
Citation: Kulathunga, G.; Klimchik,

A. Survey on Motion Planning for

Multirotor Aerial Vehicles in

Plan-Based Control Paradigm.

Remote Sens. 2023, 15, 5237.

https://doi.org/10.3390/rs15215237

Academic Editor: Riccardo Roncella

Received: 14 September 2023

Revised: 27 October 2023

Accepted: 31 October 2023

Published: 3 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Review

Survey on Motion Planning for Multirotor Aerial Vehicles in
Plan-Based Control Paradigm
Geesara Kulathunga 1,2 and Alexandr Klimchik 3,*

1 Institute of Robotics and Computer Vision, Innopolis University, Innopolis 420500, Russia;
g.mudiyanselage@innopolis.ru

2 Lincoln Institute for Agri-Food Tech, Lincoln Centre for Autonomous Systems, University of Lincoln,
Riseholme Park, Lincoln LN2 2LG, UK

3 School of Computer Science, Lincoln Centre for Autonomous Systems, University of Lincoln,
Lincoln LN6 7TS, UK

* Correspondence: aklimchik@lincoln.ac.uk

Abstract: In general, optimal motion planning can be performed both locally and globally. In such a
planning, the choice in favor of either local or global planning technique mainly depends on whether
the environmental conditions are dynamic or static. Hence, the most adequate choice is to use local
planning or local planning alongside global planning. When designing optimal motion planning,
both local and global, the key metrics to bear in mind are execution time, asymptotic optimality, and
quick reaction to dynamic obstacles. Such planning approaches can address the aforementioned target
metrics more efficiently compared to other approaches, such as path planning followed by smoothing.
Thus, the foremost objective of this study is to analyze related literature in order to understand how
the motion planning problem, especially the trajectory planning problem, is formulated when being
applied for generating optimal trajectories in real-time for multirotor aerial vehicles, as well as how it
impacts the listed metrics. As a result of this research, the trajectory planning problem was broken
down into a set of subproblems, and the lists of methods for addressing each of the problems were
identified and described in detail. Subsequently, the most prominent results from 2010 to 2022 were
summarized and presented in the form of a timeline.

Keywords: multirotor aerial vehicles (MAVs); B-spline; minimum-snap; model predictive control
(MPC); nonlinear model predictive control (NMPC); linear quadratic regulator (LQR); differential
dynamic programming (DDP); optimal control problem (OCP); quadratic programming (QP); safe
flight corridor (SFC); gradient-based trajectory optimization (GTO); truncated signed distance
field (TSDF)

1. Introduction

Adroit motion planning of little flying creatures, such as birds and butterflies, is an
extraordinarily demanding task for several reasons, including aggressive maneuvers. An
example of such a high-speed maneuver need is one in particularly tight spots where the
environment is obstacle-rich. Researchers have been trying to replicate similar maneuvers
using two different types of aerial vehicles: conventional and unconventional. In this
research, we deal with conventional aerial vehicles, for instance, unmanned aerial vehicles
(UAVs), multirotor aerial vehicles (MAVs), etc. Recent progression in computation capabili-
ties and embedded sensing has been boosting the procedure of mimicking natural flying
animals; this advancement has enabled plenty of new opportunities in diverse fields: in-
spection, autonomous transportation, logistics, delivery, aerial photography, post-disaster,
and medical services. However, optimal motion planning remains a crucial task in all
the fields listed above. In optimal motion planning, the environmental reasoning cannot
be predictable, since environmental conditions change rapidly. Hence, there are various
challenges to be addressed to obtain highly efficient and optimal motion planning. In

Remote Sens. 2023, 15, 5237. https://doi.org/10.3390/rs15215237 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15215237
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-3378-9813
https://orcid.org/0000-0002-2244-1849
https://doi.org/10.3390/rs15215237
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15215237?type=check_update&version=3

Remote Sens. 2023, 15, 5237 2 of 37

this paper, we mainly focus on how researchers have been addressing these challenges in
optimal motion planning to obtain robust navigation in various domains for multirotor
aerial vehicles (MAVs).

In most industrial applications, the environment is either fully or partially unexplored,
and unpredictable events can occur at any time due to a variety of factors. Therefore, a fast
and accurate optimal motion planning technique is required to handle these unexpected
problems in real time. The optimal motion planning problem is generally divided into three
subcategories: path planning followed by smoothing, kinodynamic search-based trajectory
generation, and motion-primitive-based approaches. Of these three, plan-based control
approaches are the most widely used and efficient way to address the problem considered,
compared to the other two approaches. Numerous plan-based control strategies have been
proposed in the past decade, with promising results. This is one of the key motivating
factors for reviewing plan-based control, especially for industrial multirotor aerial vehi-
cles (MAVs). Most industrial multirotor aerial vehicles (MAVs), such as quadrotors, have
low-level controllers, for example, PX4 [1], DJI [2], that can be operated independently
irrespective of high-level execution commands. Moreover, such controllers reduce the
overhead and complexity of developing high-level planning algorithms due to their in-
dependence. In other words, the same planner can be deployed on different firmware by
implementing an interface between a high-level planner and a low-level controller. Thus,
we narrowed down our study to considering only plan-based control approaches (Figure 1),
particularly in application to industrial multirotor aerial vehicles (MAVs).

Figure 1. An overview of the plan-based control paradigm in the context of trajectory planning
problem formulation. There are various ways to formulate the trajectory planning problem, each of
which consists of a set of submodules (green color boxes) depending on the problem behavior.

The main limitation of multirotor aerial vehicles (MAVs) is low flight time. Hence, a
multirotor aerial vehicle (MAV) should be capable of executing robust, agile, and aggres-
sive maneuvers while ensuring dynamic feasibility and guaranteeing smoothness of the
trajectory in low flight time. Furthermore, trajectory plotting should be performed within
an obstacle-free zone at high speed to handle a given mission effectively. Such behavior is
imposed by adhering to a set of constraints. If and only if the constraints are incorporated
appropriately, desired needs can be fulfilled. Obtaining the right constraints at the right
moment and applying appropriate control sequences to improve motion quality is the
key objective of any plan-based control approach. However, the procedure of obtaining
such right constraints is an open research problem due to its complexity and numerous
other challenges that should be handled simultaneously. For example, the multirotor aerial

Remote Sens. 2023, 15, 5237 3 of 37

vehicle (MAV) has been widely employed in video-making-related fields in recent years,
with cinematographic aerial shooting being one of the popular areas of interest during the
last five years. In such shooting, generating smooth, obstacle-free trajectories is the main
challenge. Various other challenges exist, and most of them are application-specific. In this
work, we examine the most common problems related to trajectory planning applications
in the paradigm of plan-based control, as well as how researchers have been alleviating
those problems by proposing compelling solutions.

In optimal trajectory planning, trajectory generation and controlling the multirotor
aerial vehicle are strongly interconnected. For multirotor aerial vehicles (MAVs), the trajec-
tory generation process is relatively easy due to the dynamic properties of the multirotor
aerial vehicles (MAVs). When dynamic obstacles are incorporated, the trajectory has to be
refined at a high rate in order to keep a smooth maneuver despite increased computational
demands. Moreover, understanding close-in obstacles’ positions relative to the multirotor
aerial vehicle (MAV) is crucial for making decisions in real time; this raises a new chal-
lenge: the one of the rapidity and accuracy of relative environment reconstruction, which
essentially is how obstacle constraints are added to the problem formulation. Yet another
challenge is of the impact of the obstacles and constraints on the smoothness and dynamic
feasibility of the generated trajectory. After conducting an extensive literature review on the
topic of trajectory planning for multirotor aerial vehicles (MAVs), we were able to isolate
basic building blocks that are essential for optimal motion planning, as shown in Figure 2.
Each of the primary components plays a key role in the process of trajectory generation.

Motion planning
in plan-based

control paradigm

Receding
horizon

trajectory
planning

Motion
model

selection

Free space
segmentation

Intermediate
waypoints

identification

Initial
trajectory

generation

Continuous
trajectory

refinement

• Differential Flatness and Partial
Differential Flatness

• Empirical model

• Exact model

• Convex segmentation: iterative regional inflation
by semi-definite programming (IRIS), safe flight
corridor (SFC), Stereographic Projection
, Extracting convex polytopes

• Octomap and Euclidean signed distance field
(ESDF) mapping , map building and construct
KD-tree

• A set of geometrical shapes such as cubes, spheres
and polyhedrons

• Path planning, e.g., graph search
techniques such as A-star and D-star,
sampling-based techniques, i.e., RRT,
RRT-star, rapidly exploring random
graph (RRG)

• Kinodynamic and kinematic enable,
A-star, RRT-star, FMT-star

• Incorporate motion primitive

• Minimum-snap

• B-spline (uniform or nonuniform),
Minimum-time B-spline

• Bernstein basis polynomial

• Refinement trajectory cost in most of
the cases, defined by
J(Γ) = ξsmooth Jsmooth(Γ) + ξobs Jobs(Γ) +
ξso f t Jso f t(Γ) + ξend Jend(Γ); different
types of techniques are employed
considering a few or all of the
preceding individual costs: jerk or
snap, end point, obstacle, elastic
band for control points refinement

• iterative linear quadratic regulator
(iLQR), Extended linear quadratic
regulator (LQR), linear quadratic
Gaussian (LQG), model predictive
control (MPC), corridor-based model
predictive contouring control
(CMPCC)

• A set of control barrier functions
(CBFs) for improving the robustness

Figure 2. The basic building blocks are encountered in trajectory planning problems. In general,
a considered trajectory planning problem can be composed of one or more blocks sequentially or
in parallel to fulfil the desired needs. Details explanation of each of the blocks are explained in
the following sections: motion model selection (Section 2), intermediate waypoint identification
(Section 3), initial trajectory generation (Section 4), free space segmentation (Section 5), continuous
trajectory refinement (Section 6), and receding horizon trajectory planning (Section 7).

Remote Sens. 2023, 15, 5237 4 of 37

We survey the existing literature and identify the main building blocks of trajectory
planning for MAVs: free-space segmentation, motion model selection, initial waypoint
identification, initial trajectory generation, continuous trajectory refinement, and receding
horizon trajectory planning. For each building block, we discuss and examine how previous
research has addressed it. Furthermore, we used the same benchmark example to fairly
compare different strategies. Also, we aim to provide a comprehensive overview of the
recent advances and the most prominent results in trajectory planning for multirotor
aerial vehicles (MAVs) from 2010 to 2022, with a focus on real-time generation of optimal
trajectories as follows [3–57]:

Quadrotor attitude control for trajectory tracking [3], trajectory planning in large-scale and cluttered envi-
ronments [4], a differentially flat hybrid system is used to formulate the trajectory planning problem for a
bidirectional quadrotor [5], decentralized trajectory planning method for quadrotor swarm [6]

Sampling-based method for time-optimal paths generation for a point-mass model [7], a continuous ref-
erence trajectory refinement technique for slow-speed maneuvering [8], trajectory planning approach
considering geometrical configuration constraints and user-defined dynamic constraints for uncon-
strained control effort minimization [9], Logistic curve-based trajectory generation technique [10]

Gaussian process-based residual dynamic learning [11], nonuniform kinodynamic search-based trajec-
tory generation [12], a standard form of a two-point boundary-value problem using Pontryagin’s mini-
mum principle-based approach is proposed [13]

Online teach and repeat planning technique was proposed [14], in which a geometric controller [15] was
utilized for trajectory tracking. Moreover, an iterative trajectory refinement strategy was proposed to re-
lieve the local minima problem where the free space was represented as a convex cluster, i.e., a set of
convex polytopes [14], a faster approach for segmenting free space as a set of polytopes using point
cloud [16], receding horizon trajectory generation was proposed in [17], whereas trajectory generation
for moving target was proposed in [18]

Trajectory planning technique was proposed based on nonuniform B-splines ensuring kinodynamic fea-
sibility [19] where geometric tracking control (GTC) is used for controlling, incremental ESDF method
for constructing the environment [20], B-spline based kinodynamic search algorithm followed by elastic-
based optimization [21], preception-aware optimal trajectory generation with limited filed of view [22],
direct collocation method for trajectory generation [23], Minimum-time B-spline trajectory generation [24]

B-spline based kinodynamic search followed by refining the trajectory by using elastic optimization
(EO) [25], fast marching method alone side with Bernstein basis polynomial trajectory generation [26],
Topomap: three-dimensional topological map in which the sparse point cloud was directly utilized to
construct the environment [27], continuous-time trajectory optimization technique was applied for gen-
erating the trajectory in which initial waypoints were generated using RRG. Furthermore, monocular
visual-inertial fusion was used for constructing the environment [28]

Informed RRG method for finding an initial obstacle free path [29], uniform B-spline based trajectory
generation [30], using visual features to construct dense map and utilized for extracting obstacle-free
space [31], SFC for extracting obstacle-free regions as a convex set [32], free space was constructed
as a set of convex polytopes based on stereographic projection [33], topologically distinctive online tra-
jectory planning [34], proposing 3D jump point search (JPS) [32]

Extending Minimum-snap as an unconstrained quadratic program in which path segments were jointly
optimized [35], mixed integer quadratic programming (MIQP) based trajectory generation technique in
which free space was segmented convexly by IRIS [36], generating safe avoidance trajectories [37]
which was inspired by covariant hamiltonian optimization for motion planning (CHOMP) and minimum-
snap. Moreover, it introduces a random restart technique to avoid local minima, kinodynamic FMT-star
followed by minimum-snap trajectory smoother [38], sophisticated octree-based partitioning tree-based
obstacles representation [39]

Proposing IRIS for free space segmentation [40], minimum-snap trajectory generation using MIQP in
which IRIS used for free space segmentation [41], motion primitive based approach for polynomial tra-
jectory generation [42], Long range navigation based on teach and repeat where iterative closest point
matching (ICP) was utilized [43], coordinate descent optimization in which objective was to minimize the
along the coordinate hyperplanes [44]

Trajectory generation based on pre-computed convex regions, which were used to build the map [45],
the trajectory was generated seeking the time-optimal parameterization of a given path (TOPP) [46]

Local replanning for exploring in which motion primitives were used to ensure the dynamic feasibil-
ity [47], path planning by using A-star for searching the optimal path in lattice space (x, y, z, heading)
followed by motion-primitive-based trajectory generator [48], asymptotically optimal kinodynamic RRT-
star trajectory planner [49], CHOMP trajectory generation and continuous improvement of the initial tra-
jectory considering obstacles and smoothness of the trajectory [50]

Proposing MIQP based approach for trajectory generation [51], seeking different homology classes of
trajectories and generating an optimal trajectory subject to that homology classes [52]

Minimum-snap trajectory generation [53], Gradient free optimization technique, STOMP [54], proposing
quite faster search algorithm JPS in uniform grid [55]

Free space was extracted by discretizing the space via the 3D Delaunay triangulation [56]

Covariant gradient-based trajectory generation, CHOMP [57]

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

Our goal was to investigate trajectory planning for multirotor aerial vehicles (MAVs)
in the plan-based control paradigm, focusing on analytical approaches rather than learning
and evolutionary approaches. In future work, we plan to investigate trajectory planning

Remote Sens. 2023, 15, 5237 5 of 37

approaches based on imitation learning, inverse reinforcement learning, and evolution-
ary computing. Further investigations also include a comparison of different paradigms
in a simulated environment and through real-world experiments for different operating
scenarios: trajectory planning for high-dense and less-dense environments, static and dy-
namic obstacle avoidance, and high-speed and low-speed maneuvers. These considerations
were outside of the scope of this work since we focused on the theoretical aspects of the
plan-based trajectory planning paradigm. The rest of the paper is organized as follows:

• Section 2—Motion Modeling—discusses the type of motion model suitable for defining
the dynamics of the robot based on the chosen trajectory generation technique. Exact,
empirical, and differential flatness models are presented.

