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Abstract: A shifting phenology in deciduous broadleaf forests (DBFs) can indicate forest health,
resilience, and changes in the face of a rapidly changing climate. The availability of satellite-based
solar-induced fluorescence (SIF) from the Orbiting Carbon Observatory-2 (OCO-2) promises to add to
the understanding of the regional-level DBF phenology that has been developed, for instance, using
proxies of gross primary productivity (GPP) from the Moderate Imaging Spectroradiometer (MODIS).
It is unclear how OCO-2 and MODIS metrics compare in terms of capturing intra-annual variations
and benchmarking DBF seasonality, thus necessitating a comparison. In this study, spatiotemporally
matched OCO-2 SIF metrics (at footprint level) and corresponding MODIS GPP, normalized difference
vegetation index (NDVI), and enhanced vegetation index (EVI) products within a temperate DBF
were used to compare the phenology captured by the productivity metrics. Additionally, an estimate
of the SIF yield (SIFy), derived from OCO-2 SIF measurements, and a MODIS fraction of photosyn-
thetically active radiation (fPAR) were tested. An examination of the trends and correlations showed
relatively few qualitative differences among productivity metrics and environmental variables, but
it highlighted a lack of seasonal signal in the calculation of SIFy. However, a seasonality analysis
quantitatively showed similar seasonal timings and levels of seasonal production in and out of the
growing season between SIF and GPP. In contrast, NDVI seasonality was least comparable to that of
SIF and GPP, with senescence occurring approximately one month apart. Taken together, we conclude
that satellite-based SIF and GPP (and EVI to a smaller degree) provide the most similar measurements
of forest function, while NDVI is not sensitive to the same changes. In this regard, phenological
metrics calculated with satellite-based SIF, along with those calculated with GPP and EVI from
MODIS, can enhance our current understanding of deciduous forest structures and functions and
provide additional information over NDVI. We recommend that future studies consider metrics other
than NDVI for phenology analyses.

Keywords: land productivity; time series; seasonality analysis; solar-induced chlorophyll fluorescence;
gross primary production; SIF yield; vegetation indices

1. Introduction

The emerging remotely sensed measurements of gross primary production (GPP)
are improving their understanding of the structure and function of Earth’s vegetation.
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Satellite measurements of GPP are advancing carbon budget calculations, identifying
feedback under climate change, and have potential as a tool to examine vegetation health,
including seasonal timing and productivity, in regions where the data are lacking. In
temperate regions, deciduous broadleaf forests (DBFs) have a distinct growing season,
with leaf phenology and GPP variability related to the timing and magnitude of biosphere–
atmosphere exchanges of atmospheric CO2, with temperature and humidity as the key
controls [1–7]. Therefore, a rapidly changing climate is of particular concern to DBF health,
the resilience of DBF forests, and, more generally, the carbon cycle.

In the eastern United States, and particularly in the region of eastern Kentucky,
protected, healthy DBFs have the potential to fill socioeconomic roles that were previ-
ously filled by coal mining. As of 2017, Kentucky’s forestry industry provides approx-
imately four times more jobs than the coal industry, and estimates of forest products
and recreation contribute approximately USD 26 billion to the state’s economy (https:
//forestry.ca.uky.edu/economic-report, accessed 20 August 2023). However, in order to
reap the benefits of this resource, we need to overcome the dearth of forest health data. In
particular, the metrics of forest structure, function, and seasonal shifts that can facilitate
regional monitoring of health are needed. An increasing number of satellite-based remote
sensing measurements promise to fill the current gaps in our understanding of DBF func-
tion and structure because these measurements are found to track co-incident changes in
GPP over time, such as traditional vegetation indices and, more recently, solar-induced
chlorophyll fluorescence. Yet, no comparison among satellite-based proxies of DBF GPP has
been carried out on a regional scale. An investigation of how these proxies reflect regional
temperate DBF phenology will aid in the monitoring of forest health and decision-making
for the essential data needed for future ground monitoring stations.

Reflectance-based vegetation indices (VIs) from remote sensing platforms, such as the
normalized difference vegetation index (NDVI), are widely used to examine, model, and
monitor GPP, large-scale vegetation health, and phenology, primarily. These VIs capture
changes in canopy structure, such as biomass, leaf shape and orientation, and canopy
architecture, and leaf chemistry, such as chlorophyll absorption, which coincide with
changes in GPP [8]. The enhanced vegetation index (EVI), which exploits blue wavebands,
has shown improved performance over NDVI in dense canopies as it is less prone to
saturation and less sensitive to atmospheric contamination [9]. However, because these VIs
rely on structural and chemical changes and suffer from contamination by the atmosphere
and canopy, they may miss physiological responses, i.e., photosynthetic rate changes in
plants that are better indicators of GPP [10–18].

Solar-induced fluorescence from space-based observations provides high spectral
and spatial resolution measurements and promises to better constrain uncertainties in
measuring GPP than VIs. For example, strong empirical links have been made between
solar-induced fluorescence (SIF) and GPP in diverse ecosystems and at multiple spatial
and temporal scales (e.g., [13,17,19–22]). Sun et al. [23] showed strong agreement in yearly
and monthly satellite SIF and GPP derived from eddy co-variance towers at the biome
level for temperate forests in North America. SIF, unlike VIs, is mechanistically linked to
photosynthesis; thus, it has the potential to capture photosynthetic functioning missed by
traditional VIs [3,24,25]. The links between SIF and GPP demonstrate that SIF estimates
have the potential to more accurately track production, especially variation in production,
but gaps remain in understanding how these two proxies are related [26–29]. First, SIF
estimates, particularly from satellites that deliver frequent and long-term monitoring
capabilities, promise to improve the ability to monitor regional-level production from
vegetated areas, but more studies are needed to clarify how SIF tracks with other proxies
of production [13,30–35]. Second, interpreting SIF signals, particularly disentangling
geometric effects and physical versus physiological information in the signal and linking
it to GPP, is complex. Uncertainties remain about the differences in SIF information and
traditional VIs, especially on regional scales [13,36–41].

https://forestry.ca.uky.edu/economic-report
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One complexity of interpreting SIF signals is that they contain information about the
light absorption and scattering regime (radiation regime) of vegetation and the physio-
logical response (photosynthesis) of vegetation. More physiological information may be
gleaned from the SIF signal by normalizing SIF using measurements of photosynthetically
active radiation (PAR), the fraction of PAR (fPAR), or the absorbed PAR (APAR) for vegeta-
tion canopies. In previous studies, SIF normalized with PAR or APAR has shown stronger
relationships with GPP and has been used as an estimate of SIF yield (SIFy) [40,42–46]. One
challenge in calculating SIFy is the need for a measurement or estimate of PAR, fPAR, or
APAR, which are not widely available. If satellite-based fPAR from MODIS was demon-
strated to be a suitable component for estimating APAR and used to normalize satellite SIF,
a time series of SIFy would contribute insight into the variability of photosynthesis, i.e.,
physiological responses, in vegetation.

