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Abstract: Forest fires are characterized by a rapid and devastating nature, underscoring the practical
significance of forest fire risk monitoring. Currently, forest fire risk assessments inadequately account
for non-meteorological hazard factors, lack the hazard-formative environment and contextual disaster
knowledge for fire occurrence mechanisms. In response, based on MODIS products, we augmented
the FFDI (forest fire danger index) with the RDST (regional disaster system theory) and selected
various fire risk indicators, including lightning. MOD14 was used for the correlation analysis of fire
and its indicators. Through the amalgamation of the analytic hierarchy process (AHP), the entropy
method, and the minimal relative entropy theory, we formulated the CFFRI (composite forest fire
risk index) and assessed forest fire risks spanning from 2010 to 2019 in Southwest China, which were
validated with historical disaster data and MCD64. The findings revealed that the CFFRI yields
consistently higher overall fire risk values, with 89% falling within the high-risk category and 11%
within the moderate-risk category. In contrast, the FFDI designated 56% of cases as fourth-tier fire
risks and 44% as third-tier fire risks. Notably, the CFFRI achieved an accuracy of 85% in its calculated
results, while the FFDI attained 76%. These outcomes robustly demonstrate a superior applicability
of the CFFRI compared with the traditional FFDI.

Keywords: forest fire risk; MOD14 product; MCD64 product; indicator system; regional disaster
system theory; hazard assessment

1. Introduction

Forest fires are frequent natural disasters in China and around the world, characterized
by their sudden onset, significant destructive power, and challenging emergency response
efforts. Globally, more than 200,000 forest fires occur each year, resulting in the destruction
of millions of hectares of forest, accounting for over 0.1% of the total forest area [1,2]. In
recent years, forest fires have erupted frequently worldwide, with numerous significant
incidents occurring in 2019 alone [3–9]. China has consistently faced severe forest fire
hazards, with a major forest fire having occurred in Liangshan Prefecture, Sichuan Province,
on 30 March 2019, resulting in 31 fatalities and the burning of 20 hectares of forest land.
A year later, on 30 March another massive forest fire struck the same region, causing
19 casualties, 3 injuries, and affecting an area of approximately 3048 hectares, with direct
economic losses reaching nearly a billion yuan [10]. Forest fires not only directly destroy
vegetation, resulting in substantial losses, but also indirectly impact the carbon cycling
process and distribution patterns within the biosphere, disrupting regional ecosystem
equilibrium [2,9,11]. Therefore, conducting pre-disaster warning and risk monitoring
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research on forest fires holds significant importance in mitigating disaster losses, protecting
forest resources, and maintaining ecological balance [12,13].

Since the 1970s, remote sensing technology enabled the monitoring of regional wild-
fires based on abundant satellite data. In 1999, NASA successfully launched the first satellite
of the Earth Observing System (EOS) program, TERRA, equipped with five Earth-observing
sensors, including the Moderate Resolution Imaging Spectroradiometer (MODIS) [14,15].
The MODIS sensor includes a dedicated channel designed for wildfire monitoring [16].
MODIS data are readily accessible, relatively easy to process, and offer high-temporal
resolution, making them the most essential remote sensing data for global wildfire research
in the past decade [17].

Fuel, such as forests, could cause fires due to various reasons [18,19]. Increasing human
activities have put forests in a flammable situation, such as burning straw for the autumn
harvest, fireworks for traditional celebrations, and other ignition behaviors. Moreover,
forest phenology could directly affect the stocking level, causing seasonal differences in
fire cases. It has also been proven that the lower-latitude regions are more prone to risk
fire hazards [18]. Facing such uncertainty, vision-based SAG (space–air–ground) remote
sensing has become a prevalent strategy for forest fire detection and risk assessment [20].

Based on remote sensing, risk assessments of forest fires adapted to different situations
have been developed, and currently, forest fire risk assessment methods can be broadly
categorized into three types as follows:

• Forest fire risk assessments based on mathematical and statistical methods.

These assessments analyze and study data characteristics using statistical theories,
such as cluster analysis, fuzzy comprehensive evaluation, and the gray system theory, to
derive statistical patterns. For instance, Lv et al. developed a forest fire spread GM (1,1)
model based on the gray system modeling theory and the ER algorithm directly using
MODIS fire point data. However, continuous updates and adjustments to the model are
required to avoid the distortion of results [21]. Krishna Prasad Vadrevu, in 2010, employed
a combination of the fuzzy set theory and decision algorithms within a Geographic Infor-
mation System (GIS) framework to analyze forest fire risk in southern India and created
fire risk maps [22]. Sirio Modugno and colleagues, in 2016, utilized logistic regression
analysis to explore specific positive and negative relationships between forest fires and the
wildland–urban interface (WUI) in their vicinity [23]. In 2017, Ryan Lagerquist and his
team predicted fire spread days and extreme weather fire risk using self-organizing maps
(SOMs) based on the Canadian Fire Weather Index System (CFWIS) [24]. H. Yathish and
colleagues, in 2019, applied three fire hazard discrimination methods (logistic regression,
multi-criteria decision analysis, and weighted overlay) in India, considering factors like
elevation, slope, distance to roads, human activity area, land surface temperature (LST), and
the normalized difference vegetation index (NDVI) for fire risk assessment. They found the
logistic regression model to have the highest accuracy at 88.89% [25]. Volkan Sevinc et al.,
in 2019, used a Bayesian network model to predict fire risk factors in southwestern Turkey,
highlighting the month as the primary influencing factor on forest fire occurrence, followed
closely by the temperature; however, they did not consider the relationship between the
temperature and the month [26]. These methods demand high data accuracy and reliability
and possess a degree of randomness. However, they incorporated a limited mechanistic
understanding of fire occurrence and background knowledge.

• Forest fire risk assessments based on forest fire danger indices.

This category constructs the fire risk assessment index based on the mechanisms of
fire occurrence, providing a more realistic reflection of fire occurrence. In 1967, McArthur
introduced the fire danger index (FDI) based on meteorological factors, which laid the foun-
dation for this approach [27]. The Canadian Forest Fire Danger Rating System (CFFDRS)
is widely used and has been applied in several countries, including parts of the United
States, New Zealand, Fiji, Indonesia, and Malaysia [28]. This system calculates multiple
flammability and fire behavior indicators based on four meteorological factors and derives
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a risk index for quantitatively guiding forest fire management activities [29,30]. In China,
the adaptability of the CFFDRS was verified in the Daxing’anling region [31]. In 1995, the
Chinese Ministry of Forestry introduced the National Forest Fire Weather Rating Standard,
considering five fire risk meteorological factors and employing an expert scoring method.
In 2007, the FFDI (forest fire danger index) was optimized and released, undergoing further
improvement based on the modified Brong–Davis scheme in 2018, and continues to be
used today [32]. However, traditional fire risk indices primarily focus on meteorological
and fuel factors, have limited factors for the surrounding environment such as terrain, the
water system, and other geographical factors, and offer a relatively macroscopic assessment
perspective, making them less adaptable for regional forest fire assessment, as they may
not consider all relevant fire impact factors.

• Forest fire risk assessments based on machine learning methods.

