coincide with densely populated areas, such as the North China Plain
(NCP). Furthermore, this study underscores the pivotal role of sector-wise emissions in air quality
monitoring and improvement. Different cities are primarily influenced by emissions from specific
sectors, emphasizing the need for targeted pollution control measures. The findings presented in this
research contribute valuable insights to the air quality monitoring and improvement efforts in East
and South Asian regions.

Keywords: nitrogen dioxide (NO2); sulfur dioxide (SO2); aerosol optical depth (AOD); South and
East Asia; satellite data

1. Introduction

In the past decade, rapid economic development characterized by urbanization and
industrialization in various regions of East and South Asia has led to significant emis-
sions into the atmosphere from multiple sectors, including industries, road transportation
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(vehicles), residential and commercial combustion, and agricultural burning, causing un-
avoidable health concerns [1–3]. Nitrogen dioxide (NOx = NO2 + NO), sulfur dioxide
(SO2), and aerosol are very important pollutants impacting air quality [4,5]. The main
sources of NO2 are vehicles, power plants, industries, fossil fuel burning, etc. [6,7]. NO2 can
affect the human respiratory system by increasing respiratory infections and reducing lung
function [8,9]. Sulfur dioxide (SO2) primarily originates from the combustion of fossil fuels,
including coal and oil, by various sources such as power plants, diesel vehicles, petroleum
refineries, cement manufacturing, and metal smelting and processing. Long-term exposure
to SO2 in the atmosphere is harmful to human health, leading to breathing problems and
aggravation of existing heart diseases [10,11]. Aerosol optical depth (AOD) is an optical
parameter to represent aerosol columnar loading, and the main aerosol types include desert
dust, sea salts, black carbon, organic carbon, inorganic salts and so on [12,13]. Aerosols
have adverse impacts on human health as they can deeply penetrate the lungs, as well as
influence regional meteorology and climate [14–17].

While ground-based measurements of air pollutants offer valuable insights, their ca-
pabilities are inherently limited, often providing data only for specific points or small areas
with discrete monitoring locations. However, the recent emergence of satellite-based mea-
surements has revolutionized our ability to observe and monitor pollutant concentrations
in the atmosphere across extensive geographical regions, ranging from regional to global
scales. The development of satellite-based estimation of air pollutants in the atmosphere
has a rich history dating back to the 1960s. The most common space borne instruments
performing radiation intensity based measurement of air pollutants (NO2, SO2, O3, CO, and
AOD), such as MODIS (Moderate Resolution Imaging Spectroradiometer), OMI (Ozone
Monitoring Instrument), MOPITT (Measurement of Pollution In the Troposphere), GOME
(Global Ozone Monitoring Experiment), SCIAMACHY (Scanning Imaging Absorption
spectroMeter for Atmospheric ChartograpHY), and the recently launched TEMPO (Tro-
pospheric Emissions: Monitoring of Pollution) and GEMS (Geostationary Environment
Monitoring Spectrometer) etc. [18–23]. This study adopted the OMI measured NO2 and
SO2, and MODIS measured AOD, because these data are applicable for a wide range of
uses, applications, and validations across several regions [24–28].

The rapid urbanization over Asia and its sub-continents is causing immense increase
in air pollution, particularly NO2, SO2, and AOD. The developed countries like USA and
Europe have implemented strong air quality improvement policies from 2005 to 2015, which
resulted in a significant decrease in air pollutants [27,29–32]. China has also undertaken
strict pollution control strategies called the Five Year Plan (FYP 2011–2015), which have
worked well in the East Asian region to decrease air pollutants [33,34]. For the trends
before 2011, several potential studies presented similar analysis [35–37]. Even though the
air pollution data before 2011 is still valuable, this study concerns about the pollutant
distribution and temporal trends in the last decade.