There are strong ties between production and environmental factors, such as tem-
perature and vapor pressure deficit (VPD). Despite the widespread availability of these
data, the relative influence of environmental factors on satellite-based production measures
remains poorly understood. Several studies have shown the effects of temperature changes
and precipitation on the timing and magnitude of production estimated by NDVI in mul-
tiple ecosystems and then linked them to GPP [2,3,5,47–49]. Furthermore, land surface
temperature (LST) available from MODIS has been used to infer that canopy temperature
has key control over photosynthetic activity and GPP [50–52]. Sims et al. [50] showed that
LST was strongly correlated with PAR and VPD, which are important for quantifying GPP
seasonality, and that GPP had different responses to temperature changes during the spring
and fall. The importance of environmental factors, such as temperature and VPD, is well
established in the literature, but mainly at plant and canopy levels, not so much at satellite
level [50,53,54]. Despite these strong links and the estimates of these environmental factors
becoming more widely available, few studies have examined the relationships among
satellite-based SIF, VIs, and environmental factors.

Studies using satellite time series have shown that SIF tracks interannual changes
in GPP better than VIs, and this relationship is sometimes improved by normalizing SIF
with PAR or APAR [8,17,46]. Studies have also evaluated satellite and ground observations
of SIF, GPP, VIs, and environmental factors for relationships and empirical links using
correlations and linear regression analysis (e.g., [55–58]). But an understanding of intra-
annual patterns can develop insight into the function of an ecosystem and improve the
detection of changes over time, such as those under climate change [1]. Despite links
between SIF, GPP, and other VIs, seasonality analyses have typically used NDVI and have
yielded conflicting results about the seasonal timing and patterns of NDVI compared to
field GPP measurements [47,59–64].

A few studies have tracked seasonality with SIF from earlier instruments. Joiner et al. [3]
showed that SIF from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument
tracked the seasonality (spring onset and autumn shutoff) of photosynthesis, especially
well in deciduous broadleaf forests. Jeong, Schimel [8] showed that the growing season of
northern high-latitude forests measured with SIF from GOME-2 and the Greenhouse gases
Observing Satellite (GOSAT) was significantly shorter than the growing season measured
with NDVI and that SIF tracked the changes in GPP related to temperature more closely
than NDVI. Yet, comparisons of SIF from more recent, higher-resolution platforms, such
as the Orbiting Carbon Observatory-2 (OCO-2), to VIs and the extraction of seasonality
metrics using satellite SIF remain largely unexamined, except in tropical vegetation [65].
Such a comparison of satellite- and ground-based SIF to VIs has the potential to elucidate
relationships among the metrics and determine important similarities and differences in
how they capture critical changes, such as seasonal transitions in a regional DBF.

The aim of this study is to compare phenological patterns of production for a temperate
deciduous forest at the regional scale measured using OCO-2 and MODIS satellite-based
proxies of production: solar-induced fluorescence metrics (SIF and SIFy) and reflectance-
based vegetation indices (GPP, NDVI, and EVI). Specifically, (1) are the average annual
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cycles and interannual variabilities of OCO-2 SIF and SIFy and MODIS GPP, NDVI, and EVI
significantly different? (2) Do productivity metrics from reflectance-based VIs and satellite
SIF and SIFy capture similar phenological timing? And (3) which environmental factors
(canopy temperature, air temperature, and vapor pressure deficit) are most influential on
productivity metrics?

2. Materials and Methods
2.1. Study Site Description

Data were extracted for the region of interest surrounding the Natural Bridge State Park
near Stanton, KY, USA. (37◦46′39′′N 83◦41′37′′W, Figure 1). Mean annual air temperature
is 13 ◦C, and mean annual precipitation is 1330 mm. The hottest month is typically July,
with an average high of 29 ◦C and low of 19 ◦C, and coldest month is typically January,
with an average high temperature of 7 ◦C and low temperature of −1.5 ◦C. The forest is
considered a temperate deciduous forest type of the Mixed Mesophytic Region, where the
climate is temperate, humid, and continental [66,67]. The location is within the Appalachian
Mountains on the Cumberland Plateau on the western escarpment, making up a portion
of the Red River Gorge Geologic area. The canopy is made up of a variety of oaks, pine,
red maple, and other species that are leafless from late November to late March. The
understory is densely dominated by species from the family Ericaceace [66,67]. The land
use in the region is mainly recreational, with rock climbing, hiking, fishing, kayaking,
and canoeing bringing over one million visitors, accommodating approximately 15,830 at
a time (https://www.fs.usda.gov/recmain/dbnf/recreation, accessed on 22 September
2023). The Kentucky Division of Forestry asserts that eastern Kentucky forests are resilient
and growing; thus, they could remain positive economic and climate mitigating factors
offsetting pressures of visitors, fragmentation, severe droughts in recent years (e.g., 1988,
1999–2000, and 2007–2008, 2010, 2012, and 2016), and destructive insects (Emerald Ash Borer
Beetle and Hemlock wooly adelgid; https://www.wkyufm.org/environment/2019-09-24
/in-kentuckys-forests-experts-see-a-natural-climate-solution, accessed on 22 September
2023). This study is a first step in a broader strategy to incorporate ground monitoring and
field data for DBF forest health in the region.
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Figure 1. Map of study area surrounding Natural Bridge State Park, KY, USA. Left shows overview
of region within the Eastern United States with shaded area representing the map on the right. The
study area lies within black bounding box shown in both maps.