In recent years, machine learning methods have gained popularity in fire risk assess-
ment. Support vector machines (SVMs) are commonly used and have demonstrated good
performances in fire risk assessment model comparison experiments [33–35]. Ensemble
algorithms, like random forest (RF), gradient boosting decision tree (GBDT), and XGBoost,
demonstrate better accuracy compared to most individual algorithms and have exhibited
strong classification and regression prediction capabilities in various forest fire risk as-
sessment studies [36–39]. Multilayer perceptrons (MLPs) and back propagation neural
networks (BPNNs) are also frequently employed in forest fire risk assessment, although
their accuracy tends to be lower than the aforementioned methods [33–43]. Deep learning
methods, such as recurrent neural networks (RNNs) and convolutional neural networks
(CNNs), map complex relationships between fire occurrences and input features through
intricate network structures [44–47]. However, machine learning methods require a high
quality and quantity of data, necessitate continuous adjustments and optimizations with
changing data, involve lengthy and complex training processes, and face challenges in
handling diverse geographic conditions. In large-scale predictions, the complexity of these
models increases significantly, making them less suitable, and the “black-box” nature of
machine learning may lead to weaker reliability [44–47].

In conclusion, considering the advantages and disadvantages of various methods, we
have chosen to use the widely adopted fire risk index approach. Building upon the FFDI, we
took into account the mechanisms of fire occurrence, analyzed not only the hazard-affected
body but also the hazard-formative environment and various hazard factors, including
lightning, and constructed a composite forest fire risk index, providing assessment results
for the study area from 2010 to 2019. We also incorporated historical disaster data for
result validation, thereby offering valuable insights for local forest fire monitoring and
prevention efforts.

2. Materials and Methods
2.1. Sudy Area

The study area encompasses the Liangshan Prefecture and Panzhihua City in Sichuan
Province, China (Figure 1). Sichuan Province is a major contributor to forest resources
in Southwestern China, with forests occupying 184,000 square kilometers, accounting
for 38% of the province’s land area and 7.6% of the whole country. From 2010 to 2019,
Sichuan Province experienced a cumulative total of 3066 forest fires, contributing to 8.1%
of the total forest fires nationwide, which amounted to 37,887 incidents. Facing a high
incidence of forest fires, the province’s most fire-occurring area is the “Three Prefectures and
One City” region, which includes Liangshan Prefecture, Aba Prefecture, Ganzi Prefecture,
and Panzhihua City. Among them, Liangshan Prefecture and Panzhihua City have a
higher frequency of forest fires, while Ganzi Prefecture and Aba Prefecture suffer more
significant losses due to these fires [48]. The study area covers a total area of 67,800 square
kilometers and is situated from latitude 26◦03′ to 29◦18′N and from longitude 100◦03′ to
103◦52′E, with a subtropical monsoon climate. The topography is characterized by higher
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elevations in the northwest and lower elevations in the southeast, with a predominance of
mountainous terrain.
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Figure 1. The study area.

2.2. Data Sources

The data we used in our study were of various types, including meteorological and
lightning data, the vegetation category, population density, basic geographic data, historical
disaster data, and MODIS products, specifically MOD14 and MCD64. Detailed entries and
details for each type of data are shown in Table 1.

Table 1. Summary of collected datasets.

Data Type Year Format Spatial Resolution Data Source

Meteorological data 2010–2019 .csv - http://data.cma.cn (accessed on 2 March 2021)

Lightning 2016–2019 .xls - https://www.scdsjzx.cn/ (accessed on 5 March 2021)

Vegetation type 2018 .tiff 1 km http://www.resdc.cn (accessed on 14 April 2021)

Population density 2015 .tiff 1 km http://www.resdc.cn (accessed on 14 April 2021)

Basic
geographic data

River system 2019 .shp - https://wiki.openstreetmap.org/wiki/Planet.osm
(accessed on 24 February 2021)Roads 2015 .shp -

DEM 2007 .tiff 1 km http://srtm.csi.cgiar.org/srtmdata (accessed on 19 April 2021)

Land cover 2015 .shp - http://www.resdc.cn (accessed on 11 January 2021)

Historical
disaster data

Number of fires
and disaster

damage
2010–2019 .xls - https://data.stats.gov.cn (accessed on 9 March 2021)

Fire case 2010–2019 .xls - http://slcyfh.mem.gov.cn (accessed on 11 March 2021)

MODIS
products

MOD14 2010–2019 HDF 1 km https://earthengine.google.com (accessed on 3 April 2021)

MCD64 2010–2019 HDF 1 km http://mas.arc.nasa.gov (accessed on 21 January 2021)

2.2.1. Meteorological Data

The meteorological data used in this study were sourced from the China Meteoro-
logical Data Network (http://data.cma.cn) (accessed on 2 March 2021) and specifically
from the “China Surface Climate Daily Data Set (V3.0)”, covering a total of 23 meteoro-
logical stations in the research area and its surrounding regions (Figure 2a). As these data
are in CSV format, in order to facilitate their inclusion in the final calculation of the fire
hazard index for the study area, along with other raster data types, such as TIFF, they
were interpolated using Kriging to generate 1 km gridded data. This dataset included the
daily maximum temperature, average 2 min wind speed, minimum relative humidity, and
precipitation from 20:00 to 20:00 the next day. After correcting the data, and in accordance

http://data.cma.cn
https://www.scdsjzx.cn/
http://www.resdc.cn
http://www.resdc.cn
https://wiki.openstreetmap.org/wiki/Planet.osm
http://srtm.csi.cgiar.org/srtmdata
http://www.resdc.cn
https://data.stats.gov.cn
http://slcyfh.mem.gov.cn
https://earthengine.google.com
http://mas.arc.nasa.gov
http://data.cma.cn


Remote Sens. 2023, 15, 5077 5 of 25

with the Chinese national standard “Meteorological Grades of Forest Fire Danger” (GB/T
36743-2018) [49], we calculated the drought level, precipitation correction coefficient (Cr),
and snowfall correction coefficient (Cs) and incorporated them into the calculation of the
FFDI along with wind speed, precipitation, and relative humidity. Ultimately, six meteoro-
logical indicators were used in the analysis, excluding precipitation from 20:00 to 20:00 the
next day.
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(d) population density; (e) river system; (f) road data; (g) digital elevation model data; (h) MCD64A1
burned area data, taking 01/2010 as an example; (i) MOD14 fire point data in 2010–2019.

2.2.2. Lightning Data

The lightning data, spanning the years from 2016 to 2019, were obtained from statistical
records provided by the Sichuan Provincial Big Data Center in China (https://www.scdsjzx.
cn/) (accessed on 5 March 2021). These records encompass various attributes, including
time, longitude, latitude, intensity, steepness, charge, and energy, which were utilized for
the statistical analysis of forest fires triggered by natural factors among the contributing
disaster factors. The primary focus of this study was on the attribute of lightning intensity,
specifically, the maximum current intensity and impact size of ground discharges from

https://www.scdsjzx.cn/
https://www.scdsjzx.cn/
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charged cloud bodies, representing the quantity of lightning strikes (measured in kA). After
filtering out anomalous values in the original data and verifying attribute information, a
total of 45,000 lightning records were retained. Using ArcMap 10.6 software, the lightning
data were correlated with a kilometer grid network covering the study area, resulting in
the calculation of lightning intensity per grid unit (data from 2016 and 2017 were combined
to represent a single year, totaling three years of lightning data) (Figure 2b); thus, it can
participate in risk calculations in the form of a grid.

2.2.3. Vegetation Category Data

The vegetation category data were sourced from the Resource and Environmental
Science Data Center of the Chinese Academy of Sciences (http://www.resdc.cn) (ac-
cessed on 14 April 2021). This dataset comprises information regarding the distribution of
54 vegetation types across 11 vegetation type groups in China. After cropping the data to
the study area’s extent, a total of five major vegetation categories were obtained within the
research area, which includes coniferous forests, broad-leaved forests, cultivated vegetation,
shrublands, and grasslands (Figure 2c).