Numerous studies have made attempts to evaluate the spatial and temporal variations
of atmospheric pollution over different regions of Asia using satellite data. He et al. [38]
evaluated the long-term trend of PM2.5 and its exposure over East Asia. Their findings
are closely matched with the observational data with a R2 value of 0.74. Li et al. [39]
assessed satellite-estimated sulfate and nitrate using OMI data from 2006 to 2014 over
China, and found the hotspots of high pollution levels over the North China Plain (NCP).
However, a significant reduction of SO2 and NO2 emissions was also observed. Li et al. [40]
used long-term satellite-derived datasets of AOD, NO2, and O3 to study the spatial and
temporal variations over East China. Their findings revealed elevated concentrations of
these pollutants in urban areas compared to other regions. Xie et al. [41] evaluated the
spatial distribution of NO2 over Wanjiang city belt (WCB) of Anhui, China. Their findings
revealed a notable increase of 19.9 % and 13.9% in NO2 levels from 2005 to 2016 over
WCB and the entire Anhui province, respectively. However, there are limited studies
focusing on the most recent decade (2011~2021) in East and South Asia, a period marked
by significant changes in urbanization and industrialization. Additionally, previous studies
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did not incorporated sector-wise emission analysis, despite remarkable changes in sector-
wise emissions driven by economic development. So, this study differs from previous
studies in terms of recent time period (the last decade), the regions (both South and East
Asia), emission analysis with respect to different sectors (energy production, transportation,
industry, etc.), and scale analysis (both regional and local).

This study conducts comprehensive trend analyses of three major air pollutants (NO2,
SO2, and aerosol) and emission analyses in a regional scale over East and South Asian
countries (highly polluted) using satellite-derived data during 2011 to 2021. Specifically,
this study aims to: (i) evaluate the spatio-temporal changes in air pollution over both East
and South Asian regions, (ii) pinpoint the regions with hotspots of air pollutants, and
(iii) conduct in-depth sector-wise emission analyses of the air pollutants. The outcomes
of our research will not only augment the existing body of knowledge but also serve as
an invaluable resource for policymakers, environmental agencies, and researchers. By
evaluating spatio-temporal trends, identifying hotspots, and analyzing sector-specific
emissions, we hope to facilitate informed decision-making, foster sustainable development,
and ultimately contribute to the mitigation of air pollution’s adverse effects on public health
and the environment in these highly polluted regions.

2. Methods
2.1. Air Pollutants and Emission Data

We leveraged gaseous pollutant data from satellite observations and ground-based
monitoring to investigate the spatial and temporal characteristics of air pollution over a
large area of Asia. OMI is onboarding the Aura satellite of NASA (National Aeronautics and
Space Administration) for measuring trace gases with spatial resolution of 13 km × 24 km
since 2004. This instrument provided estimates of atmospheric gaseous pollutants (NO2,
SO2, O3, CO and other trace gases) in terms of back-scattered sunlight (passive remote
sensing) from the Earth at ultraviolet and visible wavelengths [19].

The spectral range of Aura-OMI is 310.8 to 314.4 nm for SO2, and is 405 to 465 nm
for NO2. The level 3 daily 0.25◦ × 0.25◦ tropospheric column NO2 product is used in this
study for the period of 2011 to 2021 to focus on the last decade dynamics in air pollution
over the study area. To ensure data quality, the data is used with cloud fraction of less than
0.3 and solar zenith angles of greater than 85º [42]. Similarly, the level 3 daily 0.25◦ × 0.25◦

total column SO2 in the PBL (Planetary boundary layer) is utilized here during 2011 to 2021.
The best pixel is extracted by ensuring data quality with cloud fraction (<0.2), solar zenith
angle (<20◦) and row anomaly flags [43]. The cloud fraction of OMI data is acceptable
on the column retrieval of trace gases (NO2, SO2, O3 etc.) because the Lambertian Cloud
model is used with cloud albedo of 0.8, and the mass factor (the mean photon path) in the
atmosphere at absorption line wavelength of a partly cloudy pixel is the weighted sum
of the mass factor of the clear and cloudy part of the pixel [44–47].The Dutch-OMI-NO2
(DOMINO v2.0) algorithm and PCA (Principle Component Analysis) algorithm are used to
estimate NO2, and SO2, respectively [48,49].