• Section 3—Initial Waypoint Generation—surveys state-of-the-art techniques for find-
ing initial tentative waypoints for trajectory generation, focusing on graph search-
based algorithms, motion-primitive-based approaches, and fast marching methods.

• Section 4—Initial Trajectory Generation—comprehensively reviews initial trajectory
generation techniques. It begins by defining how to formulate a trajectory, followed
by a detailed explanation of several interesting techniques, including minimum-snap,
polynomial trajectory generation as quadratic programming (QP), unconstrained
polynomial trajectory generation, covariant gradients, B-spline, and Bernstein. Fi-
nally, it compares several trajectory techniques to highlight their respective strengths
and weaknesses.

• Section 5—Free Space Extraction—explains how to extract and incorporate free space
into trajectory planning. OctoMap, IRIS, and SFC are the main methods discussed in
this section.

• Section 6—Trajectory Refinement—describes the trajectory refinement process.
• Section 7—Horizon-Based Trajectory Planning—presents horizon-based trajectory

planning techniques, starting with linear quadratic regulator (LQR) and its variants,
such as iterative LQR (iLQR) and extended LQR (ELQR). It then covers advanced tech-
niques, such as model predictive control (MPC) and its variants, including nonlinear
MPC (NMPC).

• Section 8—Solvers for Optimization—details various solvers that can be used to
solve the optimization problem, starting with quadratic programming formulation. It
then lists and describes the usage of mixed-integer quadratic programming (MIQP),
gradient-based trajectory optimization (GTO), BOBYQA, and many other solutions.

2. Motion Model Selection

Exact model, empirical model and differential flatness are the main techniques that can
be employed for selecting the most appropriate motion model for a specified application.
The appropriate motion model selection procedure varies depending on the problem for-
mulation. For example, planning followed by controlling approaches does not necessarily
have an exact motion model mainly due to high computational demands. In such scenarios,
an empirical motion model is sufficient for planning, since a dedicated controller is utilized
for controlling the quadrotor.

2.1. Exact Model

In general, multirotor aerial vehicle (MAV) dynamics is described by six degrees of
freedom. However, in planning followed by high-level controlling approaches, it is not
required to define an actual motion model for planning, since a high-level controller con-
sists of a fully-fledged quadrotor motion model. In most circumstances, the planner is
composed of approximated quadrotor dynamics; this is due to computational complexity,
which is not adequate for real-time onboard processing. Hence, the motion model selection
process depends on the approach that formulates needs. In [58], the researchers proposed a
six-degrees-of-freedom motion model, whose state vector is defined by x = [p>, v>, ψ>, ω>],
where ψ, p, v and ω stand for orientation (rad), position (m), velocity (m/s), and an-
gular velocity (rad/s) in R3, respectively, with respect to a defined local coordinate

Remote Sens. 2023, 15, 5237 6 of 37

frame. The system input or total trust that is applied for each of the motors is given
by f = [f1, f2, f3, f4]

T (N). System dynamics is determined as ẋ = [ṗ>, v̇>, ψ̇>, ω̇>], where
ṗ = v, v̇ = −g · ez +

(f·exp [ψ]·ez−kv ·v)
m , ψ̇ = ω + 1

2 [ψ] · ω + (1− 1
2

‖ψ‖
tan(1

2 ‖ψ‖)
)[ψ]2 · ω/‖ψ‖2,

ω̇ = J−1(ρ(f2− f4)ex) + ρ(f3− f1)ey + km(f1− f2 + f3− f4)ez − [ω] · J ·w), g = 9.8 ms−2

and ei, i = x, y, z stand for standard basis vectors in R3, and kv, m, J, ρ, and km are robot-
specific constants.

2.2. Empirical Model

Other than the exact model, a six-degree-of-freedom motion model was proposed for
governing quadrotor in a distributed setup [59]. Later, it was reduced to four-degree-of-
freedom motion model [60]. Furthermore, in [61], a 4-degree of freedom (DoF) motion was
used for controlling several quadrotors in a distributed setup in which nonlinear model
predictive control (NMPC) and model horizon estimation (MHE) are incorporated for
relative tracking, where the relative motion model was defined as:

ẋ = fc(x, u, ψz) =

ṗx
ṗy
ṗz
ψ̇z

 =

vxcos(ψz)− vysin(ψz)− v̄x + py

¯̇ψz
vxsin(ψz) + vycos(ψz)− v̄y − px

¯̇ψz
vz − v̄z
ψ̇z − ¯̇ψz

, (1)

where the function fc(·) : Rnu × Rnx × Rnru → Rnx and nx = nu = nru = 4. The current
control input is given by u = [vx, vy, vz, ψ̇z], whereas relative control input uru is denoted
by [v̄x, v̄y, v̄z, ¯̇ψz]. x = [px, py, pz, ψz] is the state of the motion model, where pi, i ∈ {x, y, z}
is the position of the MAV in the world frame. ψz and ψ̄z denote the yaw angle or heading
angle around the z axis and relative yaw angle, respectively. Derivative of ψz and ψ̄z are
denoted by ψ̇z and ¯̇ψz, respectively. vi, i ∈ {x, y, z} denote the velocities on each direction,
whereas ṗi, i ∈ {x, y, z} gives the derivatives of pi. Since discrete space was chosen for
controlling the system, Euler discrete model (1) was formulated as follows:

x+ = fd(x, u, ψz) =

px
py
pz
ψz

+ δ

vxcos(ψz)− vysin(ψz)− v̄x + y ¯̇ψz
vxsin(ψz) + vycos(ψz)− v̄y − x ¯̇ψz

vz − v̄z
ψ̇z − ¯̇ψz

, (2)

where δ is the sampling period and fd(·) : Rnx × Rnu × Rnru → Rnx . fc and fd denote
continuous and discrete dynamics, respectively. x+ depicts the next state given the current
state x. Subsequently, the motion model was simplified to 4-DoF for trajectory tracking for a
quadrotor [62] (Equation (1)). In this trajectory-tracking approach, planning followed by the
high-level controlling paradigm was applied. Such an approach was introduced because
a simplified motion model is a reasonable choice for achieving real-time performance.
Quadrotor state was defined as x = [px, py, pz, ψz]T ∈ Rnx , whereas input to the system
was given by u = [vx, vy, vz, ψ̇z]T ∈ Rnu . The simplified motion model was given by:

ẋ = fc(x, u) =

ṗx
ṗy
ṗz
ψ̇z

 =

vxcos(ψz)− vysin(ψz)
vxsin(ψz) + vycos(ψz)

vz
ψ̇z

, (3)

where fc(·) : Rnx ×Rnu → Rnx and nx = nu = 4. The discretization of (3) was given by:

x+ = fd(x, u) =

px
py
pz
ψz

+ δ

vxcos(ψz)− vysin(ψz)
vxsin(ψz) + vycos(ψz)

vz
ψ̇z

, (4)

Remote Sens. 2023, 15, 5237 7 of 37

where fd(·) : Rnx ×Rnu → Rnx .

2.3. Differential Flatness

Here, differential flatness [63] provides algebraic functions (e.g., polynomials) which
analytically map the trajectory and whose higher-order derivatives map to system states
and inputs. Since the Nth-order polynomial can be differentiated up to N − 1 times,
the differential flatness property ensures the feasibility of the trajectory and generates
appropriate control commands. More precisely, let the following:

ẋ = fc(x, u) x ∈ Rnx , u ∈ Rnu . (5)

be a nonlinear system. According to to [64], if the system is differentially flat, there
always exists a flat output, namely z ∈ Rnz , where the dimension of the output is
given by nz. In such a system, states and control inputs can also be formulated from
the system flat outputs whose derivatives are mapped through functions, namely $
and τ. Let z = =(x, u, u̇, . . . , u(q)) be the flat output, holding x = $(z, ż, . . . , z(r)) and
u = τ(z, ż, . . . , z(r)), where apices (i) stipulates the ith derivative. Along with that, the
explicit trajectory generation process can benefit when it uses differentially flat systems, for
example, $ and τ can be a dth-order polynomial p(t). Then, x>(t) = [p>(t) ṗ>(t) p̈>(t)]
are the state of the system at time t in which ṗT and p̈T indicate the velocity and acceleration
of the system, respectively. Control inputs can be determined by jerk [65], namely

...
p T(t),

where p(t) = λdtd + . . . + λ1t + λ0, t ∈ [0, dt], where λi, i = 0, . . . , d are the polynomial
coefficients. There are various ways to construct these kinds of polynomials, including
Minimum-snap, B-spline, etc.

3. Initial Waypoint Identification

Generally speaking, robots have a limited sensing range. Thus, planning a trajectory
out of such a sensing range would be counterproductive. Hence, local trajectory planning
and refinement when a robot moves is the optimal choice. With the help of sensing
capabilities within the robots’ sensing range, the robot’s surrounded environment can be
constructed as the intersection of three separate disjoint sets: free-known (C f ree), occupied
(Cobs), and unknown (Cunknown). Once C f ree ∪ Cunknown is identified, a set of intermediate
waypoints is needed to navigate the robot along the trajectory from the start position
to the desired position. There are various techniques for finding a set of intermediate
waypoints: sampling-based techniques (e.g., RRT*, probabilistic road map (PRM)) and
path-searching techniques (e.g., A*, D*, JPS), where waypoint poses are given in the
UTM (universal transverse mercator) coordinate system and then converted into the local
coordinate system. Moreover, kinodynamic properties are incorporated into preceding
intermediate waypoints finding techniques to ensure the dynamic feasibility of the robot.
One of the first kinodynamic-based path planning approaches was proposed in [66], in
which a variant of the A* method alongside with kinodynamic properties was applied to
ensure the dynamic feasibility. Subsequently, several different methods were proposed
for enhancing path planning, ensuring the dynamic feasibility by kinodynamic properties,
including motion-primitive-based approaches.

Motion-primitive-based approaches [42,67,68] can be utilized for finding intermediate
waypoints and for trxajectory generation. Gordon et al. [69] proposed a set of motion
primitives for connecting edges of the graph that was constructed from A*. In this method,
motion primitives were used to defining state vector x(t) and control input u(t) as a linear
time invariant (LTI) system as follows:

xi(t) = [pi(t)>, ṗi(t)>, . . . , p(kr−1)
i (t)>]> ∈ xi(t) ⊂ R3×kr ,

pi(t) = [px(t), py(t), pz(t)]T , ui(t) = p(kr)(t),
(6)

Remote Sens. 2023, 15, 5237 8 of 37

where pµ(t) = Σd
j=0λjtj, µ ∈ {x, y, z}, which is formulated similar to (16), while kr and d

are the order of the derivative and the order of the polynomial, respectively.

ẋi(t) = Axi(t) + Bui(t),

A =

0 I3 0 · · · 0
0 0 I3 · · · 0
...

...
...

. . .
...

0 0 I3
0 0 0

, B =

0
0
...
0
I3

.
(7)

Hence, given control policy ui(t) and initial state x(0), a sequence of succeeding states
for a given time duration is determined by:

xi(t) = eAtx(0) +
∫ t

0
eA(t−γ)Bu(γ)dγ, (8)

where γ is the time duration that control policy is applied. In [69], to define the actual and
heuristic cost of A*, the researchers used motion primitives, which are defined (as shown)
in (8), and calculated initial waypoints set.

Another interesting approach to finding a set of initial intermediate waypoints is
by using fast marching methods. In general, fast marching methods [70] are applied to
track the propagation of a convoluted interface such as wavefront, especially in image
processing. Let ϕ be a close curve in a plane ∈ R3 that propagates orthogonally to the plane
with a speed v(p), assume v > 0. Given5T time period, propagation of the plane can be
described by | 5 T(x)| = 1

v(p) based on Eikonal partial differential Equation [71], where p

is the position in R3 and the arrival time is formulated by T(x). The fast marching concept
was applied for path searching in [26] by proposing a method for calculating a velocity
map. In this method, the arrival time was determined by assessing the desired velocity at
the considered position in the local coordinate system. Hence, arrival time was calculated
by backtracking from the goal pose to the start pose along the minimum cost path, which
can be estimated from the gradient descendant. Though gradient descendant may trap in
a local minimum, when smart marching is applied, gradient descendant does not trap in
local minimum due to fast marching nature; this property was proven in [72]. To define the
velocity map, ESDF was utilized to get the closest obstacle poses from the given pose. A
quadrotor should move faster when there are no close-in obstacles and should be slower
when it is moving through a cluttered environment. Such a behavior was mimicked by
incorporating a hyperbolic tangential function, i.e., tanh. With such an assumption, the
corresponding velocity was calculated based on (9):

v(l) =
{

vmax(tanh(l − e) + 1)/2, 0 ≤ l
0, l < 0

, (9)

where vmax is the maximum velocity a quadrotor can fly, l is the distance to the closest
obstacle from the considered pose p and, e is Euler’s constant.