2.2.4. Population Density Data

The population density data were obtained from the Resource and Environmental
Science Data Center of the Chinese Academy of Sciences (http://www.resdc.cn) (accessed
on 14 April 2021). These data have a spatial resolution of 1000 m and represent the
population distribution as of the year 2015. These data were utilized to assess the impact of
human factors on forest fires within the hazard-formative environment after extracting by
the forest vector data for the study area in the year 2015 (Figure 2d).

2.2.5. Basic Geographic Data

• The river system and roads.

The water network data for the year 2019 and the road network data for the year 2015,
both utilized in this study, were sourced from OpenStreetMap (https://wiki.openstreetmap.
org/wiki/Planet.osm) (accessed on 24 February 2021) (Figure 2e,f). The water network
data primarily include two attributes: name and length, which were employed to investi-
gate the influence of the distance from rivers on forest fires within the hazard-formative
environment. The road network data encompass three main attributes: name, grade, and
length, and were used to explore the impact of roading density per kilometer grid on forest
fires within the hazard-formative environment.

• The DEM (digital elevation model).

The DEM data were sourced from SRTM (http://srtm.csi.cgiar.org/srtmdata) (ac-
cessed on 19 April 2021). The current dataset (Version 4) was generated based on NASA’s
release of the completed level 3 arc-second SRTM data. The original data from the year
2000 had data gaps, as the radar data lacked sufficient contrast to extract information about
water bodies, snow-covered areas, and mountainous elevations. The CGIAR-CSI SRTM
dataset underwent post-processing of the NASA data, “filling in” these data gaps in 2007,
resulting in a seamless, global coverage of the elevation data (Figure 2g). These data were
utilized in this study to investigate the impact of different altitudes on forest fires within
the hazard-formative environment.

2.2.6. Land Cover Data

The land use data were obtained from the Chinese Academy of Sciences Resource
and Environmental Science Data Center product (http://www.resdc.cn) (accessed on
11 January 2021). This dataset was based on Landsat remote sensing images and was
developed through manual visual interpretation and field measurements, verified, and
constructed into a 1:100,000 scale national Land Use and Land Cover Change (LUCC)
thematic database. For this study, the primary data source was the 2015 forest vector data,

http://www.resdc.cn
http://www.resdc.cn
https://wiki.openstreetmap.org/wiki/Planet.osm
https://wiki.openstreetmap.org/wiki/Planet.osm
http://srtm.csi.cgiar.org/srtmdata
http://www.resdc.cn
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combined with the administrative boundaries of Liangshan Prefecture and Panzhihua City.
From this combined dataset, forested areas within the study area were extracted to define
the final research scope implemented in the calculations.

2.2.7. MODIS Products

• MCD64 burned area data.

MCD64 data were obtained from NASA (http://mas.arc.nasa.gov) (accessed on
21 January 2021) in the form of MCD64 MODIS level 3 products, known for their complete-
ness and consistency. They have a spatial resolution of 500 m and a temporal resolution of
1 month. These data include attributes such as BurnDate, uncertainty, quality, FirstDate,
and LastDate. We used the MODIS Reprojection Tool Swath to project the original data
from sinusoidal projections to the Albert projection, resampling it to 1000 m. The data
format was converted from HDF-EOS into TIFF. It underwent further processing, including
cropping for the study area and extracting single-band imagery, to facilitate its use in
validating the results of the FFDI calculations. The figure shows the burned area data for
the study area in January 2010 (Figure 2h).

• MOD14 fire point data

MOD14 data were sourced from the Google Earth Engine (https://earthengine.google.
com) (accessed on 3 April 2021). They have a spatial resolution of 1 km and a temporal
resolution of 1 day. These data primarily include surface fire masks and quality information,
comprising details such as the location of surface fires, radiative energy from fire points,
and confidence levels. The data used in this study were the accumulation of daily fire
point data for Liangshan Prefecture and Panzhihua City over a 10-year period from 2010 to
2019. They were employed to investigate the relationship between fire points and various
influencing factors (Figure 2i).

2.2.8. Historical Disaster Data

Part of the historical disaster data used in this study was sourced from the National
Bureau of Statistics (https://data.stats.gov.cn) (accessed on 9 March 2021). These data
include information on the total number of forest fire occurrences in Sichuan Province for
each year from 2010 to 2019, the number of forest fires of different types and levels, the
affected forest area, and the number of casualties. Some of the historical disaster data came
from the China Forest and Grassland Fire Prevention Network (http://slcyfh.mem.gov.cn)
(accessed on 9 March 2021), which includes a total of 35 forest fire incidents in Liangshan
Prefecture and Panzhihua City from 2010 to 2019, with a total burned area of 934 hectares.
Among the identified causes of these fires, two-thirds were attributed to human factors,
such as villagers burning fields and smoking, while one-third resulted from lightning and
electrical failures. We confirmed coordinates based on the names of the affected villages
and used this information, along with the MCD64 burned area data, for validating the
results of the FFDI.

2.3. Methods

The overall technical route comprises three main parts (Figure 3). The first part
involves the utilization of various datasets in this research. In the second part, based
on the regional system disaster theory, hazard factors, the hazard-affected body, and
the hazard-formative environment were considered. Various forest fire indicators were
selected, and the FFDI was calculated based on them. This part aimed to explore the
relationships between indicators and forest fires, forming a foundation for the forest fire
risk assessment index system and providing a quantification reference. In the third part,
the composite forest fire risk index (CFFRI) was constructed based on the AHP (analytic
hierarchy process) and the entropy method. It was then applied to produce a fire risk map,
which was validated using the historical disaster data and MCD64 burnt area data and
compared with the traditional FFDI results.

http://mas.arc.nasa.gov
https://earthengine.google.com
https://earthengine.google.com
https://data.stats.gov.cn
http://slcyfh.mem.gov.cn
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2.3.1. The Regional Disaster System Theory

Both domestic and international research institutions and scholars have proposed a
series of concepts, assessment frameworks, and expressions regarding natural disaster risk,
which can be broadly categorized into three aspects [50–52]: (1) from the perspective of risk
itself, it defines risk as losses under certain probability conditions; (2) from the perspective
of hazard factors, it views disaster risk as the maximum probability that these factors can
generate or occur; (3) from the viewpoint of the disaster risk system theory, it considers
that disaster risk is mainly the result of the combined effects of the hazard of hazard factors,
the exposure of vulnerable objects, and vulnerability. It places a high emphasis on the
vulnerability of human society and the economy and its influence on the formation of
disasters [53].

Shi, based on the natural disaster risk index model proposed by Davidson and Lambert
in 2001, constructed the RDST (regional disaster system theory), including a conceptual
model for disaster risk assessment [54]. In risk analysis, it is common to build an indicator
system based on this model (Equation (1)) [55]. This equation is not a true mathematical
formula, and researchers use it to construct a system of metrics and, based on their specific
requirements, determine whether the symbol “*” represents multiplication or addition to
perform numerical calculations. In our work, addition is used.

R = Hα ∗ Eβ ∗Vδ (1)
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where R represents the risk of natural disasters, H signifies the hazard factors, E represents
the hazard-formative environment, and V denotes the vulnerability of the hazard-affected
body. α, β, and δ represent the weights of the three evaluation factors H, E, and V, respec-
tively, and were calculated based on the respective evaluation indicators chosen [54].

2.3.2. Selection of Forest Fire Risk Indicators Based on the RDST

The selection and application of indicators directly affect the accuracy of the forest fire
risk assessment results. Based on the natural disaster risk theory previously discussed, we
have chosen primary influencing factors from three aspects: hazard factor, hazard-affected
body, and hazard-formative environments. We have analyzed their relationships with
forest fires and categorized the indicators based on the analysis results.