2.2. Satellite Data

A summary of all satellite data used in this study is provided in Table 1. Orbiting Car-
bon Observatory-2 (OCO-2) SIF data were used to derive SIF metrics for the study. OCO-2

https://www.fs.usda.gov/recmain/dbnf/recreation
https://www.wkyufm.org/environment/2019-09-24/in-kentuckys-forests-experts-see-a-natural-climate-solution
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was launched in 2014, and it collects high spatial and spectral resolution measurements
of solar-induced chlorophyll fluorescence (SIF) globally [68]. OCO-2 collects spectral data
24 times per second, producing eight cross-track spectra covering about 2 km × 1.3 km spa-
tially over a swath of approximately 10 km. Although the revisit period is 16 days, through
2 July 2015, each revisit alternated between glint and nadir mode, so the repeat time for
nadir was 32 days. After 2 July 2015, the instrument alternated glint and nadir every orbit.
While OCO-2 SIF data have high spectral and spatial resolution, individual footprints are
noisy; thus, monthly averages across the study area are used in this study [23,69,70]. The
locations of the SIF footprints in the study area are shown in Figure 2. SIF data were filtered
for nadir observations, and footprints were classified as temperate deciduous forests accord-
ing to the International Geosphere-Biosphere Programme (IGBP) landcover classification
category. Instantaneous SIF (SIFi) was calculated for each measurement by taking the
average of instantaneous SIF measured at 757 nm (SIF757) and 771 nm (SIF771) times a factor
of 1.5 based on the OCO-2 Data Product User’s Guide and the previous literature (although
the factor in previous studies ranged from 1.4 to 1.7) [20,45,69]. Daily average SIF (SIFd)
was calculated by employing the daily correction factor (DCF) [17,20,23,45,69]. The DCF is
a normalization factor that approximately accounts for the length of day and variability of
the solar zenith angle (SZA) using pure geometric incoming light scaling for the location in
ten-minute time steps. SIFd is calculated with the following equation:

SIFd =
SIFi

cos(SZA(tm))

∫ t=tm+12h

t=tm−12h
cos(SZA(t))dt (1)

where SZA is the solar zenith angle from the OCO-2 dataset and tm is the time of mea-
surement [17,20,23,45,69–72]. SIFi values, collected at ~1330 local time, should have a
higher magnitude than SIFd because SIFd accounts for radiation changes over the daily
cycle [23,70]. Both SIFi and SIFd values were examined in this study because of the strong
influence of changing radiation on SIF. The diurnal variability of SIF and its degree of
influence at satellite scales are the focus of several studies [13,46,73,74].
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Table 1. Summary of satellite products used in this study.

Variable Name Sensor/Product Spatial
Resolution

Temporal
Granularity Units

Productivity Metrics

GPP gross primary production MODIS MYD17A2 500 m 8 Day g
C/m2/day

NDVI normalized difference
vegetation index MODIS MYD13Q1 250 m 16 Day none

EVI enhanced vegetation index MODIS MYD13Q1 250 m 16 Day none

SIF solar-induced fluorescence OCO-2 ~1.2 km × 2 km 16 days Wm2/µm/sr

GPP gross primary production MODIS MYD17A2 500 m 8 Day g
C/m2/day

NDVI normalized difference
vegetation index MODIS MYD13Q1 250 m 16 Day none

EVI enhanced vegetation index MODIS MYD13Q1 250 m 16 Day none

Intermediate Variables

fPAR fraction photosynthetically
active radiation

MODIS
MYD15A2H 500 m 8 Day none

LAI leaf area index MODIS
MYD15A2H 500 m 8 Day m2/m2

Environmental Variables

LST land surface temperature MODIS MYD11A2 1 km 8 Day K

Tcan canopy temperature ECMWF (OCO-2) ~1.2 km × 2 km 16 days K

Tair air temperature ECMWF (OCO-2) ~1.2 km × 2 km 16 days K

VPD vapor pressure deficit ECMWF (OCO-2) ~1.2 km × 2 km 16 days kPa

The Moderate Resolution Imaging Spectroradiometer (MODIS) gross primary pro-
duction (GPP), normalized difference vegetation index (NDVI), and enhanced vegetation
index (EVI) products were utilized as VI measurements of production. MODIS fraction
of photosynthetically active radiation (fPAR) was used as an input to calculate absorbed
photosynthetically active radiation (APAR) and SIFy (Section 2.3). MODIS NDVI and EVI
MODIS are products that have been used extensively because of their high correlation with
phenological changes in vegetation, their relationship to GPP, and their ability to benchmark
biophysical parameters and biomass changes (e.g., [50,75–79]). The MODIS GPP product
(MOD17) model is a semi-empirical GPP product derived using other MODIS products
as parameters [77]. The MODIS GPP product is a widely used product that leverages a
light use efficiency (LUE) model and generally has shown good performance estimating
production [77,80]. The MODIS Land Surface Temperature Product (LST) (MYD11A2)
was used as measure of canopy temperature, which is an environmental factor that may
drive production [50,52,81]. To achieve the best comparisons among OCO-2 and MODIS
metrics, each MODIS metric location was extracted based on the matching OCO-2 footprint
location and closest time and date. Only MODIS data onboard the Aqua platform were
used in analyses because the overpass time matches OCO-2 (1330 local). For the purposes
of this study, SIFi, SIFd, SIFy, GPP, NDVI, and EVI are considered productivity metrics, and
fPAR and LAI are considered intermediate variables because LAI and fPAR products from
MODIS are used to model GPP from MODIS data.

To examine the relationships among SIF, GPP, and environmental factors potentially
controlling photosynthetic activity in this study, skin temperature (Tcan), 2 m temperature
(Tair), and vapor pressure deficit (VPD) from the European Center for Medium-Range
Weather Forecasts (ECMWF) available within the OCO-2 SIF dataset were used. Land
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surface temperature (LST) from MODIS was also collected for the study period as a second
approximation of canopy temperature.

Proxies of production, i.e., satellite measurements of VIs and satellite-based SIF, were
compared to one another in terms of phenology and relationships that may help inform the
interpretation of SIF measurements [82–87].

2.3. Calculating SIFy

SIF signals incorporate both the physiological (photosynthetic) response of vegetation
and the physical (absorbed and scattered light). SIF normalized by the absorbed photosyn-
thetically active radiation (APAR) has been used to better approximate the physiological
photosynthetic response of vegetation more independently of the absorbed and scattered
light [40,44,58]. OCO-2 SIFd and MODIS fPAR data were used to calculate a satellite-based
approximation of relative SIF yield (SIFy). An estimated SIFy at the satellite level was
calculated according to the following equation:

SIFy =
SIFd

cos(SZA) f PAR
(2)

where SZA is the solar zenith angle for the associated OCO-2 SIF measurement, and fPAR
is the MODIS fPAR measurement with high-quality flag most closely matching the OCO-2
SIF measurement date.