4. Initial Trajectory Generation

Let us consider a nonlinear system in the form of ẋ(t) = fc(x(t), u(t)) with initial state
x(t0) = x0, where state vector and control inputs are denoted by x ∈ Rnx and u ∈ Rnu ,
respectively. When generating an initial trajectory (Γ), ensuring dynamic feasibility is a
must. In other words, x and u satisfy the following constraints:

x ∈ X ⊆ Rnx , u ∈ U ⊆ Rnu . (10)

In addition to these constraints, safety constraints should also be imposed after reason-
ing the environment, to guarantee safety. The environment or configuration space C can be

Remote Sens. 2023, 15, 5237 9 of 37

decomposed into Cobs and C f ree. Hence, a set of constraints should be introduced for the
quadrotor to always be within free space x ∈ C f ree = C/ Cobs. Hence, the initial trajectory
generation process has to consider both said types of constraints simultaneously so that the
quadrotor would have a smooth flying experience.

4.1. Define Trajectory

Let Γ← C ⊂ Rd be an initial trajectory, which is parameterized as a function of time
where d denotes the C’s dimension. Since Γ is a function, the objective of the trajectory
generator is to determine the precise objective, which will eventually provide the optimal
trajectory in a timely manner satisfying constraints and hypotheses that are imposed.
Hence, optimal trajectory, namely Γ∗, can be posed as a discrete or continuous optimal
control problem (OCP) [73]:

Γ∗ = min
u(·)

J(x(0), u(·))

s.t. x(0) = x0, x(tn) = xn

ẋ(t) = fc(x(t), u(t))

x(t) ∈ C f ree, u(t) ∈ U, t ∈ [t0, tn],

(11)

where t0 and tn denote the start and terminal time, respectively. Yet another challenging
problem is to formulate the objective function, namely J. In the following subsections, we
discuss several approaches to address this problem.

4.2. Minimum-Snap-Based Trajectory Generation

minimum-snap trajectory generation [53] uses the differential flatness property
(Section 2.3) to automate the trajectory generation process. Let quadrotor trajectory be
ΓT(t) = [rT(t), ψT(t)]T for flat output [x, y, z, ψz]T , where r = [x, y, z] is the center position
of the MAV with respect to world coordinate system and ψz is the yaw angle of the MAV.
The continuous trajectory can be expressed as follows:

Γ(t) : [t0, tn]← Rd, (12)

where d is the dimension of the space, e.g., 3. As we defined in Section 2.3, system states
and inputs can be determined in terms of Γ and its derivatives. Γ, Γ̇, and Γ̈ correspond to
position, velocity, and acceleration, respectively. Flat output and its derivatives estimation
in minimum-snap refer to the original work [53] (Equations (1)–(35)).

In minimum-snap trajectory parameterization, the total time duration of the trajectory
is divided into a set of subintervals, i.e., keyframes. Each keyframe consists of a desired
position and a yaw angle. A safe corridor is constructed between consecutive keyframes
as a set of piece-wise-polynomial functions to estimate smooth transitions through the
keyframes. Let md and d be the number of keyframes and the order of the piece-wise-
polynomial functions, respectively. Hence, ΓT(t) can be formulated as:

ΓT(t) =

Σd

i=0Γi,1(t− t0)
i t0 ≤ t < t1

Σd
i=0Γi,2(t− t1)

i t1 ≤ t < t2
...

Σd
i=0Γi,md(t− tmd−1)

i tmd−1 ≤ t < tmd

. (13)

Remote Sens. 2023, 15, 5237 10 of 37

To generate an optimal trajectory, the following objective is utilized:

J(rT , ψT) =
∫ tmd

t0

ξr

∥∥∥∥∥dkr rT

dtkr

∥∥∥∥∥
2

dt + ξψ
dkψ ψT

dtkψ

2

dt

min
w

J(rT , ψT)

s.t. ΓT(ti) = Γi i = 1, . . . , md

dpxT
dtp |t=tj ≤ 0 j = 0, md; p = 1, . . . , kr

dpyT
dtp |t=tj ≤ 0 j = 0, md; p = 1, . . . , kr

dpzT
dtp |t=tj ≤ 0 j = 0, md; p = 1, . . . , kr

dpψT
dtp |t=tj ≤ 0 j = 0, md; p = 1, . . . , kψ,

(14)

where ξr and ξψ are regulation parameters, kr and kψ are the order of derivation at each
keyframe, and ΓT(ti) = [xi, yi, zi, ψzi]

T , i = 0, . . . , T. Time intervals, t1, t2, . . . , tmd can be
kept constant or varying when deriving the minimum-snap trajectory generation. In most
cases, having varying time intervals between keyframes is necessary. Mellinger et al. [53]
proposed a gradient descent-based approach for finding optimal time intervals between
keyframes. Furthermore, Chen et al. [74] utilized A* to find the intermediate waypoints.
Based on these estimations, time segments or keyframes are calculated incorporating both
velocity and acceleration limits. In the latter approach, the steps listed below were used
to obtain intermediate waypoints. Initially, the environment was constructed as a map
using OctoMap. Afterwards, the formed map was split into two subsets: allocated and
nonallocated (a set of free spaces). Then, the discrete graph was constructed connecting
consecutive free spaces, which were represented as cubes. Afterwards, A* was applied
for finding the optimal path segment within each cube. Similar to (14), the researchers set
kr = 3 and minimized only total jerk (15) to minimize the angular velocity. As an aside,
minimizing the angular velocity helps to avoid fast rotation.

J =
∫ tmd

t0

ξr

∥∥∥∥∥dkr ΓT(t)
dtkr

∥∥∥∥∥
2

dt. (15)

4.3. Polynomial Trajectory Generation as QP

In minimum-snap trajectory generation, total trust force, i.e., attitude acceleration, is
proportional to the fourth derivative (snap) of the trajectory [53]. The gracefulness of such
behavior helps to avoid generating excessive control commands. Subsequently, a slight
variation of minimum-snap trajectory generation was proposed in [35], where segment
times or keyframes were fixed initially. Once start and goal positions were provided,
RRT* [49] was utilized for finding an obstacle-free path between the start and the goal poses
as a sequence of optimal waypoints. Initial segment times (md), which were estimated
using optimal waypoints, were calculated according to the maximum velocities that the
quadrotor is allowed to fly due to set technical limits. Let pi(t) be the dth-order polynomial
in the ith segment that describes as follows:

pi(t) = λ0t0 + λ1t1 + λ2t2 + λ3t3 + · · ·+ λdtd. (16)

Remote Sens. 2023, 15, 5237 11 of 37

Each pi(t) provides a flat output for a given time index t. λj, j = 0, . . . , d denotes the
polynomial coefficients. The objective or cost function J(Γi) can be fully determined by
penalizing the derivatives of squares [35]:

J(Γi) =
∫ ti+1

ti

ξ0 pi(t)2 + ξ1 ṗi(t)
2 + ξ2 p̈i(t)

2 + · · ·+ ξkr p(k
i
r)(t)2 = PT

i Q(Ti)Pi, (17)

where Pi is a vector whose elements contain polynomial coefficients: ξ0, ξ1, . . . , ξki
r
, where

ki
r is the highest order of derivative and Q(Ti) is Hassin matrix, which contains the ith

segment squares of derivatives. Since there are md number of segments, total cost J(Γ) can
be expressed by:

J(Γ) =

 P1
...

Pmd

TQ(T1)

. . .
Q(Tmd)

 P1

...
Pmd

. (18)

For a smooth flight experience, ensuring the continuity of derivatives between seg-
ments is necessary. Hence, imposing constraints between segments, e.g., velocity, accelera-
tion, jerk, and snap is needed, which can be formulated as follows:

Ci pi = di, Ci =

[
ξ0
ξkr

]
i
, di =

[
d0
dkr

]
i
, (19)

where Ci contains a mapping matrix whose entries contain the start and end coefficients
of ith segment, whereas di contains derivative values, i.e., start and end of ith segment.
Taking all constraints of mn segments:

C

 p1
...

pmd

 =

 d1
...

dmd

. (20)

Now this can be solved as a constrained quadratic programming (QP) problem.

4.4. Unconstrained Polynomial Trajectory Generation

The techniques that are used for uconstrained trajectory optimization are faster than
constraints optimization. In [35], the researchers extended minimum-snap trajectory gener-
ation as an unconstrained QP. According to their findings, minimum-snap works well for
small segments size. For higher-order polynomials with varying segment sizes, minimum-
snap becomes ill-conditioned. Thus, an unconstrained QP was proposed. After substitut-
ing (19) and (20) into (18), J(Γ) can be reformulated as:

J(Γ) =

 d1
...

dmd

T

︸ ︷︷ ︸
d

C(T1)
. . .

C(Tmd)

−T

︸ ︷︷ ︸
C−T

Q(T1)
. . .

Q(Tmd)

︸ ︷︷ ︸

QC(T1)
. . .

C(Tmd)

−1 d1

...
dmd

=

[
df
dp

]T

SC−TQC−1ST︸ ︷︷ ︸
R

[
d f
dp

]
=

[
d f
dp

]T[R f f R f p
Rp f Rpp

][
d f
dp

]
,

(21)

Remote Sens. 2023, 15, 5237 12 of 37

where d contains fixed derivatives (d f) and free derivatives (dp), and S is a permutation

matrix (ones and zeros), which is used to correct the order. Then, dJ(Γ)
ddp

= 0 yields the
optimal value for dp:

d∗p = −R−1
pp RT

f pd f . (22)

Once dp is determined, a polynomial that corresponds to each segment can be recovered.

4.5. Unconstrained Polynomial Trajectory Generation with Collision Avoidance

Oleynikova et al. [37] extended what Richter [35] proposed for adding support for colli-
sion avoidance capabilities. They added an additional term for calculating the collision cost:

J(Γ) = ξobs Jobs(Γ) + ξsmooth Jsmooth(Γ),

Jsmooth = dT
f R f f + dT

f R f pdp + dpRp f d f + dT
p Rppdp,

(23)

where Jsmooth exactly equals (21). To estimate Jobs(Γ), it is required to initially calculate
position pi(t) (16) and velocity vi(t) for each axis at time t after selecting the corresponding
segment (i, i = 1, . . . , md):

pi(t) = Tpi, pi = [λ0, λ1, . . . , λd]
T
i , T = [t0, t1, t2, . . . , td],

vi(t) = ṗi(t) = TVpi,

pi(t) = [px(t) py(t) pz(t)]i, vi(t) = [vx(t) vy(t) vz(t)]i.

(24)

Knowing (the values of) pi(t) and vi(t), Jobs(Γi) can be fully determined by:

Jobs(Γi) =
∫

S
c(pi(t))ds =

∫ td

t=0
c(pi(t))‖vi(t)‖dt =

td

∑
t=0

c(pi(t))‖vi(t)‖∆t

∂Jobs(Γi)

∂dpi(t)
=

td

∑
t=0
‖vi(t)‖ 5i c(T(C−1S)pp)∆t + c(pi(t))

vi(t)
‖vi(t)‖

TV(C−1S)pp∆t,

(25)

where (C−1S)pp is the right-side matrix, which corresponds to dp. For representing the
collision cost c(pi(t)), a line integral of a potential function, i.e., (44), was used. As total
cost is given (21), Jobs(Γ) can be calculated for all the segments provided that d∗p can be
estimated. In a cluttered environment, optimization problem is most likely to be nonlinear
as well as nonconvex. Thus, Broyden–Fletcher–Goldfarb–Shanno (BFGS) [75] was used to
solve the optimization problem. However, the solver failed to obtain the global minimum
most of the time. Hence, several random restarts were needed to find the optimal solution.
A thorough discussion of how random restarts were invoked into the optimization problem
was detailed in [45].

4.6. Covariant Gradients for Trajectory Generation

The significance of covariant gradients technique is that both Jobs(Γ) and Jsmooth(Γ)
depend solely on physical characteristic of the desired trajectory. In other words, the
trajectory generation is invariant to its parameterization. If gradient descent is applied,
it depends on the way trajectory is parameterized. The covariant gradients technique
removes this dependency. Hence, covariant gradient technique depends solely on physical
representation or dynamic quantities of the trajectory with respect to an operator, Θ:

‖Γ‖2
Θ =

∫ k

∑
n=1

ξ(Γ(t)(n))2dt, (26)

where ξ is a constant and apices (n) determine the nth-order derivative. The correlation
of derivatives between two trajectories: Γ1 and Γ2, which are defined by assuming inner
product as given (27).

Remote Sens. 2023, 15, 5237 13 of 37

< Γ1, Γ2 >=
∫ k

∑
n=1

ξΓ1(t)(n)Γ2(t)(n)dt. (27)

The primary objective of Θ is to distinguish the norm (26) and the inner product (27)
from the L2 norm [50].

4.7. B-Spline-Based Trajectory Generation

dth-order B-spline can be defined for a given knot sequence pk = {t0, t1, . . . , tnk} and
control points pc = {p0, p1, . . . , pnp}, where t∗ ∈ R, p∗ ∈ Rd and nk = np + d + 1. If d is
set to 3, each pi represents position in R3, where i = 0, . . . , np. For a given time index t, the
corresponding position p(t) can be fully determined by using the de Boor–Cox formula [76].

p(t) = DeBoorCox(t, pc). (28)

Estimation is not limited to the position; velocity, acceleration, or any high-order
derivative of pc can be estimated using DeBoorCox(t, p(∗)c), as given in Algorithm 1, where
(∗) depicts the order of the derivative of pc such that (∗) < d.

Algorithm 1 The B-spline trajectory (p) and its derivative estimation for a given time index
t, where p equals p(∗)c .

1: procedure DEBOORCOX(t, p)

2: t =

 pk[d], i f t < pk[d]
pk[nk], i f t > pk[nk]

t, otherwise
3: k = d
4: while true do
5: if pk[k + 1] ≥ t then
6: break
7: k++
8: pe[d]
9: for i← 0 to d do

10: pe[i]← p[k− d + i]
11: for r ← 1 to d do
12: for i← d to r do
13: β← t−pk [i+k−d]

pk [i+1+k−r]−pk [i+k−d]
14: pe[i]← (1− β)× pe[i− 1] + β× pe[i]
15: return pe[d]

Later, the B-spline matrix representation was proposed by Qin [77]. B-spline can
be formulated as uniform or nonuniform. J. Hu et al. [78] detailed the uniform B-spline
matrix representation. In uniform B-spline, knot span is the same for any considered
consecutive time interval, i.e., ∆t = ti+1 − ti, i ∈ [0, nk). Any position of the trajectory can
be parameterized by considering only d + 1 consecutive control points: [pi, pi+1, . . . , pi+d].
Hence, corresponding normalized time q(t) can be calculated as follows:

q(t) =
t− ti

ti+1 − ti
=

t− ti
∆t

, t ∈ [ti, ti+1]. (29)

In the matrix representation, c(q(t)), which is given in (28), can be determined by:

c(q(t)) = q(t)Md pi, q(t) = [1, q(t), q2(t), . . . , qd(t)]T , pi = [pi, pi+1, . . . , pi+d]
T ,

Md ∈ Rd+1×d+1, Mr,c =
1
d!