• Hazard factor.

Referring to the “Forest Fire Danger Weather Ratings” (GB/T 36743-2018) proposed
by the China Meteorological Administration in 2018, we calculated the FFDI using several
indicators, such as the daily maximum temperature, average 2 min wind speed, minimum
relative humidity, drought level, the precipitation correction coefficient, and the snowfall
correction coefficient [49]. The FFDI is one of the indicators included in the calculation
of the CFFRI. Lightning ignition is the primary natural ignition source for forest fires
in Sichuan Province, accounting for approximately 2% of identified forest fire ignition
causes, with the remaining 98% attributed to human factors [56,57]. Lightning can present
a more impactful role compared to human activities, especially in rural regions, which is
appropriated for our study area [18]. Therefore, incorporating lightning data into forest fire
risk assessments can partially reflect the impact of natural ignition sources on forest fires.

• The hazard-formative environment.

Different human habitats have varying impacts on forest fires. Areas with dense
human activity are more likely to experience forest fires. Locations with a high roading
density can effectively impede the spread of forest fires, while areas with poor forest
integrity are less prone to forest fires. Hence, we used specific indicators, such as population
density and roading density, to represent the influence of human habitats on forest fires
within the hazard-formative environment. Bodies of water, such as rivers, can act as
barriers to prevent the spread of forest fires and increase air humidity [58]. Terrain factors
directly affect the occurrence and development of forest fires. In this context, we considered
elevation as a terrain factor, which is generally inversely related to the occurrence of
forest fires.

• The hazard-affected body.

The hazard-affected bodies usually refer to administrative units, and their flammability
is often calculated based on social statistic indicators [54]. The vulnerability of hazard-
affected bodies refers to the degree of vulnerability when affected by hazard factors; a
higher vulnerability corresponds to a higher risk [54]. Our hazard-affected body was the
forest, and the vegetation categories differed in their combustibility; hence, we selected the
vegetation category as a factor to represent its vulnerability [59]. Forests of the study area
were categorized into five classes and assigned different vulnerability values based on the
following correlation analysis [58].

2.3.3. Exploration of the Relationship between Forest Fires and Their Indicators

To ascertain the significance of the relationship between various factors and fire points,
Spearman correlation analysis was conducted between the fire risk index and fire point
data (Equation (2)). Scatter plots were generated between the logarithmically transformed
fire point data and each factor:

rxy =
n∑ xiyi −∑ xi∑ yi√

n∑ x2
i − (∑ xi)

2
√

n∑ y2
i − (∑ yi)

2
(2)
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where rxy represents the Pearson correlation coefficient between variables x and y; n stands
for the total number of observed data points; xi denotes the ith observed value of variable
x; yi signifies the ith observed value of variable y.

The calculation method for the FFDI was derived from the “Forest Fire Weather
Ratings” (GB/T 36743-2018) introduced by the China Meteorological Administration, which
was implemented in April 2019 (Equations (3) and (4)) [49]. In this dataset, the average
2 min wind speed represents the wind speed at 14:00; the daily maximum temperature
represents the temperature at 14:00; the daily minimum relative humidity represents the
relative humidity at 14:00, and the 20–20 precipitation was used as the base data for the
drought-level calculations, referencing the China Meteorological Data Network’s China
Ground Climate Data Daily Value Dataset (V3.0) [60]:

IFFDI = U ∗ Cr ∗ Cs (3)

U = f(V) + f(T) + f(rRH) + f(M) (4)

where IFFDI is the value of the FFDI; U stands for the function describing the FFDI; Cr
represents the precipitation correction coefficient. When the 24 h precipitation (Rr) was
greater than or equal to 1 mm, Cr was assigned the value 0; otherwise, it was assigned the
value 1; Cs denotes the snowfall correction coefficient. When the 24 h snow depth (Hs) was
greater than 0 cm, Cr was set to 0; otherwise, it was set to 1. The threshold values for Rr and
Hs can be adjusted based on specific climatic conditions [60]; V represents the 14 h wind
speed; T stands for the 14 h air temperature; rRH represents the 14 h relative humidity;
M represents the drought level. The actual f-function of each of the variables is different,
transforming the raw values into dimensionless exponents, which can be added together
to obtain U, and it’s simplified into a function value check table, allowing us to directly
determine the function value based on the value range (Tables 2–5).

Table 2. Wind speed and its corresponding function value check table.

V/(m/s) ≤1.5 (1.5,3.5] (3.5,5.6] (5.6,8.1] (8.1,10.9] (10.9,14.9] (14.9,17.2] >17.2

f(V)/% 4 8 12 15 19 23 27 31

Table 3. Temperature and its corresponding function value check table.

T/◦C ≤5 (5,10] (10,15] (15,20] (20,25] >25

f(T)/% 0 5 6 9 13 15

Table 4. Relative humidity and its corresponding function value check table.

rRH/% ≥70 [60,70) [50,60) [40,50) [30,40) <30

f(rRH)/% 0 3 6 9 12 15

Table 5. Drought level and its corresponding function value check table.

M/d
Mild drought 0 1 2 3 4 5 6 7 ≥8
No drought ≤3 (3,6] (6,9] (9,12] (12,14] (14,16] (16,18] (18,20] >20

f(M)/% 0 8 12 19 23 27 31 35 38

2.3.4. Fire Risk Indicator Weighting

The measurement of weights represents a physical quantification of the contribution
rates of various indicator variables to their respective goals. Common methods for deter-
mining weights include subjective and objective approaches, such as the Delphi method,
the entropy method, principal component analysis, and the AHP.
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Based on the analysis of fire risk indicators, we comprehensively considered the char-
acteristics and major advantages and disadvantages of commonly used weight assignment
methods. Taking both subjective and objective aspects into account, we selected the AHP
and entropy methods for weight calculations, and then computed their minimum relative
entropy to determine the combined weights.

• The analytic hierarchy process.

The AHP allows decision makers to quantitatively incorporate their experiences and
judgments into the decision-making process. This method uses the judgment matrix
formula to determine the importance levels of different evaluation indicators for the same
factor, thereby assesses the impact of evaluation indicators on the results in the final plan.
The steps are as follows [61]:

1. Constructing a hierarchy structure model.

Divide decision goals, decision factors (decision criteria), and decision objects ac-
cording to their mutual relationships into goal layers, criterion layers, and scheme layers
(decision objects), respectively.

2. Constructing judgment (pairwise comparison) matrices.

With the consistent matrix method, compare two unrelated factors as much as possible
to minimize the impact of factors with different natures. The result of comparing the
importance of factor i with factor j is denoted as aij [62].

aij = 1/aji (5)

3. Hierarchical single sorting and the consistency test.

The characteristic vector of the maximum eigenvalue, λmax, of the judgment matrix,
after normalization, is known as hierarchical single sorting [63,64]. For a positive reciprocal
matrix, a of order n, the maximum eigenvalue λ is greater than or equal to n if and only if
λ = n, making a consistent matrix [61].

4. Hierarchical overall sorting and the consistency test.

The calculation of the weights representing the relative importance of all factors at a
certain level regarding the highest level (the objective level) is referred to as hierarchical
overall sorting. This process is carried out sequentially from the highest level to the lowest
level [64].

Based on the construction of the CFFRI (composite forest fire risk index) indicator
system, we established a hierarchical structure model with the CFFRI as the objective level,
the hazard factor, the hazard-formative environment, and the hazard-affected body as
the criterion level, and various influencing factors as the indicator level. We conducted
a quantitative analysis between each pair of factors within the same objective level and
under the same criterion to construct new judgment matrices, ultimately calculating the
weight of each judgment indicator [65].