2.4. Data Analysis

Area-based monthly averages were calculated for SIF metrics and VIs: SIFi, SIFd,
SIFy, GPP, NDVI, and EVI and environmental factors: LST, VPD, Tcan, and Tair for the
time period September 2014 to August 2018 (48 months). Time series of monthly values
and anomalies for the full 48 months of data were calculated to examine interannual
variability. Within the region, the occurrences of moderate to severe drought in 2016 were
anticipated to be detectable in the signals. Average annual cycles, i.e., the mean of all
measurements made in each of the twelve months of the year for all years of data [3,5,8],
were used to examine seasonal differences in SIF metrics, VIs, and environmental factors.
Altogether, five different types of analyses were conducted to compare SIF metrics and
VIs and examine environmental drivers: long-term time series, average annual cycles,
correlations, multiple regression, relative importance of variables, and seasonality analysis.
Specifically, the strength and direction of relationships among SIFi, SIFd, SIFy, GPP, NDVI,
EVI, LST, VPD, Tcan, and Tair were investigated using Pearson correlation for the time
period September 2014 to August 2018 (48 months) and bivariate plots with trend lines to
examine the relationships of individual SIF metrics and VIs to environmental variables.
Relative importance of the environmental variables on productivity was measured using
multiple regression techniques, specifically the LMG method, also known as a dominance-
type method, or Shapely value regression [88,89] and bootstrapping (1000 iterations), used
to calculate confidence intervals as a guide to the significance of the differences in relative
importance. In addition, partial least squares regression was applied to calculate the relative
importance, with no significant difference in the result compared to LMG.

The TIMESAT algorithms were used to gap-fill and smooth the signals and determine
seasonality parameters with SIFi, SIFd, GPP, NDVI, and EVI as inputs [51,90,91]. TIMESAT
was designed to analyze time series data from satellite sensors and generate seasonality
parameters. Seasonality parameters calculated from the analyses include start of season
(SOS), end of season (EOS), peak of season, season length (LOS), base value, maximum
value, amplitude value, rates of increase and decrease, large (total) integrated value, and
small (pulse) integrated value. Double logistic function fitting was applied within the
TIMESAT algorithms to time series of SIFi, SIFd, SIFy, GPP, NDVI, and EVI. The aver-
age of the seasonality metrics for the seasons detected over the four-year period in each
time series was calculated to represent the seasonality parameters of each quantity. The
algorithm determines the base as the average of the left and right minimum values and
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the amplitude as the difference between the base value and the maximum. The times for
the beginning and end of season are determined using 0.5 of the amplitude from the left
and right, respectively, following methods for determining seasonality parameters in the
literature [49,51,63,65]. The resulting normalized base-integrated production (the base
determined from TIMESAT results) and the pulse-integrated production (the amplitude
determined from TIMESAT results) for each quantity were compared. The length of season
(LOS) in days and the beginning and end of season (BOS and EOS, respectively) in the
day of year (DOY) were extracted, and the differences between BOS, EOS, LOS, base, and
pulse-integrated production (as values and percentages) were examined.

Code to read, process, and analyze OCO-2, MODIS, and ancillary data was developed
using Interactive Data Language (IDL, Harris Geospatial, Boulder, CO, USA). TIMESAT al-
gorithms were used, as previously mentioned, to calculate metrics of seasonality [51,90,91].
Functions within the R package MODISTools version 1.1.1 were used to assist in accessing
matching study area OCO-2 footprint locations to MODIS data from Aqua, and a com-
bination with R and IDL functions were used for quality assurance, applying correction
and multiplier values, and generating time series data for the study period [92,93]. All
statistical analyses and figures from statistical and seasonality analysis were completed in
IDL and R, RStudio version 1.0.153, and the following packages: dplyr, tidyverse, ggplot2,
corrplot [94–98].

3. Results
3.1. Examine Time Series and Annual Cycles

All productivity metrics (SIFi, SIFd, SIFy, GPP, NDVI, and EVI) and intermediate vari-
ables (fPAR and LAI) display seasonal cycles each year, with the highest values occurring in
summer and the lowest values occurring in winter months, except for SIFy. (Figure 3). SIFi,
SIFd, and GPP peak values occurred most often in May (2015, 2016, and 2017), except in
2018, when GPP still peaked in May but SIFi and SIFd peaked in June (Figure 3a–c). While
the peak month for EVI tended to be in June rather than May (Figure 3), the trend of sharp
peaks was similar to SIFi, SIFd, and GPP (Figure 3f). NDVI did not exhibit sharp peaks;
rather, it remained at similar values for the summer months before dropping quickly to low
levels during the winter months (Figure 3d). NDVI peaked in different months for each
year of the analysis: July 2015, May 2016, August 2017, and June 2018 (Figure 3d). GPP,
NDVI, and EVI values declined to low values mainly in January or February, after which
they increased into the summer (Figure 3b,d,f). SIFi and SIFd, however, reached low values
in the fall and then experienced a relatively small peak once each winter (Figure 3a,c). SIFy
displays little indication of seasonality matching the other measures of productivity and
large standard deviations in portions of the time series compared to SIFy values, i.e., SIF
signal is composed largely of fPAR and the remaining information is noisy (Figure 3e). LAI
and fPAR, the intermediate variables, display patterns of high values in the summer months
and low values in the winter months, similar to the other MODIS products (Figure 3g,h).
In January 2017, the monthly mean LAI and fPAR were higher than in December 2016 and
February 2017, but with a particularly high standard deviation in these metrics.

A time series of LST, Tcan, Tair, and VPD highlights the seasonal variation of these
environmental factors in the temperate deciduous forest in all cases (Figure 4). The Tcan
and Tair patterns were the same. The peak months of VPD matched the peak months of
Tcan and Tair, but the patterns during the winter and spring were more distinct for VPD
than for Tcan and Tair. Generally, there was a slower increase in VPD relative to the peak
month of VPD than for LST, Tcan, and Tair, which sharply rose after winter and remained
closer to their peak for a few more months, and then declined more sharply in the fall. The
monthly LST from MODIS reflected a similar pattern to Tcan and Tair, and, although the
overall range of the temperature was similar, the values of LST were higher than those for
Tcan and Tair. All the time series, including productivity metrics, intermediate variables,
and environmental factors, were examined for anomalies and extreme values, but none
were found for the study period.
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The annual average cycles (normalized) represented typical seasonal behavior and
show that the peak values of productivity occur in June for all measures except SIFy, which
peaks in May (Figure 5a). SIFi, SIFd, and SIFy reach their minimum values in March; NDVI
and EVI reach their minimum values in February, but GPP reaches its minimum value in
January, a likely result of the minimum values of LAI and fPAR occurring in February and
December, respectively (Figure 5a,b). SIFi and SIFd have the most similar trend. EVI trends
similarly to SIFi and SIFd from the peak months to October and November. GPP trends
with EVI and NDVI in the spring, although it increases more rapidly in March, peaks with
everything except SIFy in June, and declines more rapidly in August. GPP, SIFi, and SIFd all
experience an increase from November to December before reaching their minimum values
in January, while SIFy trends up from October to December and declines to a minimum in
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March. From May to September, NDVI remains at similar values, while the other measures
of productivity display more variability throughout the growing season. LAI and fPAR
reach relatively high and similar values in May through July, peaking in June (Figure 5b).
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While the trends are similar for the year, LAI and fPAR reach their minimum values
two months apart (February and December, respectively), deviating most from one another
from August to December (Figure 5b). LST, VPD, Tcan, and Tair are all at their minimum
values in January and maximum values in August (Figure 5c), with LST also reaching
its maximum value in April. LST increases more rapidly than the other environmental
variables through April, and then it dips slightly between its months with the maximum
values (April and August, Figure 5c). Tcan and Tair trend together, almost identically, with
a small separation in April. VPD remains at the minimum for January and February and
increases less rapidly than other environmental variables before reaching the maximum in
August. After August, VPD, Tcan, and Tair trend down more similarly than LST, decreasing
through November and then increasing in December before reaching the minimum in
January. LST drops from August to September, rises slightly in October, and then decreases
to its minimum value in January.