(
d

d− r

)
Σd

s=c(−1)s−c ×
(

d
s− c

)
(d− s)d+1−r−s.

(30)

Remote Sens. 2023, 15, 5237 14 of 37

Since each control point pi belongs to d + 1 of successive spans, B-spline can be
controlled locally. Due to such controllability, B-spline is suitable for local trajectory plan-
ning [30]. Moreover, the derivatives of a given B-spline are also B-spline [8]. Hence,
B-spline’s derivatives (e.g., velocity, acceleration, jerk) can be calculated considering corre-
sponding span [ti, ti + 1) for a given d + 1 consecutive control points
pi = [pi, pi+1, . . . , pi+d]

T ∈ Rd×3 and corresponding knot vector.

dc(q(t))
du

=
1

(∆t)
b1Mdvi

T , b1 = [0, 1, u, . . . , ud−1] ∈ Rd+1,

d2c(q(t))
d2u

=
1

(∆t2)
b2Mdvi

T , b2 = [0, 0, 1, u, . . . , ud−2] ∈ Rd+1.
(31)

The explicit form of estimation of velocity and acceleration of a given time index is
calculated as follows:

dc(q(t))
du

= d · pc(i + 1)− pc(i)
pk(i + d + 1)− pk(i + 1)

,

d2c(q(t))
d2u

=

(d2 − d) · (pc(i + 2)− pc(i + 1)
pk(i + d + 2)− pk(i + 2)

− pc(i + 1)− pc(i)
pk(i + d + 1)− pk(i + 1)

).

(32)

In most of the situations, initial control points are generated, as explained in Section 3.
Such methods may or may not be smooth enough for initial trajectory generation. There are
various ways to generate intermediate waypoints to improve the quality of the trajectory
using B-splines. For example, the initial trajectory was constructed using cubic B-Spline
in [62]. Such a capability is mainly due to B-spline’s properties.

It is particularly continuity and convex-hall properties that make B-spline trajectory
generation such a robust technique.

4.7.1. Convex Hull Property

Among the properties of the B-spline, the convex hull property is the most significant
property due to its capabilities for checking the dynamical feasibility and the collision. How
convex hull property is incorporated for calculating dynamical feasibility is given in (32).
As shown in Figure 3, dh > 0 and dh > dc − rh should be held for a considered point in
the trajectory to ensure a collision-free trajectory, where dc is the distance between a given
control point and its closest obstacle position. In dth-order B-spline, a convex hull is formed
by connecting any successive d + 1 control points, e.g., pi, pi+1, pi+2, . . . , pi+d or union of
all consecutive control points that lie on the corresponding B-spline curve [69]. Moreover,
rh can be substituted with di,i+1 + di+1,i+2 + di+2,i+3 since rh ≤ di,i+1 + di+1,i+2 + di+2,i+3,
dh > dc− (di,i+1 + di+1,i+2 + di+2,i+3), where di,i+1 = ‖pi+1 − pi‖, di+1,i+2 = ‖pi+2 − pi+1‖
and di+2,i+3 = ‖pi+4 − pi+3‖. As mentioned in [19], the following condition should hold
for collision-free trajectory planning:

di,i+1 <
dc

3
, dc > 0, i ∈ {1, 2, 3}. (33)

Remote Sens. 2023, 15, 5237 15 of 37

Figure 3. Showing the B-spline convex-hull property. Convex hull, which comprises consecutive
control points, e.g., pi, pi+1, pi+2 and pi+3, always belongs to obstacle-free space if the preceding
control points satisfy the inequality (33).

4.7.2. Continuity

B-spline-based trajectory generation offers several advantages over piece-wise-based
trajectory generation [35,37]. In piece-wise-based trajectory generation, the boundary
constraints must be explicitly satisfied to ensure continuity. The smoothness of the trajectory
depends solely on how the control points are formed. In contrast, B-spline-based trajectory
generation can neglect boundary constraints because the entire trajectory can be treated as
one segment. Moreover, as explained in Section 4.7.1, B-spline-based trajectories can be
controlled locally without affecting the rest of the trajectory.

4.8. Bernstein Piece-Wise Trajectory Generation

Bernstein polynomial is a specific form of B-spline, which is similar to the Bezier
curve [79,80]. Bernstein polynomial can be described as follows:

Γj(t) = λ0
j p0

d(t) + λ1
j p1

d(t) + · · ·+ λd
j pd

d(t) = Σd
i=0λi

j p
i
d(t),

pi
d(t) =

(
d
i

)
· ti · (1− t)d−i,

(34)

where d is the degree of the polynomial (Figure 4), λ0
j , λ1

j , . . . , λd
j are the control points of

jth polynomial segment, and t ∈ [0, 1]. Since Bezier is a particular form of the B-spline
curve, such curves hold convex hull property. Hence, given a sequence of control points, a
constrained convex hull can be defined using the control points that are considered. Both
the beginning and end of the curve are determined by the first and the last control points,
respectively. Furthermore, the derivative of Bezier is also a Bezier curve.

Γµ(t) =

s1 · Σd
i=0λi

1,µ pi
d(

t−t0
s1

) t0 ≤ t < t1

s2 · Σd
i=0λi

2,µ pi
d(

t−t1
s2

) t1 ≤ t < t2
...

sm · Σd
i=0λi

md ,µ pi
d(

t−tmd−1
smd

) tmd−1 ≤ t < tmd

, (35)

where i, j refer to ith control point in jth segment, i.e., λi
j, sj is a scaling factor of jth segment

for mapping time duration from [0 , 1] to [tj−1, tj] and µ ∈ {x, y, z}. Once Γµ(t) is obtained,
the objective is to minimize the total cost, which can be determined by taking the integral

Remote Sens. 2023, 15, 5237 16 of 37

of square error up to kr order as given in (15). Such a problem can be formulated as a QP
constraint problem. For instance, Gao and Wu [26] proposed a Bernstein-based trajectory
optimization approach in which three types of constraints piece-wise trajectory continuity,
safety constraints which are based on convex hull property, and dynamical feasibility
constraints enforced [26].

Figure 4. Trajectory generation using uniform B-spline. The smoothness of the curve is dependent
on the degree of the B-spline. The trajectory passes precisely through the given control points at the
degree equal to 1, as depicted in light blue color. The smoothness of the trajectory increases with the
order of the B-spline.

4.9. Comparison of Several Trajectory Techniques

In the preceding subsections, several types of trajectory parameterization techniques
were considered. We have selected three different types of trajectory parameterization
techniques for this comparison: piece-wise-polynomials technique, fitting based on a
sequence of points, and the third is uniform B-spline-based technique. The objective of piece-
wise-polynomials is to find optimal polynomial coefficients [53] or end-derivatives [35] of
consecutive segments, whereas the objective of the third technique is to find a set of points
satisfying the provided constraints [57]. A comparison of how velocity, acceleration, jerk,
and snap are varied for selected techniques in terms of mean, standard deviation (std),
min, and max for the same a set of control points and knot vector is present below. The
considered knot vector and control points are:

pctrl = [[0.011,−0.0329, 2.017], [1.867, 3.408, 1.6], [7.514, 5.715, 3.735],

[8.410, 0.911, 1.600], [6.902,−5.531, 4.306], [1.899,−6.680, 3.082],

[−2.302,−0.611, 5.375]]

pknot = [0.0, 5.0, 12.0, 18.0, 26.0, 31.0, 40].

(36)

Each approach has its own set of parameters to fine-tune for obtaining an optimal
trajectory. The generated trajectories are shown in Figure 5 with different configuration
setups (with different parameter sets). Figure 6 shows how the derivatives up to the fourth
change over time in each direction, i.e., x, y, z, separately for each technique. When looking
at the derivatives of each method, it is clear that smoothness, which is the main point to be
considered for motion planning, is higher in both B-spline and minimum-snap compared
to CHOMP. Since uniform B-spline is used in this comparison, smoothness changes of each
derivative between B-spline and minimum-snap cannot be compared directly due to time
allocation when generating the trajectories. Hence, minimum-snap trajectory smoothness

Remote Sens. 2023, 15, 5237 17 of 37

can be changed, optimizing the time allocation process [35]. On the contrary, such a time
allocation process is not necessary for a uniform B-spline. However, control points are
interpolated appropriately to generate a continuous and smooth trajectory.

Figure 5. Generated trajectories using three different approaches for a given sequence of control
points and knot vector (36).

Figure 6. Changes of position, velocity, acceleration, jerk, and snap profiles over time for the provided
control points sequence and knot vector (36).

We varied the parameters for each approach appropriately and estimated the mean,
standard deviation, maximum, and minimum of the velocity, acceleration, jerk, and snap
profiles. The results are shown in Table 1. The results clearly show that the consistency of
the trajectory depends on the parameters used to parameterize the trajectory. Therefore,
selecting the appropriate parameter set for a given task is of utmost importance, as can
be seen by looking at the statistical properties (mean, standard deviation, minimum,
and maximum) of the higher-order derivatives, such as velocity, acceleration, jerk, and
snap. As described in the previous paragraph, the time allocation process directly affects
the parameter selection for minimum-snap. Further, the optimal polynomial coefficients
process depends on time allocation, as given in (13). On the other hand, the Poly-traj [35]
generation process has fewer parameters to be optimized, since it uses free-end derivatives
of each segment. Hence, the latter technique is faster than minimum-snap.

Remote Sens. 2023, 15, 5237 18 of 37

Table 1. Velocity, acceleration, jerk, and snap profile for generating an optimal trajectory for a given
set of knot vector and control points (Figure 6) using three different techniques: minimum-snap [53],
Poly-traj [35], and CHOMP [57].

Type
Velocity Acceleration

Mean Std Min Max Mean Std Min Max

Poly-traj, d: 8, mc: 2 0.0058 1.0154 −1.4545 3.9179 0.0056 0.9051 −2.835 3.6449

Poly-traj, d: 8, mc: 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Poly-traj, d: 6, mc: 4 0.006 1.0708 −1.7716 3.7864 0.0043 0.9307 −2.7987 3.6032

Poly-traj, d: 8, mc: 4 0.0059 1.0299 −1.4728 3.934 0.0053 0.9131 −2.9157 3.5214

Poly-traj, d: 10, mc: 4 0.0058 1.0057 −1.4428 3.9213 0.0052 0.8918 −2.7541 3.631

Minimum-snap, d: 8,
mc: 2 0.1258 1.2154 −1.4345 3.1259 0.0676 0.1259 −2.2874 3.3278

Minimum-snap, d: 8,
mc: 6 0.0045 0.0094 −0.07 0.019 0.09 0.0097 −0.0098 0.0014

Minimum-snap, d: 6,
mc: 4 0.0689 1.0009 −1.3416 3.2388 0.0012 0.4584 −2.3189 3.2185

Minimum-snap, d: 8,
mc: 4 0.0015 1.0412 −1.3215 3.7543 0.0075 0.8763 −2.5487 3.3215

Minimum-snap, d: 10,
mc: 4 0.0036 1.0006 −1.3428 3.7832 0.0099 0.4378 −2.4548 3.4893

CHOMP, pd: 3 0.0068 0.6421 −0.9522 1.7255 0.0045 0.3876 −1.131 1.476

CHOMP, pd: 5 0.0065 0.644 −0.9634 1.7161 0.0044 0.3909 −1.1082 1.4418

CHOMP, pd: 7 0.0064 0.6443 −0.966 1.7105 0.0043 0.3916 −1.0951 1.4205

Type
Jerk Snap

mean std min max mean std min max

Poly-traj, d: 8, mc: 2 0.007 1.2544 −4.8056 3.9318 −0.0151 2.3178 −9.8029 6.9483

Poly-traj, d: 8, mc: 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Poly-traj, d: 6, mc: 4 0.0117 1.568 −5.5746 5.7423 −0.1288 3.5271 −13.4562 10.2578

Poly-traj, d: 8, mc: 4 −0.0021 1.2562 −4.7192 3.7562 0.0131 1.9593 −7.7131 6.0049

Poly-traj, d: 10, mc: 4 0.0074 1.3399 −5.5769 4.409 −0.0504 3.1073 −12.3429 9.9933

Minimum-snap, d: 8,
mc: 2 0.0006 1.1125 −4.3413 3.5153 −0.0042 2.1383 −9.0056 6.3418

Minimum-snap, d: 8,
mc: 6 0.0005 0.0004 −0.0007 0.0089 0.0005 0.004 −0.0008 0.0009

Minimum-snap, d: 6,
mc: 4 0.01 1.3456 −5.2167 5.321 −0.0093 3.214 −12.5124 9.2134

Minimum-snap, d: 8,
mc: 4 −0.001 1.1321 −3.7192 3.3217 0.0093 1.2145 −5.6527 4.7854

Minimum-snap, d: 10,
mc: 4 0.0009 1.2145 −3.9987 3.9983 −0.0067 2.8731 −10.7653 8.8416

CHOMP, pd: 3 0.0021 0.3643 −1.2594 1.1584 −0.0014 0.4239 −1.8326 1.5425

CHOMP, pd: 5 0.0023 0.3628 −1.2553 1.1639 0.0005 0.4241 −1.8526 1.6243

CHOMP, pd: 7 0.0022 0.3614 −1.2732 1.1769 0.0021 0.4247 −1.7462 1.5906

d: order of the polynomial, mc: maximum continuity or maximum continuity order in between consecutive
segments, pd: number of proposed points or point density per defined time duration of the trajectory.

5. Free Space Extraction

Obstacle region identification is of utmost importance for optimal trajectory planning
in real time. In a cluttered environment, the way the trajectory planning problem formulated
matters for fast reaction. Such trajectory planning approaches can be designed as QP mainly
due to less computation power required for such tasks. Hence, forming obstacle-free
regions in the form of convex has more advantages in terms of reducing the computation
power, simplicity, and fast convergence. Chen [74] attempted to define free space as a
series of cubes between the start and goal pose. Thenceforth, OctoMap [81] was used
for constructing the map surrounding the quadrotor, where regions with no obstacles are
considered free spaces. After obtaining the free space information, obstacle constraints are
enforced into (15) to generate optimal trajectory.