• The entropy method.

The entropy method is an objective weighting method that determines weights based
on the objective information reflected by various indicators. It can measure the uncertainty
of an event and eliminate the influence of human factors [66]. The smaller the information
entropy obtained using the entropy method for each indicator, the lower the disorderliness
of the information, and the greater the utility value of the information, leading to a larger
weight for the indicator [65,66]. The calculation steps are as follows [67]:

Assuming there are n samples and m indicators, the value of the j-th indicator for the
i-th sample is denoted as xij (i = 1, 2, 3. . . n; j = 1, 2, 3. . . m).

1. Normalize the original data to eliminate the influence of physical quantities.
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2. Calculate the proportion pij of the i-th sample under the j-th indicator:

pij = xij/∑n
i=1 xij (6)

3. Calculate the information entropy, ej, for the j-th indicator:

ej =

(
− 1

ln n

)
∑n

i=1 pijln (p ij

)
, 0 ≤ ej ≤ 1 (7)

4. Calculate the differentiation coefficient:

The differentiation coefficient, gj, also known as the information utility value, is
primarily determined through the difference between the indicator’s information entropy,
ej, and 1.

gj = 1− ej (8)

5. Determine the weight, Wj, of the evaluation indicator:

Wj =
gj

∑m
i=1 gj

, j = 1, 2, 3, . . . m (9)

• Combined weight.

The indicator weights calculated using the AHP are represented as w1i, and the weights
calculated using the entropy method are represented as w2i. Based on the principle of
minimum relative entropy, the combined weight calculation formula can be obtained using
the Lagrange multiplier method [67]:

wi =

√
(w1i ∗ w2i)

∑m
i=1
√
(w1i ∗ w2i)

, i = 1, 2, 3, . . . , m (10)

2.3.5. The CFFRI Construction

• Structure designing.

Drawing from the RDST, we computed the CFFRI by considering three key facets: the
hazard factor, the hazard-formative environment, and the hazard-affected body. Specifically,
we evaluated seven indicators, namely the FFDI, lightning intensity, the vegetation category,
population density, distance to rivers, roading density, and altitude, and subsequently
standardized the data. Weightings for these indicators were determined through both the
AHP and the entropy method, leveraging the concept of minimum relative information
entropy. Finally, utilizing the combined weights and the disaster risk assessment model
(Equation (11)), we calculated the CFFRI and built the final CFFRI for computing the forest
fire risk:

R = Hα ∗Vβ ∗ Eδ = (Iεα ∗ lγα) ∗
(

tµβ
)
∗
(

pυδ ∗ rωδ ∗ oχδ ∗ dκδ
)

(11)

where H, V, and E represent hazard factors, the hazard-formative environment, and the
hazard-affected body, respectively. α, β, and δ represent the weights for each corresponding
factor. I, l, t, p, r, o, and d represent IFFDI (Equation (3)), lightning intensity, the vegetation
category, population density, distance to rivers, roading density, and altitude, respectively,
while ε, γ, µ, υ, ω, χ, and κ represent the corresponding weights for seven indicators:

R = (I ∗ εα + l ∗ γα) + (t ∗ µβ) + (p ∗ υδ + r ∗ωδ + o ∗ χδ + d ∗ κδ) (12)

where εα, γα, µβ, υδ, ωδ, χδ, and κδ represent the combination weights obtained through
the AHP and entropy method calculations.

• Grading for results.
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We utilized the nature breaks classification method to reduce intraclass differences and
enhance interclass distinctions. In accordance with practical considerations, we categorized
the fire risk values into five levels:

SSDi−j = ∑j
k=i

(
A[k]−meani−j

)2, 1 ≤ i < j ≤ N (13)

where A represents an array (with a length of N), and meani−j signifies the mean value
within each level.

3. Results
3.1. Relation between Fire and Its Indicators

The Spearman method revealed significant correlations between the fire points and the
indicators, except for lightning intensity and roading density (Table 6). To further explore
and visually represent the relationships, we plotted scatter graphs of cumulative fire points
within kilometer grids against each factor, except for the vegetation category (Figure 4a–f).
Due to the magnitude of fire point counts, we applied a logarithmic transformation. For
the vegetation category, we created histograms and conducted an analysis (Figure 4g).

Table 6. Spearman correlation between each indicator and their fire points.

Indicator Correlation Fire Points

The FFDI Spearman correlation 0.237 **
Sig. (2-tailed) 0.000

Lightning intensity Spearman correlation 0.008
Sig. (2-tailed) 0.102

Vegetation category Spearman correlation −0.018 **
Sig. (2-tailed) 0.000

Population density Spearman correlation 0.072 **
Sig. (2-tailed) 0.000

Distance to rivers Spearman correlation −0.022 **
Sig. (2-tailed) 0.000

Roading density Spearman correlation -0.005
Sig. (2-tailed) 0.395

Altitude Spearman correlation −0.163 **
Sig. (2-tailed) 0.000

**—Correlation is significant at the 0.01 level.

These results indicate that as the FFDI increases, the fire points become denser, with
the natural logarithm of fire point count also increasing. Specifically, higher FFDI values
were associated with a greater likelihood of forest fires and more fire points. When the
lightning intensity was set at 0, there were still a number of fire points present. Between the
lightning intensities of 3 kA and 45 kA, there was a substantial number of fire points, with a
relatively stable relationship between their natural logarithms. In the 45–90 kA range, both
the number of fire points and their natural logarithms decreased. As the lightning intensity
continued to rise, both the fire points and their natural logarithms decreased even further.

Regarding population density, as it gradually increases from 0, the corresponding
natural logarithm of fire points initially remains high but starts to decline after reaching
300 people/km2. When the distance to rivers was too great, there were very few fire points.
However, when the distance exceeded 6000 m, both the number of fire points and their
natural logarithms decreased as the distance to rivers increased. When the distance was
less than 6000 m, the fire point density increases with increasing distance from the rivers.

For roading density, when it exceeded 3 km per kilometer grid, there were very few
fire points. When the roading density exceeded 2 km, both the number of fire points and
their natural logarithms decreased. When the roading density was less than 1.5 km, there
was no significant change in the relationship between the roading density and both the
number of fire points and their natural logarithms. For altitudes below 1000 m, there
were relatively few fire points. Between 1000 m and 1500 m, the number of fire points
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significantly increased. The fire points peaked between 1500 m and 2500 m, after which
the natural logarithm of fire points noticeably decreased. Beyond 3500 m, the fire points
decreased with increasing altitude.
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Figure 4. Visualization of the NFP and indicators: (a–f) scatter diagram of cumulative logarithmic
NFP and each indicator; (g) statistical results between the fire area and different vegetation categories.
LI: lightning intensity; PD: population density; DtR: distance to rivers; RD: roading density; NFP:
number of fire points.

Regarding the vegetation category, areas with coniferous forests had the largest fire
point coverage, approximately 3614 km2 (10-year cumulative), representing 65% of the total
fire point area, significantly surpassing the 46.3% forest area covered by coniferous forests.
When the vegetation categories were shrubland, broadleaf forests, and grassland, their fire
point coverage percentages were 11.8%, 6.4%, and 6.1%, respectively, all significantly lower
than their respective proportions in the forest area. Cultivated vegetation areas accounted
for 10.7% of the total fire point area, exceeding the 7.3% of the forest area occupied by
cultivated vegetation.