The AOD data is taken from the MODIS Aqua and Terra in ascending node at 550 nm
with spatial resolution of 500 m. This product combines the dark target (DT) AOD for land
and the deep blue (DB) AOD for ocean with normalized vegetation index (NDVI) statistics
of greater than 0.3 for DT and less than 0.2 for DB [50]. The product is widely validated
over global and/or regional area [51,52]. The combined MODIS AOD products with dark
target (DT) over land utilized an excellent cloud rejection algorithm and maintaining high
statistics of cloud free pixels [50]. In case of temporal differences, the OMI onboard Aura
and the MODIS onboard Aqua are in very close time of local equator crossing with only
15 minutes’ difference in ascending node. Moreover, the utilized MODIS level 3 data
was obtained from the MODIS level 2 AOD SWAT data with the quality flag of at least 2
(2 = good and 3 = very good).

In addition, the 0.1◦ × 0.1◦ monthly emission data from PKU emission inventory
(2011–2014) is also used in this study to observe the overall spatial and temporal distribution
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of emissions over South and East Asia [53]. The summary of all utilized data is listed in
Table S1 (see the Supplementary Material).

2.2. Study Region

This study evaluates spatiotemporal dynamics of air pollutants over South and East
Asia, which lies between 60◦ E to 154◦ E and 5◦ N to 54◦ N as shown in Figure 1. Specifically,
this study focuses on some highly polluted regions due to the rapid urbanization and
industrialization [54] over China, Bangladesh, Pakistan, India, and Republic of Korea
in the past decade. These countries including China, Bangladesh, India, Pakistan, and
Republic of Korea are selected because the recent decades’ (last two decades) scenarios
like urbanization, industrialization, population densities etc. are highly developing in
the regions, which significantly increase the anthropogenic emissions (energy production,
transportation, industry, residential and commercial, etc.). Here, the Tibetan Plateau is also
selected because it is a special land of high altitude in this study area. The typical climate
of South Asia is categorized as dry, temperate and tropical, while the typical climate of
East Asia can be classified into five major zones: humid subtropical, humid continental,
semiarid, arid, and highland [55]. Both study regions’ climate are highly influenced by
monsoons [56,57].
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air pollution).

2.3. Temporal Evaluation of Air Pollutants

The satellite-estimated data of NO2, SO2, and AOD are analyzed through a seasonal
trend decomposition method to decompose the time series data into different components
as [58]:

X(t) = T(t) × S(t) × I(t), (1)
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where T(t) is the trend component, S(t) is the seasonal component, and I(t) is the irregular
component. Here, the statistical trend analysis is performed on the original monthly time-
series and the 6-month moving average (MA) time-series to determine the average change
in data over time (2011–2021). Additionally, the Mann-Kendall test is utilized to examine
the trend of pollutants at pixel scale.

Along with the temporal evaluation of air pollutants, this study investigated the
proportion of the mean pollutant column burden within each specific region relative to
the mean air pollutant column burden across the entire study area. This analysis aims to
elucidate the individual contribution of distinct areas or regions to the overall air pollution
levels in East and South Asia. The proportion for NO2, SO2, or AOD over a specific area
can be calculated as:

PNO2,SO2, or AOD =
Xs

Ys
(2)

where PNO2,SO2, or AOD is the proportion of NO2, SO2, and AOD over a specific area relative
to the whole study area, Xs is the sum of annual area averaged air pollutants over a specific
area like China, Bangladesh, Pakistan, India, etc., and Ys is the sum of annual area averaged
air pollutants over the whole study area.

2.4. Hotspot Identification (Spatial Evaluation)

While a statistical measurement of higher or lower values of pollutant column density
hold significance, its integration with geographical representation becomes even more
crucial for a comprehensive spatial pattern analysis. The spatial clustering of higher or
lower values is of utmost importance, and this can be effectively assessed using geospatial
statistical tools, such as the Getis-Ord Gi* statistic as [59,60]:

G*
i =

∑n
j=1 wi,j

(
xj − x

)
s

(
n∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)2

n−1

)1/2 (3)

where x =
∑n

j=1 xj
n and s =

√(
∑n

j=1 x2
j − (x)2

)
, xj is the prenominal value for a point j,

wi,j = 1
ri,j

is the measured distance of the jth point from the measurement point i, and n is
the number of measuring points. This tool is applied by using the spatial statistical tools of
ArcGIS 10.8 [61] to identify the hotspots of air pollutants.