Remote Sens. 2023, 15, 5237 19 of 37

Let C = [cm
1 , cm

2 , . . .] be a set of consecutive grids within the OctoMap and correspond-

ing free space regions be C f ree = [c f
1 , c f

2 , . . .]. Both cm
i and c f

i were defined as cubes, each of
which is described by:

cm
i = [cm

ix0
, cm

iy0
, cm

iz0︸ ︷︷ ︸
li
m

, cm
ix1

, cm
iy1

, cm
iz1︸ ︷︷ ︸

ui
m

], c f
i = [c f

ix0
, c f

iy0
, c f

iz0︸ ︷︷ ︸
li

f

, c f
ix1

, c f
iy1

, c f
iz1︸ ︷︷ ︸

ui
f

].
(37)

Once C f ree was obtained, free space regions can be considered as a set of inequality
constraints that can be added into the piece-wise-polynomials trajectory generation as
li

f ≤ ΓT(ti) ≤ ui
f , where i = 1, . . . , md − 1 and ΓT was defined in (13). In such a trajectory,

additional boundary constraints should be introduced if the extrema of dth-order poly-
nomial violates the boundary constraints corresponding to each axis, i.e., x, y, and z, in
each segment [74] (Equation (10)). Similar to the preceding approach, Gao and Shen [82]
proposed a sequence of spheres to represent free space from the initial position to the
final position. To construct the environment, a map was not built; instead, they bypassed
map building by constructing a KD-tree-based placeholder [83] to store raw point cloud
for the LiDAR. Afterwards, a relative map to the current pose of the MAV was retrieved
using nearest neighbour search; RRG [84] combined with A* was used to find a flight
corridor or intermediate waypoints. Such intermediate waypoints were connected by
overlapping spheres.

IRIS [40] is one of the first successful ideas in which obstacle-free spaces are extracted
using a convex optimization technique. In this proposed approach, initially, it is required to
provide a seeking point and an area with a boundary box where an obstacle-free region is to
be searched. Seeking point is defined as a unit ball: ε(C, p0) = {p = Cp̃ + p0 | ‖p̃‖2 ≤ 1},
where p0 is the center point. The linear constraints, which separate the boundary box into
obstacle-free and obstacle-rich regions, are defined as a set of hyper-planes: P = {p | Ap ≤ b}.
Subsequently, finding the optimal representation of ε(C, p0) and P with respect to given
obstacles, ıj, j = 1, . . . , N is solved as an iterative process (38):

min
C,p0,A,b

− log(detC)

s.t. AT
j pk ≥ bj ∀pk ∈ ıj, j = 1, . . . , N

sup
‖p̃‖

AT
i (Cp̃ + p0) ≤ bi ∀i = 1, . . . , N,

(38)

where Ai and bi correspond to ith row of A and b. The first constraint, i.e., AT
j pk ≥ bj, is

imposed to move the obstacle into one side of the plane, AT
j p = bj, whereas the second

constraint, i.e., sup
‖p̃‖

AT
i (Cp̃ + p0) ≤ bi, ensures the ellipsoid lies on the other side of the

plane. The researchers proposed to solve the (38) as a two-step process: searching, first, for
proper constraints (i.e., Ai and bi), and then the maximum volume that satisfies ellipsoid,
ensuring preceding constraints. In other words, they attempted to find hyperplanes that
separate obstacle regions and free regions. Conceptually, hyperplane separation is com-
pleted by finding planes that intersect with obstacle boundaries. Afterwards, the ellipsoid
is uniformly expanded until it intersects with obstacle boundaries. Let α be the scaling
factor which defines the expansion. Let εα = {Cp̃ + p0 | ‖p̃‖2 ≤ α} for α ≥ 1 be the
expanded ellipsoid. Hence, the optimal α∗ can be determined by:

α∗ = arg min
α

s.t. εα ∩ ıj 6= ∅.
(39)

After finding α∗, it is possible to define the optimal inscribed ellipsoid (ε∗), which is
the obstacle-free region [40] (Section 3.3) .

Remote Sens. 2023, 15, 5237 20 of 37

Sikang et al. [32] proposed a new approach, quite different from the aforemen-
tioned IRIS, for extracting obstacle-free regions as a convex set SFC (Figure 7). SFC searches
a set of overlapping polyhedra from the start pose to the goal pose. To obtain interme-
diate obstacle-free positions, the researchers utilized a graph search technique, namely
JPS [55]. The main reason for selecting JPS over sampling-based algorithms (e.g., RRT*
and PRM) or search-based techniques such as A* or Dijkstra is due to the nature of JPS;
it uses a uniform-cost grid map with uniform voxels. In general, sampling-based tech-
niques are not deterministic though probabilistically complete. Thus, there is no guarantee
about the duration of searching time. On the other hand, the computational time for
search-based methods is pretty high if the environment is cluttered. However, JPS has
a lower searching time compared to A* [32]. Let pc = p0, p1, . . . , pn be the intermediate
waypoints from start to goal pose and li =< pi, pi+1 > be the ith line segment, where
i = 1, . . . , n− 1. Each line segment constitutes convex polyhedra, namely, Ei. Along with
that, SFC can be expressed as SFC(P) = {Ei | i = 0, . . . , n− 1}. SFC has two steps: finding
Ei that fits the li and seeking a set of linear inequalities that are tangent to Ei. Let Ei be
εi(Ci, p0

i) = {p = Cip̃ + p0
i | ‖p̃‖2 ≤ 1}. In R3, Ci can be decomposed as RTSR, where R

gives the axis of rotation between considered line segment in between pi and pi+1). The
semi-axis of Ei is given by S = diag(a, b, c) as a diagonal matrix. p0

i is the center of li. The
objective of SFC is to find each pair Ei and pi

0, given the li and obstacles set (Obsi), which
touches the Ei.

Figure 7. Free space extraction using SFC. Once intermediate initial waypoints are defined, SFC
calculates free space along the path, which is constructed from the initial waypoints.

Initially, ellipsoids are spheres whose center poses are located as the midpoints of
li, i = 1, . . . , n− 1. Afterwards, semi-axes, except for the axis along pi+1 − pi, are shrunk
until the corresponding ellipsoid contains no obstacles. Let ε∗i (Ci, p0

i) be the ith ellipsoid
after applying the shrinking process. pj denotes the closest point that touches the ε∗i (Ci, p0

i),
where j = 1, . . . , m and m is the number of obstacles. Hence, corresponding half-space
Hj = {pj | aT

j pj < bj} is defined as a plane that is tangential to ε∗i (C, p0), where aj and bj
are determined by:

aj =
dεi
dp p=pj

= 2C−1
i C−T

i (pj − p0
i), bj = aT

j pj. (40)

Hence, the intersections of these m half spaces create a convex polyhedron
C = ∪m

j=0Hj = {p | ATp < b}. The same approach is applied to each line segment,
li in which we can generate each Ci. All in all, SFC(P) = {C | i = 0, . . . , n− 1} can be
constructed. A more descriptive formulation is given in [32] (Algorithm 1).

Remote Sens. 2023, 15, 5237 21 of 37

6. Continuous Trajectory Refinement

The objective function consists of several subobjective functions: for improving the
smoothness, for avoiding obstacles, and so forth. In this section, a precise explanation is
given on how to construct subobjective functions for each of the various occasions. First,
we examine the simplest case where only dynamic feasibility and obstacle avoidance con-
straints are taken into consideration. Let J be the objective function or performance index:

J(Γ) = ξsmooth Jsmooth(Γ) + ξobs Jobs(Γ). (41)

There are various formulations of how Jobs and Jsmooth are determined. In general,
Jsmooth can be expressed as:

Jsmooth(Γ) =
1
2

∫ 1

0

∥∥∥∥dΓ(t)
dt

∥∥∥∥2

dt. (42)

Eliminating unnecessary higher-order motion is the main objective of the Jsmooth. On
the other hand, Jobs encourages to generate or modify collision-free trajectory by trying to
push control points away from the obstacle zone if the trajectory is already in collisions or
penalizing parts of the trajectory that is close to the obstacles. Let B ⊂ Rd be the exterior
boundary of the MAV and c is the cost function of penalizing close-in obstacles with respect
to B. Along with that, Jobs can be formulated as follows:

Jobs(Γ) =
∫ 1

0

∫
u∈B

c(fc(Γ(t), p))
∥∥∥∥d fc(Γ(t), p)

dt

∥∥∥∥2

dpdt, (43)

where the function fc(Γ(t), p), which was proposed by Ratliff at al. [57], can be defined
as follows:

fc(Γ(t), p) =

−dis(Γ(t), p) + 1

2 δdis i f dis(Γ(t), p) < 0
1

2δdis
(dis(Γ(t), p)− δdis)

2 i f 0 < dis(Γ(t), p) ≤ δdis

0 otherwise
, (44)

where δdis denotes the distance from the boundary (B) of the quadrotor to a given obstacle
position. Before taking gradient at i, J(Γ) is linearized around i, J(Γ) ≈ J(Γi) + (Γ− Γi)

T5
J(Γi). Defining c and d is detailed in [57] (Equations (22)–(28)).

In [19], the cost of the trajectory was estimated based on the following formulation:

J(Γ) = ξobs Jobs(Γ) + ξsmooth Jsmooth(Γ) + ξso f t Jso f t(Γ), Jso f t(Γ) = Jv(Γ) + Ja(Γ), (45)

where Jso f t(Γ) is determined by soft limits on acceleration and velocity. Jsmooth(Γ) is defined
by considering only geometric information without minimizing snap and/or jerk [53]. Such
minimization is required because of the following stages of trajectory optimization. In such
trajectory optimization, time reallocation has less impact on the objective function. Hence,
Jsmooth(Γ) is defined as follows:

Jsmooth(Γ) = Σn+1−d
i=d−1

∥∥∥∥∥∥∥pi+1 − pi︸ ︷︷ ︸
fi+1,i

+ pi−1 − pi︸ ︷︷ ︸
fi−1,i

∥∥∥∥∥∥∥
2

, (46)

where a number of control points, denoted n, and fi+1,i and fi−1,i can be interpreted as
connecting joint force of two springs between control points pairs: (pi+1, pi) and (pi−1, pi),
for example, control points lie on a straight line if the sum of all terms equals zero. As an
aside, similar approaches were proposed in [85,86].

The value of Jobs(Γ) is determined by calculating the distance to the closest object pose
from each control point, in which the distance to the obstacle, i.e., fc(pi), is given by:

Remote Sens. 2023, 15, 5237 22 of 37

fc(pi) =

{
(dis(pi)− δ)2 dis(pi) ≤ δdis

0 dis(pi) > δdis
, (47)

where δdis is the free distance between MAV’s center and the pose of the closest obstacle.
Hence, Jobs(Γ) = Σn

i=d fc(pi) can be estimated based on a given trajectory in the form of
control points. Soft constraints are defined by not exceeding both acceleration and velocity
within those max limits.

Jv(Γ) = ∑
µ

n−d

∑
i=d−1

fv(vi,µ), Ja(Γ) = ∑
µ

kd−d

∑
i=d−2

fa(ai,µ)

f (v) =

{
(v2

µ − v2
max)

2 v2
µ > v2

max
0 v2

µ ≤ v2
max

, f (a) =

{
(a2

µ − a2
max)

2 a2
µ > a2

max
0 a2

µ ≤ a2
max

.

(48)

To calculate acceleration and velocity at each control point and when both acceleration
and velocity exceed their maximum limits, the convex hull property (33) of B-spline is
utilized to penalize those control points. Based on the previous method, Ref. [30] proposed
an endpoint cost Jendpoint(Γ) into the objective function as an additional term. The key
intuition behind adding Jendpoint(Γ) is to reduce the error between local trajectory and
global trajectory since Jendpoint(Γ) penalizes error of both velocity and position with respect
to the desired global trajectory. Jendpoint(Γ) is determined as follows:

Jendpoint(Γ) = Jend(Γ) = ξ
p
end(p(tend)− pend)

2 + ξv
end(ṗ(tend)− ṗend)

2, (49)

where ξ
p
end and ξv

end are regularization parameters, whereas pend and ṗend are the desired
end position and velocity of the trajectory.

7. Receding Horizon Trajectory Planning

On most occasions, paths which are obtained by planning techniques are suboptimal.
Hence, the initial trajectory that is generated based on the initial path is to be refined,
ensuring dynamic feasibility for controlling the MAV. Various approaches can be applied for
trajectory refinement. However, enabling recursive feasibility and incorporating terminal
constraints and convergence to the desired state are the utmost importance considerations
to be contemplated throughout the process. LQR and MPC are the two most popular
approaches that are being used for receding horizon planning. LQR is applied for linear
systems, whereas iLQR and differential dynamic programming (DDP) are applied for
nonlinear system. Both in LQR or iLQR, OCP is defined as an open-loop control problem.
On the other hand, MPC is designed as a close-loop OCP. In other words, OCP is seeking
actions knowing the behavior of the surrounding environment.

7.1. LQR-Based Trajectory Generation

DDP [87,88] is one of the first techniques proposed for solving optimal control prob-
lems. Let xk+1 = fd(xk, uk) be the discrete-time system dynamics; the total cost of the
trajectory can be formulated for a given control policy, i.e., πk+i, for all i = {0, 1, . . . , N− 1}.