3.2. Correlations

The productivity metrics SIFi, SIFd, GPP, NDVI, and EVI are all strongly positively
correlated (Pearson correlations, r values between 0.84 and 1.00, p < 0.001, Table 2). Cor-
relations between SIFi and GPP (r-value = 0.86, p < 0.001, Table 2) as well as SIFd, and
GPP (r-value = 0.86, p < 0.001, Table 2), NDVI and GPP (r-value = 0.84, p < 0.001, Table 2),
and the EVI~GPP correlation (r-value = 0.88, p < 0.001, Table 2) were all very similar.
Besides the correlation between them, SIFi and SIFd had the strongest correlation with EVI
(r-values = 0.89, p-value < 0.001, Table 2). SIFy correlations with the other productivity met-
rics were positive and significant, but they were the lowest correlations of the SIF metrics,
and the relationship between SIFy and other metrics was very low (r-values between 0.43
and 0.67, p < 0.01, Table 2). Correlations between LAI and both SIFi and SIFd were strongly
positive (r-value = 0.76, p-value < 0.001, Table 2), and fPAR was slightly more strongly
correlated to SIFi and SIFd (r-value = 0.82, p-value < 0.001, Table 2). LAI and fPAR were
only moderately positively correlated with SIFy (r-value = 0.42, p-value < 0.01, Table 2).
LAI was most strongly correlated with NDVI (r-value = 0.87, p-value < 0.001, Table 2), and
fPAR was most strongly correlated with EVI (r-values = 0.88, p-value < 0.001, Table 2).

Relationships among environmental variables were positive, with p-values < 0.001
(Table 3). Tcan and Tair have the strongest relationship (r-value = 1.00). Tcan and Tair had a
strong positive relationship with VPD, with an r-value of 0.88 (Table 3). Relationships be-
tween environmental variables from the two different datasets (ECWMF data and MODIS)
had weaker relationships. LST~VPD was 0.64, and LST~Tcan and Tair were 0.76 (Table 3).
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Table 2. Correlations among SIFi, SIFd, SIFy, GPP, NDVI, EVI, LAI, and fPAR (Pearson, r-values.
*** indicates p-value < 0.001; ** indicates p-value < 0.01).

Value SIFi SIFd SIFy GPP NDVI EVI

SIFd 1.00 ***

SIFy 0.67 *** 0.65 ***

GPP 0.85 *** 0.86 *** 0.43 **

NDVI 0.84 *** 0.84 *** 0.46 ** 0.84 ***

EVI 0.89 *** 0.89 *** 0.48 ** 0.88 *** 0.96 ***

LAI 0.76 *** 0.76 *** 0.42 ** 0.80 *** 0.87 *** 0.85 ***

fPAR 0.82 *** 0.82 *** 0.42 ** 0.84 *** 0.82 *** 0.88 ***

Table 3. Correlations among environmental variables examined in the study: VPD, Tcan, and Tair

(Pearson, r-values. *** indicates p-value < 0.001).

Value VPD Tcan Tair

Tcan 0.88 ***

Tair 0.88 *** 1.00 ***

LST 0.64 *** 0.76 *** 0.76 ***

3.3. Relationships with Environmental Factors

Figures 6 and 7 illustrate relationships between environmental factors and productivity
metrics, with the color of the data points representing months (winter months in purple
and summer months red). Temperatures Tcan, Tair, and LST display similar trends with
SIFi and SIFd, despite a larger range of Tcan and Tair values attributed to higher values
versus LST (Figure 6a,b,d,e,j,k). SIFi and SIFd vs. Tcan, Tair, and LST trends are flat in the
winter months, and then they climb in spring and reach the maximum values, followed
by a distinct decrease at the hottest temperatures (Figure 6a,b,d,e,j,k). SIFi and SIFd vs.
VPD trends show clustering in the winter months and summer peak earlier than that
for temperatures, followed by slowly decreasing trends at the highest VPD (Figure 6g,h).
SIFy–environmental variable trends share some general features with those of SIFi and
SIFd–environmental variable trends; however, SIFy outliers affect the trends (Figure 6c,f,i,l).
In all cases, the relationships are not linear in nature, but there is a great deal of scatter
among the SIF metrics and environmental variables (Figure 6).

Trends among VIs and environmental variables (Figure 7) indicate that GPP reaches
a maximum before the hottest months and then decreases at high Tcan, Tair, and LST
(Figure 7a,d,j). NDVI and EVI tend to saturate at high Tcan and Tair, although NDVI values
cluster more tightly at the highest Tcan and Tair than EVI values (Figure 7a–f,j–l). Driven by
an outlier, NDVI and EVI~LST trends appear to reach their maximum values before the
hottest months and then decrease at the highest LST value, without which these trends
would also cluster and saturate similar to NDVI, EVI~Tcan, and Tair (Figure 7a,d,j).