3. Results
3.1. Spatial Distribution of NO2, SO2, and AOD

Figure 2a–c present the spatial distribution of the multi-year averaged (2011–2021)
NO2, SO2, and AOD over South and East Asia during the period from 2011 to 2021, where
the North China Plain (NCP) is characterized with higher values of NO2, SO2, and AOD,
and some parts of Bangladesh, India, Pakistan, and S. Korea also have higher values of
these air polluting components. Figure 2d–f shows the relative changes in NO2, SO2, and
AOD between 2011 and 2021. The positive change indicated a reduction in emissions from
2011 to 2021, which is prominently observed over the NCP for all three air pollutants.
Additionally, the eastern part of Republic of Korea has experienced a decline in NO2. In
contrast, negative changes are observed for other study locations, signifying an increasing
pattern of pollutant emissions.
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We assessed seasonal variations in the spatial distribution of the relevant air pollutants,
considering spring (March to May, MAM), summer (June to August, JJA), autumn (Septem-
ber to November, SON), and winter (December to February, DJF) as shown in Figures S1–S3
(see the Supplementary Material). The seasonal distribution of NO2 demonstrates low
column densities in summer and high column densities in winter, and moderate values in
other seasons. NCP exhibits a constantly higher NO2 level (~18.32 × 1015 molecules/cm2)
throughout the year. The highest values are recorded in spring in the central (Capital,
Dhaka, ~6.87 × 1015 molecules/cm2) and southern (Khulna, ~5.53 × 1015 molecules/cm2)
regions of Bangladesh, eastern parts of India, and the capital region of Republic of Korea.
SO2 also shows similar patterns in seasonal variations and spatial distributions over the
study area. The AOD reflects opposite patterns compared to those of SO2 and NO2, with
higher values in summer and spring and lower values in winter. Higher AOD in spring
can be attributed to frequent dust events, and higher values in summer may be due to
high humidity and photochemical transformation of SO2 and NO2 into sulfate and nitrate
aerosols [35,62,63].

3.2. Regional Trend Analysis of NO2, SO2, and AOD

Figure 3 illustrates the pixel-wise trend distribution of NO2, SO2, and AOD from 2011
to 2021. Notably, the Mann-Kendall (MK) score for NO2 is negative and exhibits high
values (depicted in green-colored regions on the map) predominantly over the North China
Plain (NCP) and Republic of Korea. These findings signify pronounced decreasing trends
in NO2 column densities within these regions. The positive MK score for NO2 with notably
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higher values over Bangladesh, India, and Pakistan, indicating strong increasing trends.
Similar trends are also observed for SO2 and AOD (Figure 3a–c). The respective p-values of
the trend analysis indicate statistically significance (<0.05) for the regions exhibiting strong
increasing or decreasing trends (See Figure S4 in the Supplementary Material).
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Figure 3. The regional distribution of trend of (a) NO2, (b) SO2, (c) AOD over the study area.

The area-averaged monthly changes in SO2 from 2011 to 2021 using the original
monthly mean time-series and the 6-month moving average time-series over different
regions are presented in Figure 4. The SO2 results indicate the decreasing (negative)
trend over China and Republic of Korea with slopes of −0.0079 × 1015 molecules/cm2/year
(−0.0078 × 1015 for moving average) and −0.0188 × 1015 molecules/cm2/year (−0.0201 × 1015

for moving average), respectively. There are positive (increasing) trends with slopes
of 0.0011 × 1015 molecules/cm2/year, 0.0011 × 1015 molecules/cm2/year, 0.0004×1015