N−1

∑
i=0

c(xk+i, uk+i) + cgoal(xk+N). (50)

The optimal control input, i.e., uk+i = πk+i(xk+i), for a given time index, i.e., i + k, can
be obtained by minimizing the (50). Thus, cost (cost-to-go), which was proposed in [89], is
fully determined by:

Vk+i(xk+i) = min
uk+i

(c(xk+i, uk+i) + Vk+1(fd(xk+i, uk+i)). (51)

The same procedure can be applied recursively in a backward direction for seeking
the optimal πk+i(xk+i) = arg minuk+i

(c(xk+i, uk+i) + Vk+i(fd(xk+i, uk+i))). DDP yields
almost the same behavior: first estimate optimal control and then apply a forward pass
to determine the updated nominal trajectory. Consequently, LQR is a simplified version

Remote Sens. 2023, 15, 5237 23 of 37

of DDP. LQR is one of the fundamental ways to obtain a closed-form solution for a given
optimal control problem under which system dynamics is assumed to be linear. Let us
assume the system dynamics is defined as in (4). The intuition of LQR is to estimate the
optimal control sequence for maneuvering the quadrotor from an initial position to the
desired pose. Let N be the receding horizon whose optimal trajectory is to be determined.
The total cost, i.e., Jk(xk, πN), consists of three parts: initial, intermediate, and final costs,
where πN = {πk, πk+1, . . . , πk+i, . . . , πN−1}:

Jk(xk, πN) = cstart(xk) +
N−1

∑
i=0

c(xk+i, uk+i)dt + cend(xk+N), (52)

where ∂2Cstart(xk)
∂x∂x ≤ 0,

∂2Cgoal(xk+N)

∂x∂x ≤ 0, ∂2C

∂

[
x
u

]
∂

[
x
u

] ≤ 0, and ∂2C
∂u∂u ≤ 0 are positive semi-

definite Hessians to guarantee the minimizing of the total cost. The total cost can be
formulated in various ways. In LQR, the total cost is defined as Quadratic costs as follows:

cstart(xk) =
1
2

xT
k Qstartxk + xT

k qstart,

cgoal(xk+N) =
1
2

xT
k+NQgoalxk+N + xT

k+Nqgoal ,

c(xk+i, uk+i) =
1
2

xT
k+iQxk+i +

1
2

uT
k+iRuk+i + uT

k+iPxk+i + xT
k+i p

+uT
k+ir + ξ =

1
2

[
xk+i
uk+i

]T [Q PT

P R

]
︸ ︷︷ ︸

Jk

[
xk+1
uk+1

]
k+i

+

[
xk+1
uk+1

] [
p
r

]
︸︷︷︸

jk

+ξ,

(53)

where i ∈ {0, 1, . . . , N − 1}, Qstart ∈ Rnx×nx , Qgoal ∈ Rnx×nx , Q ∈ Rnx×nx , R ∈ Rnu×nu ,
P ∈ Rnu×nx , qstart ∈ Rnx , qgoal ∈ Rnx , p ∈ Rnx , r ∈ Rnu , and ξ ∈ R are predefined in which
Qstart, Qgoal , Q, and R are positive definite, whereas Jk ≥ 0 and jk ≥ 0 assumed to be
positive semi-definite. LQR problem (52) and (53) provides an optimal πN in close form
solution as expressed in (51); the cost-to-go function, i.e., (51), can be reformulated as an
explicit quadratic formulation as follows:

Vk+i(xk+i) =
1
2

[
xk+i
uk+i

]T

Jk+i

[
xk+i
uk+i

]
+

[
xk+i
uk+i

]T

jk+i + ξ. (54)

The estimation of both Jk+i and jk+i can be obtained in a recursive way starting from
the goal position xx+N to the initial position xk, using Riccati differential equation for all
i = {0, . . . , N − 1}.

Jk = Q + AT
k Jk+1 Ak−

(P + BT
k Jk+1 Ak)

T · (R + BT
k Jk+1Bk)

−1 · (P + BT
k Jk+1 Ak)

jk = p + AT
k jk+1 + AT

k Jk+1ck

−(P + BT
k Jk+1 Ak)

T · (R + BT
k Jk+1Bk)

−1
k · (r + BT

k jk+1 + BT
k Jk+1ck).

(55)

In general, system dynamics is described by:

xk+1 = fd(xk, uk) = Akxk + Bkuk. (56)

If the system dynamics is nonlinear, Ak and Bk are recalculated by linearizing the fc
at each time index. Since linearization has to be carried out in each iteration, it is called
the iLQR [90].

Ak =
∂fc

∂x
(xk, uk), Bk =

∂fc

∂u
(xk, uk). (57)

Remote Sens. 2023, 15, 5237 24 of 37

Boundary or goal position conditions are given by Sk+N = Qgoal , jk+N = qgoal . The
feedback control policy in LQR is fully determined as follows:

πk(xk) = −(R + BT
k Jk+1Bk)

−1 · (P + BT
k Jk+1 At)xk

−(R + BT
k Jk+1Bk)

−1 · (r + BT
k jk+1 + BT

k Jk+1Bk).
(58)

As given in (55), system stability depends on system dynamics. When quadrotor
dynamics is nonlinear, the stability of iLQR is not guaranteed. Jur and Berg [91] attempted to
address the stability issue by proposing a novel method called LQR smoothing; this method
can be applied for linear or nonlinear systems to acquire the minimum-cost trajectory. The
main difference in LQR smoothing compared to LQR is that LQR minimizes the cost of not
only backward direction, i.e., cost-to-go, but also applies forward direction, i.e., cost-to-
come [58,91,92]. However, the output of LQR, iLQR or LQR smoothing does not address
the system noise. Both linear or nonlinear state estimator may eliminate the system noise.
LQG [93,94] is one of the ways to solve this problem. LQG consists of a state estimator, i.e.,
Kalman filter (KF), and state feedback, i.e., iLQR or LQR.

7.2. MPC-Based Trajectory Generation

As detailed in Section 7.1, unaccountability of addressing sudden disturbances is the
main limitation of OCP techniques (e.g., LQR, DDP); this is due to its nature. LQR calculates
fixed receding control policy and applies it to the system; there is no intervention during
the control policy execution. MPC is one of the ways to address the preceding problem,
which is characteristic of both LQR and DDP. The difference between MPC and LQR is
that only the first portion of the control policy is applied to a system (Figure 8) in MPC
through the calculation of full control policy rather than employing full control policy as in
LQR. Let us assume the system dynamics as given in (2). In general, MPC can be formed
as follows:

min
w

Jend(xk+N , xre f
k+N) + Jk(x, u, xre f , ure f)

s.t. xk+1 = fd(xk, uk)

xmin ≤ xk+i ≤ xmax ∀0 ≤ i ≤ N

umin ≤ uk+i ≤ umax ∀0 ≤ i < N − 1

g1(w) = 0

g2(w) ≤ 0,

(59)

where w = uk, . . . , uk+N−1 is the optimal control sequence to be estimated in each iteration.
Variable Jend(xk+N) plays a significant role in terms of the stability of the system locally and
globally. Presenting local stability is relatively easy, e.g., Lyapunov’s analysis compared
to global stability. In addition to terminal cost, terminal constraints for states should be
enforced, which is quite computationally challenging for real-time applications. Moreover,
enforcing terminal constraints is even more difficult for nonlinear dynamics. Thus, in most
of the practical applications, terminal constraints are not enforced into the optimization
procedure. Furthermore, classical MPC lacks recursive feasibility. Several varieties of MPC
have been proposed to address processing issues to a certain extent. For a linear system,
the performance index, i.e., Jk(x, u, zre f , ure f), can be defined as follows:

Jk(x, u, zre f , ure f)

=
N−1

∑
i=0

((xk+i − xre f
k+i)

TQx(xk+i − xre f
k+i) + (uk+i − ure f

k+i)
T Ru(uk+i − ure f

k+i))

+(xk+N − xre f
k+N)

T P(xk+N − xre f
k+N),

(60)

where Qx, which is a positive semi-definite matrix, consists of the state error penalty
coefficients, whereas Ru should be positive definite and P is state error on the terminal cost.

Remote Sens. 2023, 15, 5237 25 of 37

In principle, stability and feasibility are not assured implicitly. Consequently, stability and
feasibility tend to improve for the longer receding horizon, which is quite challenging due
to computational demands.

Quadrotor dynamics are usually expressed in a nonlinear fashion. Therefore, LQR
or linear MPC cannot be applied without linear approximation. Hence, the nonlinear-
programming-based approach has to be applied. Direct multiple shooting and direct
collocation are the main two techniques that are used to transform OCP into nonlinear
programming (NLP). In both direct multiple shooting and direct collocation, the state
is minimized in addition to controlling inputs. Direct multiple shooting differs from
direct collocation due to the way of the problem formulation. In multiple shooting, the
problem is quantized into N subintervals, i.e., receding horizon length. In direct collocation,
however, those subintervals are further described by a set of polynomials such as B-spline
or Lagrangian; this will increase the problem sparsity. On the contrary, the number of
optimization parameters to be optimized has dramatically increased in direct collocation
compared to multiple shooting. This, collocation is better when it is accuracy-wise, but
direct multiple shooting is better when it is performance-wise. In [62], the trajectory tracking
problem is formulated based on direct collocation and multiple shooting. Furthermore,
the researchers have proven that multiple shooting has a lower computational footprint
compared to direct collocation.

Figure 8. The basic idea of MPC-based receding horizon planning. MPC-based receding horizon
planning predicts the optimal control policy u∗ at each iteration to minimize the given cost function J.

7.3. Disturbance Estimation

In the context of optimal trajectory planning, simultaneously computing optimal
control policy, which is required to respond to unknown, sudden disturbances, and han-
dling kinematics (i.e., obstacle avoidance) as well as dynamics (i.e., satisfying velocity and
acceleration constraints) yields a challenging problem, especially for quadrotors. While
geometry-based path planning techniques [95,96] ensure the asymptotical optimality of
a path, they however do not consider quadrotor dynamics. However, it is essential that
the generation of an optimal control policy ensures dynamic feasibility. Thus, in [97,98],
LQR was incorporated into path planning, by which both dynamic feasibility and local
optimality were guaranteed. However, local optimality does not necessarily yield global
optimality [99]. In [26,32], a set of motion primitives was used to find feasible trajectories
ensuring both global and local optimality. When dealing with unknown disturbances, MPC
is a more robust technique than LQR. In [32], MPC-based trajectory planning approach was
proposed, ensuring both the local and global optimality. However, none of the aforemen-
tioned approaches formally guarantees stability and safety. Lyapunov’s analysis can be
applied to confirm the local stability. Moreover, the terminal constraints set [100] can be
incorporated. However, those measures are time consuming, which directly affects the real-
time performance [101]. A set of CBFs was proposed for improving real-time performance
without affecting the system stability in [102–104]. Recently, reference governors-based tech-
niques were proposed in [105,106], enforcing safety constraints. It is natural that designing
a path planer is followed by the actual controller to maneuver MAV. In such approaches, a
reference governor can be used to handle the stability and constraint satisfaction separately
to ensure system stability [107].

Remote Sens. 2023, 15, 5237 26 of 37

The above approaches are employed to estimate optimal control policy for safe navi-
gation while imposing stability either using Lyapunov functions or reference governors.
On the other hand, Li et al. [108] proposed to obtain an optimal control policy using a
state-dependent distance metric (SDDM). They have modeled the system dynamics as a
linear, time-invariant as follows:

ẋ = Ax + Bu, (61)

where u indicates the control input. The system state, i.e., x := (p(t), y(t)), consists of
two parts: p and y, where p(t) denotes the quadrotor position at a given time t and y(t)
describes the higher-order terms, e.g., velocity, acceleration, etc. In the latter work, the
quadratic norm was utilized to represent the error between robot position and close-in
obstacles positions. The quadratic norm is defined as ‖p‖R :=

√
pT Rp, where R is a

symmetric positive matrix. R[ψz] is fully determined by the MAV heading direction ψz at a
given time instance as follows:

R[ψz] =

{
c2 I + (c1 − c2)

ψzψT
z

‖ψz‖2 , i f ψz 6= 0

c1 I, otherwise
, (62)

where both c1 and c2 are predefined scales such that c2 > c1 > 0; this process is called
the SDDM, trajectory will be bounded incorporating SDDM information. Since quadrotor
dynamics are linear, a reference governor [106] is introduced to maintain safety and stability.
Other than LQR and MPC, there exist several receding horizon-based techniques for optimal
trajectory planning, as given in Table 2.

Table 2. Comparison of the properties of receding horizon trajectory planning techniques. Checks
and cross marks indicate whether a feature is available or not.

Algorithm
Motion Model Gradient Estimator

Linear Nonlinear Hamiltonian Gradient

Differential
Dynamic Programming

(DDP) [109]
7 7

Linear Quadratic
Regulator (LQR) [110] 7 7 7

Iterative LQR
(iLQR) [111] 7 7

Linear Model Predictive
Control (MPC) [112] 7 7 7

Nonlinear Model
Predictive Control

(NMPC) [62]
7

Constrained Nonlinear
Model Predictive
Control CGMRES

(NMPC-CGMRES) [113]

7 7

Corridor-based Model
Predictive Contouring

Control (CMPCC) [114]
7 7 7

Constrained Nonlinear
Model Predictive
Control Newton

(NMPC-Newton) [115]

7 7 7

Model Preidictive Path
Integral Control

(MPPI) [116]
7 7

Cross Entropy Method
(CEM) [117] 7 7

Remote Sens. 2023, 15, 5237 27 of 37

8. Solving the Trajectory Planning Problem

As explained in the preceding sections, several constraints (e.g., soft and hard) are
imposed to ensure dynamic feasibility, smooth navigation, handling disturbances, etc.
Hence, optimal trajectory planning is posed as a constraint optimization problem in most
situations. Constraint-based optimization problems are solved in two different ways:
adding hard constraints or introducing soft constraints. In general, a constraint-based
optimization problem can be formulated as a quadruple, i.e., Pconstraint = (c, g1, g2, J),
where c stands for performance index or cost function, whereas equality and inequality
constraints are given by g1 and g2, respectively. The objective function is given by J. In
hard-constraint-based formulation, the optimal solution, i.e., w, for Pconstraint is calculated,
ensuring all the constraints. In soft constraints formulation, the objective function does not
need to satisfy all the constraints, but satisfying those constraints will improve the final
w. D. Mellinger and V. Kumar [53] took the lead in proposing a successful approach for
trajectory generation as a hard-constraint-based optimization approach, i.e., minimum-snap.
Subsequently, in [35], the researchers extended the minimum-snap trajectory generation as
an unconstrained or soft-constraint-based optimization problem.

When generating trajectories, ensuring a collision-free path is essential. Hence, rep-
resenting free space in a structured way and imposing obstacle constraints for trajectory
generation is a must for safety. Free space can be represented in different ways, such as
cubes [26,74], spheres [82,118], and polyhedrons [32]. The intuition of these approaches is
to apply path planning through the free space to obtain the intermediate waypoints. Once
intermediate waypoints are extracted, the trajectory generation procedure is utilized for
retrieving a smooth, feasible, and collision-free trajectory. On the other hand, in [21,25,26],
kinodynamic path planning followed by B-spline-based trajectory generation is considered.
Most of the works that were proposed for soft-constraint-based trajectory generation formu-
lated optimal trajectory planning as nonlinear optimization problems in which smoothness
and safety were introduced as soft constraints. Most of the time gradient-descent-based [50]
or gradient-free approaches [37,54] were applied for minimizing the cost of smoothness
and safety.