The relative importance of environmental variables in predicting productivity metrics
was conducted in two ways. First, the analysis was conducted only with the environmental
variables Tcan, Tair, VPD, and LST, and then again with the four environmental variables
plus the intermediate variables fPAR and LAI. The results presented here include the
group of environmental variables plus the intermediate variables because the variance of
productivity explained with only environmental variables was 34.9–70.89%, while adding
the intermediate variables improved the variance to 43.2–84.1%. The variance explained
by the environmental variables plus intermediate variables in this study is as follows: SIFi
83.56%, SIFd 83.75%, SIFy 43.22%, GPP 81.02%, NDVI 84.06%, and EVI 83.73%. All metrics
of productivity were similarly well explained by these predictors, except SIFy, which was
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not well explained by these predictors. SIFy is included in Figure 8 for informational
purposes but is excluded from the detailed results.
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Figure 6. Bivariate scatter plots of SIF metrics and environmental variables show a Loess smoothing
function (black) and a confidence interval of 0.95 (teal). Color of points corresponds with month
of the year, with red corresponding to summer months and purple to winter months (see colorbar;
for color, readers are directed to the digital version of manuscript). 1 = January, and 12 = December.
(a) SIFi vs. Tcan; (b) SIFd vs. Tcan; (c) SIFy vs. Tcan; (d) SIFi vs. Tair; (e) SIFd vs. Tair; (f) SIFy vs. Tair;
(g) SIFi vs. VPD; (h) SIFd vs. VPD; (i) SIFy vs. VPD; (j) SIFi vs. VPD; (k) SIFd vs. VPD; (l) SIFy

vs. VPD.

fPAR was the most important for predicting productivity metrics (22.9–26.8%;
Figure 8a,b,d,f), except for NDVI, where LAI was most important (20.25%; Figure 8e).
However, LAI and fPAR do not differ significantly in terms of their influence on NDVI,
according to the confidence intervals. For SIFi and SIFd, fPAR was significantly more
influential than LAI, Tcan, and Tair, which all have the same relative importance. For
GPP and EVI, fPAR was significantly more influential than the other variables, and LAI
was somewhat more influential but only marginally significant. Figure 8 shows that the
intermediate variables, fPAR and LAI, are the most influential on the metrics of productiv-
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ity compared to the environmental variables. Tair was the strongest predictor among all
the environmental variables (12–14.4%; Figure 8). However, Tair was only slightly more
influential than Tcan (11.8–14.0%; Figure 8) in all cases, and the confidence intervals show
that these predictor variables have no significant difference in influence. Furthermore,
for all productivity metrics, LST and VPD were the lowest in relative importance and not
significantly different (7.7–10.0%; Figure 8). Even considering the confidence intervals, it
is shown that fPAR is the most influential variable on SIF, a concept that is documented
in other studies. In this study, a calculation of SIFy was tested as a proxy of productivity
independent of fPAR, which Figure 8c illustrates.
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Figure 7. Bivariate scatter plots illustrating the relationship between vegetation indices (VI) and
environmental variables show a Loess smoothing function (black) and a confidence interval of 0.95
(teal). Color of points corresponds with month of the year, with red corresponding to summer months
and purple to winter months (see colorbar; for color, readers are directed to the digital version of
manuscript). 1 = January, and 12 = December. (a) GPP vs. Tcan; (b) NDVI vs. Tcan; (c) EVI vs. Tcan;
(d) GPP vs. Tair; (e) NDVI vs. Tair; (f) EVI vs. Tair; (g) GPP vs. VPD; (h) NDVI vs. VPD; (i) EVI vs.
VPD; (j) GPP vs. VPD; (k) NDVI vs. VPD; (l) EVI vs. VPD.
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3.4. Seasonality Analysis

The estimates of the length of the season (LOS), indicated by different productivity
metrics, differed by as much as 48 days (Figure 9a). SIFd indicated the shortest growing
season (132 days), followed by SIFi (138 days), GPP (145 days), EVI (152 days), and NDVI
(170 days). The SOS and EOS timings estimated with SIFi, SIFd, GPP, and EVI were within
two weeks of one another, indicating shifts of a few days in the season start and end
times among the metrics (Figure 9a). GPP had the earliest start and end dates. In contrast,
NDVI had a similar SOS, but the EOS was two weeks or more after the SIFi, SIFd, GPP,
and EVI EOS. NDVI indicated the longest growing season due to the later EOS (18 to
38 days longer).

The proportion of integrated production attributed to the base and pulse-integrated
production for SIFi, SIFd, and GPP was comparable (base = 0.11, 0.08, and 0.13;
pulse = 0.89, 0.92, and 0.87, respectively; Figure 9b). Normalized estimates of base and
pulse-integrated production estimated by SIFi, SIFd, and GPP indicated that the base pro-
duction for the study area was between 0.08 and 0.13 of the total production (or about
8–13%) and the seasonal pulse-integrated production was responsible for 0.87 to 0.92 (87%
to 92%) of the deciduous forest production (Figure 9b). In contrast, NDVI indicated that
the base production was 0.65 and the pulse was 0.35 (65% and 35%, respectively). EVI
had an intermediate estimate of the base (0.38) and pulse (0.62) integrated production.
SIFy seasonality metrics are excluded from the seasonality results because repeated tests
of seasonality calculations for SIFy did not yield consistent or reliable results, which was
likely due to the lack of seasonal cycles present for SIFy.
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4. Discussion

In this study, a seasonality analysis revealed differences in how the phenology of tem-
perate forest canopy production can be represented by different remote sensing
proxies. Studies have shown that EVI, GPP, and especially SIF are more indicative of
physiological responses of vegetation to the environment than NDVI [99,100], but rela-
tively few studies have examined the seasonality of EVI, GPP, or SIF compared to NDVI
(e.g., [5,51,63,101,102]). Here, seasonality measurements were based on SIFi, and SIFd
allocated production to the base and growing season pulse in similar proportions to GPP.
SIFi and SIFd signals are known to incorporate both physiological (photosynthetic rate)
and physical information (light absorption and SIF scattering) about the vegetation canopy
(e.g., [13,32,33,42,103–105]. GPP from MODIS is fundamentally a different satellite remote
sensing measurement whose model incorporates LAI, fPAR, VIs, and information on vege-
tation type [51,106–108]. Despite the fundamental differences in measurements of SIF from
OCO-2 and GPP from MODIS, a strong agreement in production and timing between them
is evident. This agreement may stem from a correlation between the radiation information
contained within the SIF signal and the inclusion of fPAR in the MODIS GPP algorithm.
Additionally, GPP from MODIS could be used in tandem with OCO-2 SIF for spatial and
temporal gap filling, for further seasonality and phenology studies, as tools for monitoring
vegetation changes in a changing climate and developing new productivity datasets using
OCO-2 SIF and MODIS GPP products similar to those presented by Zhang et al. [109].

In this study, different satellite-based productivity metrics, intermediate variables, and
environmental factors were investigated to determine how they captured the productivity
and phenology of a DBF on a regional scale using a range of analyses, from more reliant on
visual inspection to more quantitative. The inspection of time series and intra-annual cycles
of SIF metrics (SIFi, SIFd, and SIFy), VIs (GPP, NDVI, and EVI), intermediate variables
(fPAR and LAI), and environmental variables (LST, Tcan, Tair, and VPD) displayed expected
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trends of changes corresponding to the growing and non-growing seasons, except SIFy
(Figures 3 and 4). NDVI maintained similar values throughout the growing seasons, while
other productivity metrics showed more variability, especially during spring and fall
(Figure 3a). This is consistent with previous studies, where NDVI has been shown to
saturate in the growing season (e.g., [69]). Visual inspection of normalized annual cycles
also revealed NDVI differences from SIF metrics and EVI, especially higher values in the late
summer and early fall months. Normalized annual cycles were also the first step to examine
the potential influence of environmental variables and the timing of seasonal changes. For
instance, the environmental variables peaked in August, while the productivity metrics
peaked in earlier months, which could be due to a high temperature threshold after which
productivity tends to decrease (e.g., [50], Figure 4a–c).