molecules/cm2/year, and 0.0005 × 1014 molecules/cm2/year over Bangladesh, India,
Pakistan, and the Tibetan plateau, respectively. The overall trend analysis of NO2 and AOD
also shows similar trends (see Figures S5 and S6 in the Supplementary Material). These
monthly mean time series and their moving averages exhibit noticeable seasonal cycles of
SO2 and NO2 with higher values in winter and lower values in summer, whereas AOD
shows an opposite variation (i.e., lower in winter but higher in summer and spring). We
also note that the magnitudes of NO2, SO2, and AOD are relatively lower in the year 2020,
which is due to the weaker emissions during the lockdown period of the Covid-19 situation
during 2020 [64,65].
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Figure 5 presents the proportion of the three air pollutants for a specific region like
China, Bangladesh, Pakistan, India, Republic of Korea and Tibetan Plateau which is cal-
culated as the ratio of the sum of an air pollutant over a specific region to the sum of that
air pollutant over the total study area. The area averaged data were extracted for each
specific regions using the masking process of ArcGIS software, then converted in CSV
format for each specific regions and for the whole study region, and finally performed the
ratio operation. The proportion reflects the influences of an air pollutant in a specific region
on the entire East and South Asia [41]. The proportion-analysis results of NO2 indicate
that all regions have an influence (the proportion is >0.5) on the total NO2 except for the
Tibetan Plateau. Two countries (China and Republic of Korea) show decreasing trends, and
other countries (e.g., India, Bangladesh, and Pakistan) show increasing trends as discussed
above. A similar trend from proportion analysis is found in the case of SO2 and AOD
(Figure 5b,c) with the exception that the Tibetan Plateau also shows a slight influence on
the total air pollution of SO2 and AOD. In addition, the proportion analysis for different
regions (Figure 5) indicates a similar trend and all countries are influenced by air pollution
(the proportion > 0.5), except for the Tibetan plateau, which is very slightly influenced by
SO2 and AOD [41,66].
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Figure 5. The proportion (ratio) of mean air pollutant levels for each individual region to the mean
air pollutants over the entire study area for (a) NO2, (b) SO2, and (c) AOD.

3.3. Seasonal Trend of Overall NO2, SO2, and AOD

Figure 6 illustrated the seasonal variations in NO2, SO2, and AOD from 2011 to 2021.
Notably, the NO2 and SO2 are lowest in summer, which can be explained by wet deposition
due to frequent precipitation and photochemical transformation of NO2 and SO2 into
aerosols [17,67,68]. Higher values of NO2 and SO2 in winter and autumn may be due to
the higher emissions from several burnings like house heating, brick kiln burnings, and
agricultural crop residue burnings in East and South Asian regions [69,70]. The seasonal
variations of AOD over the study area show an opposite behavior, with lower values
found in winter and autumn but higher values found in spring and summer as shown in
Figure 6c, which can be described by frequent dust events, higher humidity, and efficient
photochemical conversion of NO2 and SO2 into sulfate and nitrate aerosols [62,63]. The
comparison of the monthly (area averaged for the whole study area) time-series (2011–2021)
shows that the AOD is also exhibiting the opposite relationship with NO2 and SO2 as
shown in Figure 7.
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3.4. Hotspots Identification

The hotspot analysis is visualized using three different periods: first half (2011–2016),
second half (2017–2021), and the entire time span (2011–2021) (Figure 8a–c, respectively)
to confirm the realistic hotspots for NO2 with statistical significance. The three different
periods’ hotspots show statistically significant results, where the hotspot areas are increas-
ing in the second half (2017–2021) of the period as compared to the first half (2011–2016)
over India, Bangladesh, and Pakistan. The statistical values of NO2 hotspots over ran-
domly selected cities are shown in Table S2 (see Supplementary Material). Specifically, the
economically developed cities over the study area are identified as statistically significant
(>95% confidence and p-value <0.049) hotspots such as the NCP, the Yangtze River Delta
(YRD), and the Pearl River Delta (PRD) in China, Republic of Korea, the central Bangladesh
(Dhaka), some eastern (Calcutta) and northern parts (New Delhi, Amritsar) of India. Most
of the identified hotspots are with the 95% to 99% confidence level. Figure 7d shows the
respective p values which are also statistically significant for all the identified hotspots in
the study area. Our results are aligned with the previous study [71].