3.2. Grading of Indicators

Based on the relationship between the fire risk indicators and fire occurrences and
utilizing the data from all kilometer grid cells from 2010 to 2019 within the study area, we
established a classification standard for forest fire risk levels (Table 7). This classification
ranges from one to ten [58,68,69], referencing the relevant literature and exploration of
different indicators.
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Table 7. Grading of forest fire risk indicators.

The FFDI ≤25 (25,30] (30,35] (35,40] >40
Fire danger class 1 3 6 8 10

LI * (ka) ≤3 (3,45] (45,90] (90,135] >135
Fire danger class 4 8 6 5 4

PD * (/km2) ≤10 (10,150] (150,300] (300,400] >400
Fire danger class 5 9 7 5 3

DtR * (km) ≤1 (1,3] (3,6] (6,12] >12
Fire danger class 4 7 9 6 5

RD * (km/km2) ≤1.5 (1.5,2] (2,2.5] (2.5,3] >3
Fire danger class 9 7 5 3 2

Altitude (m) ≤1000 (1000,1500] (1500,2500] (2500,3500] >3500
Fire danger class 5 8 10 7 4

VC * Coniferous forests Cultivated vegetation Broad-leaved forests Shrub Grass
Fire danger class 10 9 7 7 5

* LI: lightning intensity; PD: population density; DtR: distance to rivers; RD: roading density; VC: vegetation category.

3.3. Construction of the CFFRI
3.3.1. Subjective Weight Analysis for the Indicator System

We investigated the pairwise importance of hazard factors, the hazard-formative
environment, and the hazard-affected body with the AHP in terms of the quantity and
characteristics of fire indicators (Table 8). Meteorological factors are the primary factors
influencing forest fire occurrences, making hazard factors the most crucial. Following that
are the hazard-formative environment and vulnerable elements. The weightings for these
three factors were determined through the construction of the judgment matrix, resulting in
weights of 0.575, 0.343, and 0.082, respectively. Utilizing the AHP for hierarchical ranking
and consistency testing of the matrix model data, when the order of the matrix was three,
RI = 0.58, and CR < 0.1, meeting the consistency testing requirements.

Table 8. Judgment matrix and weight of criterion importance.

Criterion Layer H * E * V * Weight Consistency

H * 1 2 6 0.575
λmax = 3.029

CR = 0.025 < 0.1
E * 1/2 1 5 0.343
V * 1/6 1/5 1 0.082

* H: the hazard factor; E: the hazard-formative environment; V: vulnerability of the hazard-affected body.

Subsequently, based on the hazard factor criterion, we explored the importance of the
FFDI and lightning intensity. Since the FFDI can better represent its relationship with forest
fires, while lightning intensity contributes relatively less to the ignition of forest fires, we
assigned weights of 0.90 to the FFDI and 0.10 to lightning intensity when constructing the
judgment matrix (Table 9). This reflects the significant impact of the FFDI on the CFFRI
compared to lightning intensity. These weightings have been tested and found to meet the
requirements of hierarchical ranking and consistency testing.

Table 9. Judgment matrix and weights between the hazard factor, lightning intensity, and the FFDI.

H * FFDI * LI * Weight Consistency

FFDI * 1 9 0.900 λmax = 2.000
LI * 1/9 1 0.100 CR = 0.000 < 0.1

* H: the hazard factor; FFDI: the forest danger index; LI: lightning intensity.

Finally, based on the hazard-formative environment criterion, we explored the relative
importance of population density, distance to rivers, roading density, and altitude. From
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the relationships between these factors and the number of fire points, it was evident that
these four factors do not exhibit purely positive or negative effects on the fire point counts
(Table 10). There existed an intermediate value with a relatively significant influence. How-
ever, the population density, distance to rivers, and altitude showed significant correlations
with the fire points. Taking into account the above analysis and practical considerations,
we constructed a judgment matrix to determine the weights as follows: population density
0.365, distance to rivers 0.147, roading density 0.097, and altitude 0.391. When the matrix
order was four, RI = 0.9, and CR < 0.1, meeting the consistency testing requirements.

Table 10. Judgment matrix and weights between the hazard-formative environment and indicators.

E * PD * DtR * RD * Altitude Weight Consistency

PD * 1 3 3 1 0.365
λmax = 4.046

CR = 0.017 < 0.1
DtR * 1/3 1 2 1/3 0.147
RD * 1/3 1/2 1 1/4 0.097

Altitude 1 3 4 1 0.391
* E: the hazard-formative environment; PD: population density; DtR: distance to rivers; RD: roading density.

Among all indicators within the three criteria, the FFDI had the most significant
influence on the results, accounting for more than half at 51.8%. The altitude and population
density closely followed, with their impact on the CFFRI being relatively equal, constituting
from 12% to 14% of the total impact. The vegetation category came next, contributing 8.2%.
The lightning intensity, distance to rivers, and roading density each accounted for 5.8%,
5%, and 3.3%, respectively (Table 11).

Table 11. The weight of each indicator calculated using the AHP.

Target
Layer

Criteria
Layer *

Criteria
Weight

Index
Layer * Index Weight Final Weight

CFFRI

H 0.575
FFDI 0.900 0.518

LI 0.100 0.058

E 0.343

PD 0.365 0.125
DtR 0.147 0.050
RD 0.097 0.033

Altitude 0.391 0.134

V 0.082 VC 1.000 0.082
* H: the hazard factor; E: the hazard-formative environment; V: vulnerability of the hazard-affected body; LI:
lightning intensity; PD: population density; DtR: distance to rivers; RD: roading density; VC: vegetation category.

3.3.2. Objective Weight Calculations of the Fire Indicators

Due to significant differences in the data of various indicators, conducting dimension-
less processing on the raw data would result in substantial variations in the calculation
results. Therefore, we employed the entropy method for weight calculations based on the
pre-established risk level divisions for each indicator, with all risk levels ranging from
one to ten. This approach allowed us to reduce numerical differences while preserving
the characteristics of the data. The specific weight distributions were as follows: the FFDI
and LI each contributed approximately 20%, PD and altitude around 15%, RD had a lower
weight of 6%, and DtR and VC accounted for approximately 11% (Table 12). This weight-
ing reflects that the FFDI and LI have relatively lower entropy levels, indicating lower
disorder in the information, higher differential coefficients, and greater utility of informa-
tion. Consequently, they received higher weights, while the other indicators followed in
descending order.
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Table 12. The weight of each indicator calculated using the entropy method.

Indicator * Information Entropy Difference Coefficient Weight

The FFDI 0.995 0.005 0.208
LI 0.995 0.005 0.210
PD 0.996 0.004 0.154
DtR 0.997 0.003 0.112
RD 0.999 0.001 0.057

Altitude 0.997 0.003 0.148
VC 0.997 0.003 0.111

* LI: lightning intensity; PD: population density; DtR: distance to rivers; RD: roading density; VC: vegetation category.

3.3.3. Weight Combination for the CFFRI

Based on the results of the two weight calculation methods, it was evident that the
weights calculated using the entropy method are more balanced than those obtained
through the AHP (Figure 5). Notably, the indicators with significant differences in the
results between the two methods are the FFDI and lightning intensity The former calculates
objective weights based on the inherent differences in each type of data, while the latter
involves subjective judgments and quantitative-level divisions by the researcher when
calculating the weights. Both approaches have their advantages and drawbacks.
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Figure 5. Weight values of the AHP, the entropy method (a), and the combination results (b); LI:
lightning intensity; PD: population density; DtR: distance to rivers; RD: roading density; NFP: number
of fire points.