The constraints optimization problem can be designed in either QP or NLP form.
In QP, the procedure is to minimize or maximize the objective subject to a set of linear
constraints in most situations. On the other hand, nonquadratic programming is used to
handle the nonlinear constraints each of which has a unique nature to solve the problem.
In general, the QP objective can be described as:

min
x

1
2

xTQx + cTx

s.t. Ax � b,
(63)

where Ax � b stands for the set of linear inequalities and Q is a positive symmetric matrix.
There are various ways to solve QP, including interior point, active set, and gradient
projection. In some situations, multiple variables that are to be optimized are integer
values; those are solved as MIQP. For example, FASTER [119] used MIQP for safe trajectory
planning with aggressive controls [36].

Most of the recent optimal trajectory planning techniques [19,29,30,37] were formu-
lated as gradient-based trajectory optimization (GTO) in which optimization problem was
designed as a nonlinear form. The gradient descent is performed with respect to each
parametrization index of Γ to minimize the difference, i.e., Γi+1 − Γi. Hence, Γi+1 can be
determined by solving the following optimization problem, as given in [50,120].

Γi+1 = arg min
Γ

J(Γi) + (J(Γ)− J(Γi))
T 5 J(Γi) +

η

2
‖Γ− Γi‖2

M, (64)

where M is a weighting matrix and η is a regularization parameter. GTO is rather popular
due to its ability to deform ineffability trajectory segments, low memory requirement, and

Remote Sens. 2023, 15, 5237 28 of 37

high throughput. Despite having the listed advantages, GTO cannot avoid the problem of
a local minimum. STOMP [54] is one of the early techniques proposed to address the local
minimum problem. STOMP is based on the gradient-free technique. However, STOMP
is unable to obtain real-time performance. Besides STOMP, the local minimum problem
has been addressed by various recent works. However, this remains an open problem
to be solved. Zhou [121] proposed a method, i.e., path-guided optimization (PGO), for
overcoming local minima problems by generating topologically distinct paths and doing
parallel optimization. Furthermore, various solvers can be utilized for solving optimization
problems, including BOBYQA [122], L-BFGS [8,123], ACADO [124], SLSQP [125], Proximal
Operator Graph Solver (POGS) [126,127], sequential quadratic programming (SQP), and
MMA [128]. Shravan et al. [65] proposed a trajectory optimization technique in a distributed
setup in which the researchers evaluated their formulation with several solvers. According
to their observations, BOBYQA is faster compared to BFGS and SLSQP, while MMA yielded
a similar performance to that of BOBYQA. In [129], L-BFGS was proposed for finding the
shortest path in real-time; in this research effort, however, L-BFGS does not guarantee
optimality, and only feasibility is enforced. Mathematical program with complementarity
constraints (MPCC) [130] is yet another proposed method for fast trajectory optimization in
real-time. Moreover, Mathieu and Nicolas [131] proposed a SQP-based trajectory generation
approach for carrying augmented loads. The intuition behind selecting SQP over other
solvers is due to its superlinear convergency and ability to handle nonlinear constraints
within milliseconds.

9. Conclusions

All in all, we have thoroughly reviewed the trajectory planning problem in the
paradigm of plan-based control for multirotor aerial vehicles (MAVs). Such a trajectory
planning problem was broken down into a set of subproblems: free-space segmentation,
motion model selection, initial waypoints identification, initial trajectory generation, con-
tinuous trajectory refinement, and receding horizon trajectory planning. Afterwards, for
each subproblem, we examined how previous research has addressed those by presenting
and evaluating various approaches to the considered subproblem. Finally, several selected
recent approaches were listed (Table 3) according to the listed subproblems we have identi-
fied. Furthermore, Table 4 summarizes the key findings of the study, including features
and performance. With that, we concluded that the trajectory planning problem can be
designed by addressing those subproblems carefully for MAVs.

Remote Sens. 2023, 15, 5237 29 of 37

Table 3. The basic building blocks that are encountered in trajectory planning problems as described in the paper.

Approach
Dynamics Model

(Exact | Empirical Differential
Flatness (DF))

Intermediate Waypoint
Selection Initial Trajectory Generation Continuous Trajectory

Refinement and Solver Free Space Extraction Receding Horizon Planning or
Controlling

A replanner [121] DF Sampling-based topological
search PGO-based B-splines GTO ESDF -

A replanner [25] DF Kinodynamic-based search B-splines EO using QCQP ESDF -

A replanner [101] DF Kinodynamic-based search Linear quadratic minimum
time Unconstrained QP [132] RHC

A local replanner [37] DF Informed-RRT* Continuous time polynomial BFGS ESDF -

Teach-repeat-replan [14] DF - Minimum-jerk Elastic band optimization Convex Cluster -

Fast planner [19] DF A* kinodynamic search B-splines NLopt [133] ESDF GTC

Areplanner [21] DF B-spline kinodynamic search EO ~QCQP TSDF -

Chomp [50] DF - CHOMP Functional gradient [120] ESDF CHOMP

EGO-Planner [134] DF A* Uniform B-spline T-NEWTON [135] ESDF -

A replanner [26] DF Fast marching-based search Bernstein polynomial Mosek [136] TSDF -

A safe trajectory generator [82] DF RRG combined with A* Piece-wise polynomials QCQP KD-tree GTC

ILQR [91] Exact line search Iterated LQR Smoothing Iterated LQR Smoothing - -

Monocular visual-inertial
fusion [28] Exact A* VINS Gradient-based TSDF GTC

A replanner [78] DF RRT* Uniform-Bspline MMA and BFGS OctoMap GTC

Safe flight corridors [32] DF JPS Minimum-span Constrained QP SFC RHC

SDDM [108] Empirical Piece-wise-linear path SDDM SDDM Constrained QP -

Faster [119] DF JPS Cubic Bézier curve MIQP using Gurobi [137] SFC -

CMPCC [114] Empirical - CMPCC OSQP [138] SFC RHC

Relative trajectory tracking
control [61] Empirical - NMPC ACADO [124] - MHE

A trajectory tracker [139] Empirical - NMPC SQP - RHC

A replanner [74] DF A* Multi-segment polynomial OOQP [140] OctoMap GTC

A replanner [35] Exact RRT* Minimum-span Unconstrained QP OctoMap GTC

MADER [141] DF MINVO basis [142] Uniform B-spline Augmented Lagrangian [143] Outer polyhedral -

SOS programming [41] DF Piece-wise linear path Piece-wise-polynomial MIQP using Mosek IRIS -

A replanner [144] DF Nonuniform kinodynamic
search Uniform B-spline Constrained QP ESDF RHC

A trajectory tracker [62] Empirical Uniform B-spline NMPC CasADi [145] with Ipopt [146] ESDF PID

Remote Sens. 2023, 15, 5237 30 of 37

Table 4. The comparison of contrasts features and performance of selected different approaches for trajectory planning.

Approach Specific Features Performance Indicates

A replanner [121] A path-guided optimization (PGO) approach to address infeasible local minima problems, not limited to a specific use Computation time (≈15 ms), perform aggressive maneuvers

A replanner [25] A dynamically feasible time parameterized trajectory generation to overcome the limitation of the greedy search, not limited to a specific
use Computation time (≈30 ms), limited maneuvering capabilities

A replanner [101] Searches for smooth, minimum-time trajectories using a set of short-duration motion primitives, not limited to a specific use Computation time (≈15 ms), limited maneuvering capabilities

Teach-repeat-replan [14] Generate safe local trajectories (smooth, safe, and kinodynamically feasible) to avoid moving obstacles, infrastructure inspection, aerial
transportation, and search-and-rescue Computation time (≈15 ms), perform aggressive maneuvers

Fast planner [19] Kinodynamic feasible and minimum-time trajectory generation in the discretized control space, not limited to a specific use Computation time (≈5 ms), perform aggressive maneuvers

EGO-Planner [134] A Euclidean signed distance field (ESDF)-free gradient-based planner, not limited to a specific use Computation time (≈2 ms), extreme maneuvering capabilities

ILQR [91] LQR smoothing to compute a locally optimal feedback control policy, can work with nonlinear dynamics and nonquadratic cost, limited
to a specific use Computation time (≈3 s), limited maneuvering capabilities

Monocular visual-inertial fusion [28] A monocular visual-inertial navigation system (VINS), consisting only an inertial measurement unit (IMU) and a camera. VINS supports
self-extrinsic calibration Computation time (≈30 ms), limited maneuvering capabilities

Safe flight corridors (SFC) [32] The SFC is a set of overlapping convex polyhedra that represent free space and provide a connected path for the robot to reach its goal. Computation time (≈100 ms), extreme maneuvering capabilities

SDDM [108] A control policy for MAVs systems that uses ellipsoidal trajectory bounds defined by a quadratic state-dependent distance metric. SDDM
behavior is adapted to the geometry of the local environment. Computation time (≈100 ms), limited maneuvering capabilities

FASTER [119] FASTER guarantees safety without compromising speed by having a safe backup trajectory, and MIQP is used to allocate trajectory
intervals Computation time (≈15 ms), extreme maneuvering capabilities

MADER [141] MADER uses the MINVO basis to generate trajectories through free space more effectively than Bernstein or B-Spline bases in
obstacle-dense environments. Computation time (≈10 ms), extreme maneuvering capabilities

SOS programming [41] A sums-of-squares (SOS) programming approach that ensures the entire piece-wise-polynomial trajectory is collision-free using convex
constraints. Computation time (≈60 ms), limited maneuvering capabilities

A trajectory tracker [62] Nonlinear model predictive control (NMPC) with multiple shooting is used to predict the optimal control policy at each iteration. Computation time (≈60 ms), limited maneuvering capabilities

Residual dynamics [147] A learning-based technique using Sparse Gaussian Process Regression is proposed to reduce the residual dynamics between high-level
planning and low-level controlling Computation time (≈20 ms), extreme maneuvering capabilities

A replanner [8] A continuous optimization-based method for refining the reference trajectory to move it out of obstacle-occupied space in the global
phase. Computation time (≈15 ms), extreme maneuvering capabilities

Remote Sens. 2023, 15, 5237 31 of 37

Our hypothesis was to investigate trajectory planning for multirotor aerial vehicles
(MAVs) in the plan-based control paradigm, focusing on analytical approaches rather than
fully learnable approaches, such as machine learning and deep learning. In future work, we
plan to investigate other types of trajectory planning approaches, such as those based on
imitation learning and inverse reinforcement learning. We also plan to conduct simulated
and real-world experiments to compare the performance of the considered approaches in
various conditions, such as high-dense and less-dense environments, and with static and
dynamic obstacles. These considerations were not included in this work, as we focused on
the theoretical aspects of trajectory planning.

Author Contributions: G.K. proposed the structure of the paper and carried out a comprehensive
review in the field of motion planning targeting multirotor aerial vehicles. G.K. wrote the manuscript
in consultation with A.K. A.K. made a critical reviewing the manuscript and final approval for
publication. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

OCP Optimal Control Problem
OCPs Optimal Control Problems
MHE Model Horizon Estimation
NMPC Nonlinear Model Predictive Control
LQR Linear Quadratic Regulator
iLQR Iterative Linear Quadratic Regulator
MPC Model Predictive Control
DDP Differential Dynamic Programming
NLP Nonlinear Programming
QP Quadratic Programming
MIQP Mixed Integer Quadratic Programming
CBFs Control Barrier Functions
SDDM State-dependent Distance Metric
CMPCC Corridor-based Model Predictive Contouring Control
RRG Rapidly-exploring Random Graph
IRIS Iterative Regional Inflation by Semi-definite Programming
SFC Safe Flight Corridor
JPS Jump Point Search
GTO Gradient-based Trajectory Optimization
SQP Sequential Quadratic Programming
MPCC Mathematical Program with Complementarity Constraints
ESDF Euclidean Signed Distance Field
PGO Path-guided Optimization
LTI Linear Time Invariant
TOPP Time-Optimal Parameterization of a given Path
CHOMP Covariant Hamiltonian Optimization for Motion Planning
MAVs Multirotor Aerial Vehicles
MAV Multirotor Aerial Vehicle
UAVs Unmanned Aerial Vehicles
UAV Unmanned Aerial Vehicle
LQG Linear Quadratic Gaussian
KF Kalman Filter
EO Elastic Optimization
QCQP Quadratically Constrained Quadratic Programming
RHC Receding Horizon Control
BFGS Broyden–Fletcher–Goldfarb–Shanno
TSDF Truncated Signed Distance Field

Remote Sens. 2023, 15, 5237 32 of 37

PRM Probabilistic Road Map
GTC Geometric Tracking Control
DoF Degree of Freedom

Symbols

x State vector and its derivative is denoted as ẋ. Term x+ depicts the next state given the current state x,
and term xk denotes discrete state at time t equals k

u Control input. The term u∗ denoted as the optimal control inputs

p Position (m) in R3 and its derivative is denoted as ṗ. p∗ , ∗ ∈ x, y, z, stands for position alone *
component

p dth-order polynomial, which is a function of time. Term ṗ(t), p̈(t) (or p(t)(1) , p(t)(2)) denote the higher
order derivatives of p(t)

λ
Polynomial coefficients, e.g., p(t) = λdtd + . . . + λ1t + λ0, t ∈ [0, dt], where d is the order of the
polynomial

v Velocity (m/s) in R3 and its derivative is denoted as v̇. v∗ , ∗ ∈ x, y, z, stands for velocity alone *
component

ω Angular velocity (rad/s) in R3 and its derivative is denoted as ω̇ωω

ψ
Orientation is represented as quaternion in R3 and its derivative is denoted as ψ̇ψψ. ψψψ∗ , ∗ ∈ x, y, z, stands
for orientation alone * component

f = [f1, f2, f3, f4]T System input or total trust that is applied for each of the motors in N (Newton)
fd Discrete system dynamics
fc Continuous system dynamics
δ Euler or Runge Kutta discretization time step
z System output
(q) Apices (q) stipulates the qth derivative, for example z(q)

C Configuration space that can be one of these: C f ree , Cobs , Cunknown , and Cunknown
d Order of polynomial

Γ Initial trajectory; the optimal trajectory is defined as Γ∗ , trajectory derivatives are defined as Γ̇ and Γ̈,
and trajectory is a function of time, i.e., ΓT(t)

ξ Regularization parameter
c Formulation of cost function, where c(·), · denotes the inputs
A H representation of polytope, i.e, AT p = b
w The optimal estimation for states and/or controls after minimizing given cost function
g Equality constraints are denoted by g1(w), whereas inequality constraints are denoted by g2(w)

References
1. Pixhawk 4. 2022. Available online: https://dev.px4.io/v1.9.0 (accessed on 29 January 2022).
2. DJI. 2022. Available online: https://www.dji.com/ (accessed on 29 January 2022).
3. Singh, B.K.; Kumar, A. Attitude and position control with minimum snap trajectory planning for quadrotor UAV. Int. J. Dyn.