This study also explores statistically significant hotspots of SO2 and AOD as shown in
Figure 9. The hotspots of SO2 were mainly observed in the NCP, the eastern part of India
as prolonged to the western part of Bangladesh, the capital area of Republic of Korea, and
the industrialized areas of north-eastern Pakistan. While the AOD hotspots are mainly
distributed over the whole of Bangladesh, northern India, the eastern part of Pakistan, and
the NCP (Figure 9b). Based on the p values, the hotspots areas were statistically significant
(<0.05) for SO2 and AOD, respectively (Figure 9c,d).
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3.5. Emission Analysis of NOx, SO2, and PM2.5

The natural variation in air pollutants over the study area is negligible. For example,
Kang et al. [4] analyzed the natural contribution to a multi-year (2007–2011) variation of
NO2, SO2, and AOD over East Asia, and found that NO2 was increased by 76% with only
1% contributed by natural contribution and 99% contributed by anthropogenic contribu-
tion; SO2 was decreased by 15% with 16% contributed by natural contribution and 84%
contributed by anthropogenic contribution; and AOD was increased by 24% with 23% con-
tributed by natural contribution and 77% contributed by anthropogenic contribution. As a
result, the anthropogenic contribution (the energy production, vehicle transportation, other
fossil fuel burnings, household burnings etc.) is dominant (>85% on average) for these three
pollutants in the study regions. This subsection focuses on examining the spatial distribu-
tion of emissions for the years 2011–2014. Additionally, it entails the analysis of sector-wise
emission sources within the identified hotspots across the study area. The NOx (NO and
NO2) emission inventory can be used for NO2 because NO is the primary pollutant which is
further oxidized into NO2 [53,72]. As there is a good correlation between AOD (at 550 nm)
and PM2.5 at the planetary boundary layer [73,74], the emission inventory of PM2.5 can also
be used for AOD. The spatial distributions of total emissions (sum of emissions from all
sectors) of NOx, SO2, and PM2.5, respectively, over East and South Asia were retrieved from
the latest PKU (Peking University) emission inventory (http://inventory.pku.edu.cn/, ac-
cessed on 25 July 2022) [53,63,75]. The maximum values of NOx, SO2, and PM2.5 emissions
are mainly over the NCP, northern and southern parts of India, northern Pakistan, and
northern Republic of Korea, and the central part of Bangladesh as 2.77 × 108 g/km2/month,
8.36 × 108 g/km2/month, and 1.63 × 108 g/km2/month, respectively (Figure 10a–c).

Figure 11 presents sector-wise emissions for the three air pollutants across eight
economically developed and developing cities. The analysis primarily centers on emissions
from energy production, industry, transportation, as well as residential and commercial
sectors. NO2 emissions in various cities are significantly influenced by different sectors.
Specifically, emissions from the energy production sector exhibit higher levels in cities
such as Zhengzhou (China), Calcutta (India), and Seoul (Republic of Korea). On the other
hand, emissions from the transportation sector dominate in cities like Dhaka (Bangladesh),
Faisalabad (Pakistan), New Delhi (India), and Urumqi (China) (Figure 11a). In terms of
SO2 emissions, the energy production sector contributes significantly to high emissions
in cities such as New Delhi (India) and Dhaka (Bangladesh). Conversely, emissions of
SO2 from the industrial sector are notably elevated in cities like Seoul (Republic of Korea),
Urumqi (China), and Luoyang (China) (Figure 11b). The PM2.5 emissions from the energy
production sector are higher mainly in Calcutta and New Delhi (India) as well as Seoul
(Republic of Korea), while notably higher contributions from the industrial sector occur in

http://inventory.pku.edu.cn/
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cities like Luoyang (China) and Urumqi (China). Additionally, significant PM2.5 emissions
are attributed to the residential and commercial sectors in Calcutta and Faisalabad, while
the transportation sector dominates PM2.5 emissions in Dhaka. The results indicate that
air pollution over different cities is highly/dominatingly impacted by different sectors’
emissions. The NO2 pollution over Dhaka, Faisalabad, and New Delhi is dominated by
emissions from transportation, but it is dominated by emissions from the energy production
sector in Zhengzhou, Seoul, and Calcutta. Thus, sector-wise emission analysis is necessary
for making effective air pollution control policies over the study area.
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4. Discussion