Subsequently, employing the principles of minimum relative entropy and the Lagrange
multiplier method, we further computed the combined weights for the seven indicators
based on the results of the AHP and the entropy method. These final weights were then
incorporated into the calculation of the CFFRI:

R = 0.35I + 0.12l + 0.10t + 0.15p + 0.08r + 0.05o + 0.15d (14)

where I and l represent the hazard factors, namely the FFDI and lightning intensity, respec-
tively; t represents the vulnerable element, which is the vegetation category; p, r, o, and d
stand for elements within the hazard-formative environment, representing the population
density, distance to rivers, roading density, and altitude, respectively.

3.4. Forest Fire Risk from 2010 to 2019

According to the CFFRI, we utilized the assigned risk levels for the seven indicators
to calculate the forest fire risk values in the study area for the years 2010–2019, with the
risk scale ranging from zero to ten. Employing the natural breaks classification method,
we established a classification table for the risk index (Table 13). Based on this risk level
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table, we generated a fire risk distribution map for the study area (Figure 6). High-risk
areas were predominantly located in the central and southern parts of the study area, while
moderately high-risk areas were mainly situated in the southern and southwestern regions.
Medium-risk zones were prevalent in the eastern part of the moderately high-risk area.
Moderately low-risk areas were primarily found in the northern and eastern sections of the
study area, while low-risk areas were concentrated in the northeastern part. These different
fire risk zones exhibited distinct boundaries.

Table 13. Classification table for the CFFRI.

The CFFRI Fire Risk Class Fire Risk Description

≤4.7 I Low risk
(4.7,5.3] II Mid-low risk
(5.3,6.5] III Medium risk
(6.5.7.6] IV Mid-high risk

>7.6 V High risk
Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 27 
 

 

 
Figure 6. Forest fire risk of Liangshan Yi autonomous prefecture and Panzhihua from 2010 to 2019. 

3.5. Comparison and Validation between the CFFRI and the FFDI 
We selected historical forest fire cases with relatively large burned areas and closely 

located fire incidents (Table 14). The specific validation procedure involved calculating the 
average CFFRI from the start to the end of each wildfire event. This average CFFRI value 
was then compared to areas surrounding the fire-affected zone and also compared to the 
FFDI results. This comparison allowed us to determine whether the average CFFRI during 
the wildfire period was in a significantly higher state. 

To ensure the accuracy of the fire risk location information, we needed to compare 
the fire risk index calculation results with the MCD64 fire data for the month of the fire 
incident. The data processing steps were as follows: 
1. Calculate the FFDI for selected forest fire events and perform spatial interpolation. 
2. Divide the interpolation results into five risk levels based on FFDI standards (Table 

15), which facilitates the comparison with the CFFRI. 
3. Utilize the FFDI level values to compute the daily CFFRI values. 
4. Determine the average FFDI and fire risk level, as well as the average CFFRI and risk 

level during the occurrence of the wildfires. 
5. Compare the village coordinates with the MCD64 fire data to confirm the actual fire 

locations (Figure 7). Compare the fire risk values at these locations with the areas 
unaffected by fires to assess the accuracy of the two calculation methods in relation 
to the actual fire incidents. 

Table 14. Validation and comparison cases of the CFFRI and the FFDI (area unit: hectare). 

Start Time End Time Burned Area Cause of Fire Longitude Latitude 
29 January 2010 5 February 2010 128 Smoking 101.55 28.16 

4 April 2013 5 April 2013 10 - 101.74 26.50 
5 April 2013 5 April 2013 10 - 102.10 26.88 

12 February 2014 16 February 2014 23 - 100.91 28.49 
14 February 2014 16 February 2014 56 - 102.22 28.57 

0 8040 km

104°E

104°E

102°E

102°E

100°E

100°E

28
°N

28
°N

26
°N

26
°N

Legend

 Study area
 Provincial boundaries

CFFRI
Class ＆ description
of fire risk

 Ⅰ   Low
 Ⅱ   Mid-low
 Ⅲ   Medium
 Ⅳ   Mid-high
 Ⅴ   High

Figure 6. Forest fire risk of Liangshan Yi autonomous prefecture and Panzhihua from 2010 to 2019.

3.5. Comparison and Validation between the CFFRI and the FFDI

We selected historical forest fire cases with relatively large burned areas and closely
located fire incidents (Table 14). The specific validation procedure involved calculating the
average CFFRI from the start to the end of each wildfire event. This average CFFRI value
was then compared to areas surrounding the fire-affected zone and also compared to the
FFDI results. This comparison allowed us to determine whether the average CFFRI during
the wildfire period was in a significantly higher state.

To ensure the accuracy of the fire risk location information, we needed to compare
the fire risk index calculation results with the MCD64 fire data for the month of the fire
incident. The data processing steps were as follows:

1. Calculate the FFDI for selected forest fire events and perform spatial interpolation.
2. Divide the interpolation results into five risk levels based on FFDI standards (Table 15),

which facilitates the comparison with the CFFRI.
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3. Utilize the FFDI level values to compute the daily CFFRI values.
4. Determine the average FFDI and fire risk level, as well as the average CFFRI and risk

level during the occurrence of the wildfires.
5. Compare the village coordinates with the MCD64 fire data to confirm the actual fire

locations (Figure 7). Compare the fire risk values at these locations with the areas
unaffected by fires to assess the accuracy of the two calculation methods in relation to
the actual fire incidents.

Table 14. Validation and comparison cases of the CFFRI and the FFDI (area unit: hectare).

Start Time End Time Burned Area Cause of Fire Longitude Latitude

29 January 2010 5 February 2010 128 Smoking 101.55 28.16
4 April 2013 5 April 2013 10 - 101.74 26.50
5 April 2013 5 April 2013 10 - 102.10 26.88

12 February 2014 16 February 2014 23 - 100.91 28.49
14 February 2014 16 February 2014 56 - 102.22 28.57

13 April 2014 14 April 2014 70 - 101.65 26.56
13 April 2014 14 April 2014 11 Smoking 102.28 28.36
15 April 2014 18 April 2014 69 - 102.33 28.35
19 March 2016 22 March 2016 81 Ancestor worship 102.20 28.34

Table 15. Grading for the FFDI.

FFDI [4,38) [38,43) [43,65) [65,73) [73,100)

Grading 1 3 5 7 9
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Figure 7. Validation cases with burned areas of MCD64.

The results obtained from the CFFRI indicate that the overall fire risk values were
relatively high, with 89% falling into the high-risk category, and 11% in the medium-risk
category (Table 16). This outcome is more consistent with the actual fire incidents compared
to the FFDI, where the IV fire risk comprises 56% and the III fire risk makes up 44% of the
total. To assess the accuracy of the fire risk calculation, we compared the fire risk values
of burned pixels to those of unburned pixels. We calculated the probability of burned
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pixels having higher fire risk values than the surrounding unburned pixels. A higher
probability indicates a more accurate fire risk calculation [69]. Figure 8 illustrates that the
CFFRI calculation results are predominantly positioned above the FFDI calculation results,
suggesting that the CFFRI yields more instances where the fire risk values are higher than
the surrounding pixel values, thereby achieving a higher level of accuracy. The calculated
accuracy of the CFFRI results was 85%, while the FFDI results had an accuracy of 76%.
This demonstrates that our proposed model, within the context of the data and calculation
methods used in this study, outperforms the traditional FFDI. It further underscores the
applicability of the CFFRI in this region.

Table 16. Accuracy comparison between the CFFRI and the FFDI.