An analysis of the time series and normalized annual cycles revealed no anomalies,
despite a known drought occurring in 2016. This result indicates that the resolution, either
spatial, temporal, or both, was insufficient for detecting drought-induced changes for
this event for a DBF using any of the metrics. As suggested by previous studies, SIF
metrics have increased sensitivity for monitoring stress over VIs, but they currently vary
in the degree to which events are detectable due to spatial or temporal scales and regions
e.g., [24,35,100,101]. Using the methods in this study, OCO-2 SIF did not benchmark the
event at this juncture. In our upcoming work, however, revised methods or more recent
satellite platforms and products, which are increasing exponentially, promise to benchmark
such events in DBF.

Correlations provided basic quantification of the relationships among the SIF and
VIs, which were generally strong, positive relationships, except for SIFy (Table 2). These
results are in alignment with earlier studies that have found strong relationships between
SIF and satellite GPP, NDVI, and EVI using time series, annual cycles, and correlations
(e.g., SIF correlated with EVI (r = 0.69) and NDVI (r = 0.6 to 0.69) and SIF correlated with GPP
(r = 0.89 to 0.99)) [17,69,99,100]. However, the strong correlations do not have the capacity
to quantify differences in productivity metrics in terms of timing, which were seen in the
normalized annual cycles (Figure 4a–c). Furthermore, correlations that have been used
in the context of relating VIs to both satellite-based GPP and ground station GPP from
flux towers have not often incorporated finer-scale seasonal timing and phenology. As
mentioned in the recent literature (e.g., [3,5,33,35,59]), if the examination of relationships
stopped with correlations, it would appear as if SIFi, SIFd, GPP, NDVI, and EVI would
serve as near equal proxies of GPP, but when paired with time series and other information
related to timing, such as subsequent analyses in this study, the relationships change. For
instance, the bivariate scatterplots reveal nonlinear relationships that change throughout
the year (Figures 6 and 7).

Bivariate scatterplots (Figures 6 and 7) show that SIF metrics, GPP, and EVI peak at
temperatures just below maximum, and then they experience lower values of productivity
at maximum temperatures. NDVI, however, saturates in the warm months. These results
are consistent with studies that found that SIF is more sensitive to changes in function than
NDVI [3,8,15,17]. All productivity metrics, including NDVI, show more similar relation-
ships to VPD. In a few studies that have examined satellite-based SIF or Vis relationships
with VPD, SIF has been more sensitive to VPD and associated water and heat stress than
Vis (e.g., [110–112]). The results, however, show that the scale of the satellite-based pro-
ductivity metrics and the environmental data available (modeled and included in the
remotely sensed data, except LST) were not able to capture the regional water stress that
may have existed during 2017 drought conditions (Figures 6g–i and 7g–i). It was antici-
pated that by examining regional-scale environmental factors and using footprint-level
comparisons of satellite-based productivity, SIF would capture this event and outperform
VIs to a greater degree. But the results demonstrated that there was not sufficient informa-
tion to capture subtle behavior within the same biome type or at regional scales, which
is consistent with studies examining other biome types at different spatial and temporal
scales ([3,6,30,39,40]; Figures 6 and 7). Instead, as suggested in [69], these subtleties and
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complexities require quantification for specific vegetation types and environmental condi-
tions within the context of phenology and environmental variables that drive changes in
these metrics [3,8,18,60,62,65].

A time series of environmental factors, Tcan, Tair, VPD, and LST, as well as intermediate
variables (fPAR and LAI), were investigated due to their potential roles as drivers of change
in productivity. Environmental and intermediate variables’ time series plots and intra-
annual cycles generally showed similar trends to those of SIF metrics and VIs, but some with
leading or lagging patterns of minimum and maximum timing (Figures 3–5). To more quan-
titatively understand the relationships beyond correlations and trends, an analysis of the rel-
ative importance of variables indicated that SIF metrics and VIs were most influenced by in-
termediate variables, fPAR and LAI, followed by temperature (Tables 2 and 3, Figures 6–8).
Previous studies using finer resolution data suggest that forest GPP is more tightly coupled
to canopy temperatures than air temperatures, but at the coarse resolution of this study,
Tcan and Tair exert a similar influence on SIF metrics and VIs (Figure 8). In contrast to the
other environmental factors, LST from MODIS did not generally have as great an influence
on productivity metrics, but the trends were similar for the three types of temperature mea-
surements (Figures 6–8). MODIS LST has been widely used and validated using ground
data, models, and cross-comparison to other satellites [113–116]. LST was shown here to
perform similarly to the other temperature metrics for explaining VIs in DBNF for the study
period but not for SIF metrics.

Seasonality analysis quantifies similarities and differences in productivity measured
with these remote sensing metrics. SIF metrics had the shortest season of productivity,
about one week shorter than GPP, two weeks shorter than EVI, and over two weeks shorter
than NDVI, which corresponds to the relative base and pulse-integrated productivity
(Figure 9). In the case of SIF metrics and GPP, the EOS DOY was almost identical; therefore,
the difference in relative integrated productivity was attributed to an earlier GPP SOS. For
SIF and EVI, the relative integrated productivity difference was due to both an earlier EVI
SOS (just under one week) and a later EVI EOS (just under one week). Thus, differences in
production measured with SIF metrics, GPP, EVI, and NDVI are not explained by simple
differences in LOS for each quantity; rather, these satellite-based proxies are complex
representations of the physiological and physical responses of vegetation. The SOS and
EOS shifts, together with the integrated productivity results, suggest that SIF metrics and
GPP versus EVI versus NDVI capture varying degrees of phenological and structural
changes at different timings (Figure 9).