This study presents a comprehensive evaluation of the spatial and temporal trends
of NO2, SO2, and AOD over East and South Asia using satellite-derived data from 2011
to 2021. The results highlight that there are declining trends of air pollution over China
and Republic of Korea due to the well-planned and strict implementation of long-term
air pollution control policies to reduce emissions [33,76]. Clear increasing trends of the
concerned air pollutants are observed over Bangladesh, Pakistan, and India, which reflects
that there is still lack of air pollution control policies and strict implementation in these
regions. In fact, there are potential emissions from anthropogenic sources (industry, power
plants, vehicle transportation, residential, commercial and all other biomass burning) and
natural sources over these regions [77]. Now, it is the question of how Asia can reduce its
emissions to a health-friendly level. As revealed by this study and other previous studies,
some countries like China, Republic of Korea, and Japan are trying to incorporate huge
amounts of renewable energy (wind, solar, and water-based energy) into the national power
grid and to implement other air pollution control policies.

As per the existing literature on air pollution control policies, the most effective
air pollution control policies were implemented by China [78–81], where they had to
take several plans, actions and strict implementation during the process of air pollution
control war. The following potential strategies can be recommended for countries (e.g.,
Bangladesh, Pakistan, and India) that are suffering from increasing trends in air pollution.
One could establish the environmental governance to build the environmental regulatory
system by using several administrative units like the Ministry of Environment, central and
local environmental protection bureaus, and other structural institutions [81]. One could
develop environmental laws and standards to notify the people at different legislative levels
regarding the detailed standards as measured and recommended by different national and
international organizations (e.g. EPA, WHO, NAAQS etc.) [82]. One could implement
plans like the Five Year Plans (FYPs) on a local and national scale to achieve the target
emissions reduction. For example, the FYP (2013–2017) in Beijing and its surroundings
got a reduction of emissions by 83% for SO2, 43% for NOx, 42% for VOCs, and 59% for
primary PM2.5 [78]. One could also select the target precursors (SO2, NOx, PM2.5, etc.)
and sectors (energy production, industry, vehicle transportation, residential, agricultural
etc.) based on the sector wise emission analysis [83]. One could take special actions in
addition to the FYPs to control the special cases (special needs, crisis, and environmental
accidents). For example the preparation of 2008 Olympic games in Beijing was needed for
the special actions regardless of general regulations [84]. It is also necessary to identify the
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fundamental flaws in environmental regulations such as the absence of general principles
of environmental rights and too low pollution punishment fee [80].

Therefore, the detailed trend analysis, hotspots analysis, and emission analysis in this
study can help the policymakers to set air pollution control policies constructively in terms
of the aforementioned points.

5. Conclusions

Overall, this study evaluated the spatial and temporal characteristics of NO2, SO2, and
AOD over East and South Asia using satellite-derived data from 2011 to 2021. The trend
analysis of these air pollution parameters indicated that two countries (China and Republic
of Korea) have a declining rate in air pollution levels and emissions due to their well-
planned emission reduction policies. However, based on the proportion analysis, we found
that the contributions of air pollution in those countries to the total air pollution in the entire
East and South Asia are still significant. The South Asian regions, particularly Bangladesh,
India, and Pakistan, show significant increasing trends in air pollution, emphasizing
the immediate implementation of long-term air pollution control policies to restrict the
emissions. The seasonal variations of NO2, SO2, and AOD reflects the impacts of local
emissions and meteorological conditions, and there is a passive inter-relationship between
them as the increment of NO2 and SO2 will increase the secondary aerosol formation due
to photochemical conversion into nitrate and sulfate aerosols. The results of the emission
analysis implied that it is necessary to incorporate the sector-wise emission analysis in
evaluating the impact of air pollution in different cities. For example, Dhaka, Faisalabad,
and Calcutta are highly polluted with vehicle transportation, residential and commercial
sectors compared to other sectors. The time-series and proportion analyses over the Tibetan
Plateau suggests the motivation for systematic future work on air pollution specifically
for SO2 and AOD over this high terrain region. Finally, the results and discussions in this
study can be utilized by the policymakers for setting up integrated and/or separate air
pollution control policies over East and South Asian regions.
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during the period from 2011 to 2021; Figure S4: Respective p-values for the regional distributions
of the trends of (a) NO2, (b) SO2, and (c) AOD; Figure S5: The overall trend of NO2 over (a) China,
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and (f) Tibetan Plateau.
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