Fire Case
CFFRI FFDI

Value Class Accuracy Value Class Accuracy

1 29 January 2010 Liangshan 7.18 High 100% 70.72 IV 80%
2 4 April 2013 Panzhihua 7.03 High 100% 71.74 IV 88%
3 5 April 2013 Panzhihua 6.90 High 75% 66.39 IV 75%
4 12 February 2014 Liangshan 6.52 High 100% 55.25 III 63%
5 12 February 2014 Liangshan 6.31 Medium 50% 61.87 III 75%
6 13 April 2014 Panzhihua 6.94 High 88% 71.92 IV 63%
7 13 April 2014 Liangshan 7.13 High 100% 59.95 III 88%
8 15 April 2014 Liangshan 7.01 High 50% 70.8 IV 50%
9 19 March 2016 Liangshan 6.53 High 100% 53.56 III 100%
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4. Discussion
4.1. Correlations between Forest Fire and Its Indicators

Among all indicators in the CFFRI, the FFDI exhibited a noticeable correlation with
the fire points and can be considered the primary element in calculating forest fire risk.
Lightning intensity showed a relatively weak correlation with the number of fire points,
but different levels of lightning intensity have varying effects on the fire points and can be
considered a secondary influencing factor. It is important to note that the lack of a significant
correlation with the fire points does not necessarily imply that a factor is unimportant. For
instance, the lack of a significant correlation between lightning intensity and fire points can
be attributed to the relatively small proportion of lightning-induced fires. When lightning
intensity is high, the number of fire points may decrease, which may be related to the actual
weather conditions, as severe thunderstorms often accompany high lightning intensities,
and other factors may come into play when the lightning intensity is high.

Roading density did not display a significant relationship with the fire points, but as
its density increased, there was a trend of an initial increase followed by a decrease in the
number of fire points. These findings are consistent with previous research, indicating that
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more densely populated areas tend to experience a higher frequency of wildfires [70,71].
However, the generalizability of these results to other regions remains to be validated. The
insignificant correlation between roading density and fire points may be influenced by
other factors, such as frequent human activities in densely connected road networks, which
do not necessarily increase or decrease the probability of forest fires. Population density,
distance to rivers, and altitude also exhibited similar characteristics.

Previous studies have shown that when the population density is high, there is a
power–law relationship between the probability of fire occurrence and population density,
following a fitted curve [72]. At lower population densities, deviations from the power–law
relationship occur, primarily due to non-human factors, such as spontaneous combustion
and lightning. When the population density is low, there is a higher likelihood of forest
fires being triggered by other factors. As the population density increases, human-related
factors trigger forest fires more, but over a certain threshold, the hazards may decrease,
possibly due to relevant policies or an increase in fire awareness.

Generally, for every 100 m increase in altitude, the temperature decreases by 0.6 ◦C.
Therefore, at higher altitudes, the influence on temperature is greater, making forest fires
less likely to occur. The study area’s altitude ranges from 500 m to 5000 m, with higher
overall altitudes and fewer areas below 1000 m, resulting in fewer fire points in this range.
Altitudes between 1000 m and 2500 m are in the high-incidence range for local forest fires,
with a gradual decline thereafter.

4.2. CFFRI Results

In the construction process of the CFFRI, the AHP approach takes a more subjective
perspective by giving a considerable weight to the characteristics of each indicator. This
is evident in the fact that the FFDI was assigned half of the total weight, even though its
weight differs by as much as 0.3 when compared to the entropy method. However, the
FFDI remained the dominant factor in both weighting methods, which underscores the
significance of the traditional FFDI. In the AHP results, the latitude and population density
were also noteworthy, despite their relatively small weights of around 0.1. This aligns with
existing research on the influence of human activities on fire incidents, adding credibility
to the CFFRI [18]. On the other hand, lightning intensity shows significant disparities in
both weighting methods, primarily due to its weaker correlation in the analysis, leading
to its reduced importance in the AHP approach. In summary, both methods have their
advantages and disadvantages, ultimately contributing to a more balanced and reliable
final model.

The CFFRI results graph reveals distinct spatial patterns in the overall fire risk over
the past decade. The entire region of Panzhihua City was consistently placed within the
high to very high fire risk levels, with other high-risk areas clustered around its periphery,
which can serve as valuable references for the local authorities to enhance targeted fire
monitoring and prevention efforts. After validation, it was evident that the CFFRI risk
values tended to be higher and closer to real-world situations compared to the FFDI. This
alignment with real fire incidents was expected, as our validation data were based on actual
fire occurrences [73]. This higher risk estimation could potentially improve the accuracy
and practical relevance of fire risk assessments, which is consistent with previous research
that has highlighted the challenges associated with threshold determination when fire
risk model results are either too high or too low [45]. However, whether this elevated
risk estimation truly indicates overestimation in risk calculations remains to be verified.
Further investigations, such as a comparative analysis of how both methods assess fire risk
in unburned pixels, are needed to clarify this aspect.

4.3. Reflections and Prospects

In our work, correlation analysis was used to provide a quantitative and visual
relationship between forest fire indicators and fire points from 2010 to 2019 for a more
meticulous categorization of the indicators, which was directly based on MOD14. Currently,
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there is relevant research confirming the feasibility of using MOD14 directly for validating
fire risk modeling [74], with some studies indicating an accuracy level of up to 97.5% [75].
Additionally, for this study, the cumulative values of 10 years of MOD14 data were used
for analysis, which compensates for the uncertainty issues of a few fire points. Accordingly,
in our study, the impact of errors on the results should be minimal, and the correlation
between fire points and indicators is acceptable, while the impact of the quality of forest
fire data on the results is still worth exploring.

The main indicators selected for this article include seven in total, with the FFDI
encompassing six sub-indicators related to meteorological factors. Our consideration of
hazard factors has been fairly comprehensive in our study, and all the fire risk indicators
we selected are fundamental and representative. It might be worthwhile to consider
incorporating more potential factors into the fire risk assessment model, particularly in the
hazard-formative environment aspect. This could involve terrain features like the slope,
aspect, and surface roughness. The study area is predominantly forested, characterized
by relatively low levels of urbanization. In regions with higher economic and social
development, the optimization of the model could involve the inclusion of human-related
indicators, such as urbanization rates and GDP. For the hazard-affected body, considerations
may extend to the NDVI, EVI, LAI, and vegetation products like NPP.

Investigating the relationship between the MOD14 product and the actual occurrence
of fire incidents is also a subject for future research. The limited number of cases and
relatively small burnt areas in the collected data impose certain constraints when validating
our results. This also leaves uncertainty on the impact of the MCD64 products on the
results. In the future, it is essential to supplement our research with more comprehensive
historical disaster data to enhance the robustness of our findings.

5. Conclusions

Building upon the FFDI, we selected seven categories of influencing factors based
on the RDST, encompassing hazard factors, the hazard-formative environment, and the
hazard-affected body. We analyzed their interrelationships with forest fire occurrence and
constructed a forest fire risk assessment index system and a composite forest fire risk index,
which is the CFFRI. We computed fire risk from 2010 to 2019 and compared the results with
historical disaster data against the traditional FFDI results. The main conclusions contain
two aspects:

The FFDI is directly proportional to the number of forest fire points, while the other
indicators show an increase in fire point count with increasing indicator values, up to a
critical threshold. Beyond the threshold, an increase in indicator values results in a decrease
in fire point count.

The CFFRI shows an overall high fire risk, with 89% falling into the high-risk category
and 11% in the mid-high category. This is closer to the actual fire situation compared to
the FFDI, which has 56% in the high-risk category and 44% in the mid-high category. The
CFFRI yields more high-risk values than the surrounding grid cells, with an accuracy rate
of 85%, while the FFDI has an accuracy rate of 76%, demonstrating a superior applicability
of the CFFRI compared to the traditional FFDI in this region.
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