The results show that SIFi, SIFd, GPP, and, to some lesser extent, EVI, respond to
the same or coincident temperate forest vegetation production dynamics, such as canopy
structural changes, light capture and scattering, and photosynthetic responses to the envi-
ronment. Canopy level field measurements of the Natural Bridge area within DBNF during
a period of NDVI senescence also indicate that EVI and NDVI capture different trends and
variability and agree well with satellite data, but they were too few and spatially limited
to directly validate the satellite scale reflectance measurements. Furthermore, as longer
records of SIF, such as from OCO-2, OCO-3, and the TROPOspheric Monitoring Instrument
(TROPOMI) aboard the Copernicus Sentinel-5P mission, become available, GPP, SIF, EVI,
and other satellite-derived datasets, as well as more refined estimates of SIFy, can be used
in tandem to improve our understanding of production estimates, as model inputs, and to
spatially and temporally gap-fill data, as well as create new datasets to track vegetation
dynamics with satellite remote sensing observations.

SIF metrics, GPP, and EVI to a more moderate degree, indicate a more complex rep-
resentation of drivers and responses than NDVI. The differences in relative integrated
productivity derived from SIF versus NDVI can be attributed to NDVI SOS, which was
just under a week earlier than SIF SOS, but NDVI EOS was approximately one month
later than SIF EOS (26 and 32 days; Figure 9). NDVI showed the least agreement with all
the other indicators of relative base or pulse-integrated production and LOS, indicating
changes into senescence much later in the year. When relying on correlations, for instance,
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clustering of NDVI values, for instance, by season could indicate strong relationships with
GPP and other productivity metrics. It is because of this strong correlation that NDVI
is heavily relied upon in studies of vegetation productivity and seasonality, e.g., [47,62].
However, seasonality analyses add to the growing body of research showing that SIF
captures more information regarding the function of vegetation, while NDVI indicates
changes in structure [18,33,34,100,104]. Furthermore, EVI and GPP from MODIS demon-
strated more similar capturing seasonality to SIF than NDVI (e.g., [17,18,75–77]). Also,
NDVI correlation behavior might disappear in vegetation with less variation in seasonal
temperature (tropics) or vegetation with fewer structural seasonal changes (evergreen),
which supports findings in previous studies, e.g., [43,62,89,99,106]. Taken together with the
evidence from other studies (e.g., [17,18,27]), NDVI likely responds to the most pronounced
changes in the structure of the forest canopy combined with increasing soil and background.
While NDVI is an often-used metric for seasonality analysis, it was found to provide the
least information beyond the most pronounced structure changes [17,18,22,23]. In contrast,
EVI captured deciduous vegetation changes missed by NDVI through the exploitation of
the NIR and additional blue spectral region. The proportion of production for the base
and growing seasons indicated by EVI was more similar to GPP than NDVI, although it
was not as similar as SIF to GPP. EVI also indicated a relatively larger pulse-integrated
production than NDVI, even though the LOS for NDVI was approximately 18 days longer.
EVI achieved this likely because of reduced atmospheric and soil background effects and
less saturation than NDVI [7,48,59,89]. These results indicate that seasonality analysis
using EVI has potential applications in tracking vegetation phenology beyond that of
NDVI and may be more comparable to SIF and GPP. Taken together with the widespread
availability and long record of satellite EVI, EVI remains a valuable and relevant source of
phenological information.

The agreement between SIFi, SIFd, and GPP may stem from the greater sensitivity of
these remote sensing proxies to changing environmental factors than NDVI or EVI. The
GPP product from MODIS incorporates information regarding environmental conditions
via a model, and SIF has proven to be sensitive to light and environmental conditions
(e.g., [3,8,10,12,14]). For instance, NDVI clusters for cool versus warm months to a greater
degree than GPP or SIF metrics and saturates in the growing season (Figures 6 and 7).
As mentioned previously, NDVI correlations that exist with SIF indices are likely driven
by seasonal clustering rather than tracking incremental changes. SIF metrics and GPP
are more evenly distributed across the months in response to changes in Tcan and Tair,
as well as VPD, which illustrates that SIFi, SIFd, SIFy, GPP, and even EVI capture more
subtle responses of the forest to environmental factors than NDVI. This can be especially
applicable in phenological studies or monitoring ecosystem responses related to changing
climates [4,7,117,118].

A method to estimate SIFy using OCO-2 and MODIS fPAR was tested. A technique
to reliably calculate SIFy using satellite data would open the possibility of greater photo-
synthetic information available at the greatest spatial scales. However, the SIFy time series
resulted in unreliable seasonality calculations; thus, no phenological insights or improved
interpretation of SIF patterns were found. The SIFy result indicates that the SIF signal is
composed largely of fPAR and the remaining information is noisy (Figure 3e). The calcula-
tion did, however, remove the influence of fPAR as indicated by the relative importance
of variable analysis (Figure 8), but it is suspected the remaining data are not helpful for
the interpretation of SIF and its relationship to carbon uptake. This estimate of SIFy may
provide a starting point to explore the physiological response of the canopy using other
satellite-based data to enable studies where field- or tower-based data are unavailable. For
a future study, it is possible that including a larger area and a longer time series using this
or an updated version of estimating SIFy could improve SIFy seasonality metrics and, thus,
the interpretation of the SIF connections to GPP (e.g., [42–44,99]). In addition, including
field measurements of fPAR, PAR, and irradiance generally would be of great interest but
was not available in this limited study. In studies where data are available to compare GPP



Remote Sens. 2023, 15, 5101 20 of 25

or light use efficiency (LUE) from fields or towers, SIF yield is revealing important biome
and species-specific functions (e.g., [3,12,17,20]). A satellite-based SIFy could elucidate
more about seasonal changes resulting from the photosynthetic response of the canopy
than structural changes that are coincident with GPP in areas where eddy covariance flux
measurements, for instance, are not available, filling a critical gap in these spatially sparse
measurements [6,18,20,99,103]. Other studies, and even these results, certainly prompt
further investigation of satellite SIFy estimates as a broad-scale proxy for the physiological
response of vegetation and, with further study, a potential proxy for LUE.

5. Conclusions

This study examined how a time series of multiple metrics from two independent
remote sensing platforms characterize production. A seasonality analysis, i.e., where the
start, end, and length of a season are calculated as well as the proportion of base and
pulse production, provides strong evidence of differences in how these measurements track
the vegetation dynamics of a temperate deciduous forest. Satellite-based SIF and GPP, as
well as EVI, showed a greater sensitivity to forest function, structure, and environmental
changes than NDVI. These results can improve our understanding of temperate deciduous
forest functions and structures and demonstrate how emerging satellite remote sensing
observations, such as SIF, can capture vegetation production changes over time on regional
scales. This study demonstrates the utility of satellite-based SIF metrics and VIs in conjunc-
tion with seasonality analyses to gain a better understanding of the functions and changes
of vegetation throughout time. In these ways, a seasonality analysis of satellite-based SIF
metrics and GPP time series is a potent technique to monitor vegetation in a changing
climate and can pave the way for improved GPP estimates.
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