Control 2023, 11, 2342–2353. [CrossRef]
4. Ding, C.; Hu, J.; Zhao, C.; Pan, Q. An Efficient Trajectory Planning Algorithm for High-Speed Quadrotor in Large-Scale and

Cluttered Environments. In Proceedings of the 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022),
Xi’an, China, 23–25 September 2022; Springer: Singapore, 2023; pp. 1339–1348.

5. Mao, K.; Welde, J.; Hsieh, M.A.; Kumar, V. Trajectory Planning for the Bidirectional Quadrotor as a Differentially Flat Hybrid
System. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2
June 2023; pp. 1242–1248.

6. Park, J.; Jang, I.; Kim, H.J. Decentralized Deadlock-free Trajectory Planning for Quadrotor Swarm in Obstacle-rich Environments.
In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023;
pp. 1428–1434.

7. Romero, A.; Penicka, R.; Scaramuzza, D. Time-Optimal Online Replanning for Agile Quadrotor Flight. arXiv 2022,
arXiv:2203.09839.

8. Kulathunga, G.; Hamed, H.; Devitt, D.; Klimchik, A. Optimization-Based Trajectory Tracking Approach for Multi-Rotor Aerial
Vehicles in Unknown Environments. IEEE Robot. Autom. Lett. 2022, 7, 4598–4605. [CrossRef]

9. Wang, Z.; Zhou, X.; Xu, C.; Gao, F. Geometrically constrained trajectory optimization for multicopters. IEEE Trans. Robot. 2022,
38, 3259–3278. [CrossRef]

10. Upadhyay, S.; Richardson, T.; Richards, A. Generation of Dynamically Feasible Window Traversing Quadrotor Trajectories Using
Logistic Curve. J. Intell. Robot. Syst. 2022, 105, 16. [CrossRef]

11. Torrente, G.; Kaufmann, E.; Foehn, P.; Scaramuzza, D. Data-Driven MPC for Quadrotors. IEEE Robot. Autom. Lett. 2021,
6, 3769–3776. [CrossRef]

12. Tang, L.; Wang, H.; Liu, Z.; Wang, Y. A real-time quadrotor trajectory planning framework based on B-spline and nonuniform
kinodynamic search. J. Field Robot. 2021, 38, 452–475. [CrossRef]

13. Heidari, H.; Saska, M. Trajectory planning of quadrotor systems for various objective functions. Robotica 2021, 39, 137–152.
[CrossRef]

14. Gao, F.; Wang, L.; Zhou, B.; Zhou, X.; Pan, J.; Shen, S. Teach-repeat-replan: A complete and robust system for aggressive flight in
complex environments. IEEE Trans. Robot. 2020, 36, 1526–1545. [CrossRef]

15. Lee, T.; Leok, M.; McClamroch, N.H. Geometric tracking control of a quadrotor UAV on SE (3). In Proceedings of the 49th IEEE
Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 5420–5425.

https://dev.px4.io/v1.9.0
https://www.dji.com/
http://doi.org/10.1007/s40435-022-01111-3
http://doi.org/10.1109/LRA.2022.3151157
http://doi.org/10.1109/TRO.2022.3160022
http://doi.org/10.1007/s10846-022-01574-8
http://doi.org/10.1109/LRA.2021.3061307
http://doi.org/10.1002/rob.21997
http://doi.org/10.1017/S0263574720000247
http://doi.org/10.1109/TRO.2020.2993215

Remote Sens. 2023, 15, 5237 33 of 37

16. Zhong, X.; Wu, Y.; Wang, D.; Wang, Q.; Xu, C.; Gao, F. Generating Large Convex Polytopes Directly on Point Clouds. arXiv 2020,
arXiv:2010.08744.

17. Zinage, V.; Arul, S.H.; Manocha, D. 3D-OGSE: Online Smooth Trajectory Generation for Quadrotors using Generalized Shape
Expansion in Unknown 3D Environments. arXiv 2020, arXiv:2005.13229.

18. Xi, L.; Peng, Z.; Jiao, L. Trajectory generation for quadrotor while tracking a moving target in cluttered environment. In
Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 6792–6797.

19. Zhou, B.; Gao, F.; Wang, L.; Liu, C.; Shen, S. Robust and efficient quadrotor trajectory generation for fast autonomous flight. IEEE
Robot. Autom. Lett. 2019, 4, 3529–3536. [CrossRef]

20. Han, L.; Gao, F.; Zhou, B.; Shen, S. Fiesta: Fast incremental euclidean distance fields for online motion planning of aerial robots.
arXiv 2019, arXiv:1903.02144.

21. Ding, W.; Gao, W.; Wang, K.; Shen, S. An efficient B-spline-based kinodynamic replanning framework for quadrotors. IEEE Trans.
Robot. 2019, 35, 1287–1306. [CrossRef]

22. Murali, V.; Spasojevic, I.; Guerra, W.; Karaman, S. Perception-aware trajectory generation for aggressive quadrotor flight using
differential flatness. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019;
pp. 3936–3943.

23. Abadi, A.; El Amraoui, A.; Mekki, H.; Ramdani, N. Optimal trajectory generation and robust flatness-based tracking control of
quadrotors. Optim. Control Appl. Methods 2019, 40, 728–749. [CrossRef]

24. Rousseau, G.; Maniu, C.S.; Tebbani, S.; Babel, M.; Martin, N. Minimum-time B-spline trajectories with corridor constraints.
Application to cinematographic quadrotor flight plans. Control Eng. Pract. 2019, 89, 190–203. [CrossRef]

25. Ding, W.; Gao, W.; Wang, K.; Shen, S. Trajectory replanning for quadrotors using kinodynamic search and elastic optimization. In
Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018;
pp. 7595–7602.

26. Gao, F.; Wu, W.; Lin, Y.; Shen, S. Online safe trajectory generation for quadrotors using fast marching method and bernstein basis
polynomial. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
21–25 May 2018; pp. 344–351.

27. Blochliger, F.; Fehr, M.; Dymczyk, M.; Schneider, T.; Siegwart, R. Topomap: Topological mapping and navigation based on visual
slam maps. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
21–25 May 2018; pp. 1–9.

28. Lin, Y.; Gao, F.; Qin, T.; Gao, W.; Liu, T.; Wu, W.; Yang, Z.; Shen, S. Autonomous aerial navigation using monocular visual-inertial
fusion. J. Field Robot. 2018, 35, 23–51. [CrossRef]

29. Gao, F.; Lin, Y.; Shen, S. Gradient-based online safe trajectory generation for quadrotor flight in complex environments. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 3681–3688.

30. Usenko, V.; von Stumberg, L.; Pangercic, A.; Cremers, D. Real-time trajectory replanning for MAVs using uniform B-splines and
a 3D circular buffer. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 215–222.

31. Ling, Y.; Shen, S. Building maps for autonomous navigation using sparse visual slam features. In Proceedings of the 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017;
pp. 1374–1381.

32. Liu, S.; Watterson, M.; Mohta, K.; Sun, K.; Bhattacharya, S.; Taylor, C.J.; Kumar, V. Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-d complex environments. IEEE Robot. Autom. Lett. 2017, 2, 1688–1695. [CrossRef]

33. Savin, S. An algorithm for generating convex obstacle-free regions based on stereographic projection. In Proceedings of the 2017
International Siberian Conference on Control and Communications (SIBCON), Astana, Kazakhstan, 29–30 June 2017; pp. 1–6.

34. Rösmann, C.; Hoffmann, F.; Bertram, T. Integrated online trajectory planning and optimization in distinctive topologies. Robot.
Auton. Syst. 2017, 88, 142–153. [CrossRef]

35. Richter, C.; Bry, A.; Roy, N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In
Robotics Research, Proceedings of the 16th International Symposium of Robotics Research, Singapore, 16–19 December 2013; Springer:
Cham, Switzerland, 2016; pp. 649–666.

36. Landry, B.; Deits, R.; Florence, P.R.; Tedrake, R. Aggressive quadrotor flight through cluttered environments using mixed integer
programming. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm,
Sweden, 16–21 May 2016; pp. 1469–1475.

37. Oleynikova, H.; Burri, M.; Taylor, Z.; Nieto, J.; Siegwart, R.; Galceran, E. Continuous-time trajectory optimization for online UAV
replanning. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon,
Republic of Korea, 9–14 October 2016; pp. 5332–5339.

38. Allen, R.; Pavone, M. A real-time framework for kinodynamic planning with application to quadrotor obstacle avoidance. In
Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, CA, USA, 4–8 January 2016; p. 1374.

39. Chen, J.; Liu, T.; Shen, S. Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments.
In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May
2016; pp. 1476–1483.

http://doi.org/10.1109/LRA.2019.2927938
http://doi.org/10.1109/TRO.2019.2926390
http://doi.org/10.1002/oca.2508
http://doi.org/10.1016/j.conengprac.2019.05.022
http://doi.org/10.1002/rob.21732
http://doi.org/10.1109/LRA.2017.2663526
http://doi.org/10.1016/j.robot.2016.11.007

Remote Sens. 2023, 15, 5237 34 of 37

40. Deits, R.; Tedrake, R. Computing large convex regions of obstacle-free space through semidefinite programming. In
Algorithmic Foundations of Robotics XI, Proceedings of the Eleventh International Workshop on the Algorithmic Foundations of
Robotics, Istanbul, Turkey, 3–5 August 2014; Springer: Cham, Switzerland, 2015; pp. 109–124.

41. Deits, R.; Tedrake, R. Efficient mixed-integer planning for UAVs in cluttered environments. In Proceedings of the 2015 IEEE
International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 42–49.

42. Mueller, M.W.; Hehn, M.; D’Andrea, R. A computationally efficient motion primitive for quadrocopter trajectory generation.
IEEE Trans. Robot. 2015, 31, 1294–1310. [CrossRef]

43. Krüsi, P.; Bücheler, B.; Pomerleau, F.; Schwesinger, U.; Siegwart, R.; Furgale, P. Lighting-invariant adaptive route following using
iterative closest point matching. J. Field Robot. 2015, 32, 534–564. [CrossRef]

44. Wright, S.J. Coordinate descent algorithms. Math. Program. 2015, 151, 3–34. [CrossRef]
45. Schulman, J.; Duan, Y.; Ho, J.; Lee, A.; Awwal, I.; Bradlow, H.; Pan, J.; Patil, S.; Goldberg, K.; Abbeel, P. Motion planning with

sequential convex optimization and convex collision checking. Int. J. Robot. Res. 2014, 33, 1251–1270. [CrossRef]
46. Pham, Q.C. A general, fast, and robust implementation of the time-optimal path parameterization algorithm. IEEE Trans. Robot.

2014, 30, 1533–1540. [CrossRef]
47. Pivtoraiko, M.; Mellinger, D.; Kumar, V. Incremental micro-UAV motion replanning for exploring unknown environments.

In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013;
pp. 2452–2458.

48. MacAllister, B.; Butzke, J.; Kushleyev, A.; Pandey, H.; Likhachev, M. Path planning for non-circular micro aerial vehicles in
constrained environments. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe,
Germany, 6–10 May 2013; pp. 3933–3940.

49. Webb, D.J.; Van Den Berg, J. Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics.
In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013;
pp. 5054–5061.

50. Zucker, M.; Ratliff, N.; Dragan, A.D.; Pivtoraiko, M.; Klingensmith, M.; Dellin, C.M.; Bagnell, J.A.; Srinivasa, S.S. Chomp:
Covariant hamiltonian optimization for motion planning. Int. J. Robot. Res. 2013, 32, 1164–1193. [CrossRef]

51. Mellinger, D.; Kushleyev, A.; Kumar, V. Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor
teams. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May
2012; pp. 477–483.

52. Bhattacharya, S.; Likhachev, M.; Kumar, V. Topological constraints in search-based robot path planning. Auton. Robot. 2012,
33, 273–290. [CrossRef]

53. Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the 2011 IEEE
International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525.

54. Kalakrishnan, M.; Chitta, S.; Theodorou, E.; Pastor, P.; Schaal, S. STOMP: Stochastic trajectory optimization for motion planning.
In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 4569–4574.

55. Harabor, D.D.; Grastien, A. Online graph pruning for pathfinding on grid maps. Proc. AAAI 2011, 25, 1114–1119. [CrossRef]
56. Lovi, D.; Birkbeck, N.; Cobzas, D.; Jagersand, M. Incremental free-space carving for real-time 3d reconstruction. In Proceedings

of the Fifth International Symposium on 3D Data Processing Visualization and Transmission (3DPVT), Paris, France, 17–20
May 2010.

57. Ratliff, N.; Zucker, M.; Bagnell, J.A.; Srinivasa, S. CHOMP: Gradient optimization techniques for efficient motion planning. In
Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 489–494.

58. van den Berg, J. Extended LQR: Locally-optimal feedback control for systems with non-linear dynamics and non-quadratic cost.
In Robotics Research, Proceedings of the 16th International Symposium of Robotics Research, Singapore, 16–19 December 2013; Springer:
Cham, Switzerland, 2016; pp. 39–56.

59. Trawny, N.; Zhou, X.S.; Zhou, K.; Roumeliotis, S.I. Interrobot transformations in 3-D. IEEE Trans. Robot. 2010, 26, 226–243.
[CrossRef]

60. Wanasinghe, T.R.; Mann, G.K.; Gosine, R.G. Relative localization approach for combined aerial and ground robotic system. J.
Intell. Robot. Syst. 2015, 77, 113–133. [CrossRef]

61. Mehrez, M.W.; Mann, G.K.; Gosine, R.G. An optimization based approach for relative localization and relative tracking control in
multi-robot systems. J. Intell. Robot. Syst. 2017, 85, 385–408. [CrossRef]

62. Kulathunga, G.; Devitt, D.; Klimchik, A. Trajectory tracking for quadrotors: An optimization-based planning followed by
controlling approach. J. Field Robot. 2022, 39, 1003–1013. [CrossRef]

63. Van Nieuwstadt, M.J.; Murray, R.M. Real-time trajectory generation for differentially flat systems. Int. J. Robust Nonlinear Control
1998, 8, 995–1020. [CrossRef]

64. Sferrazza, C.; Pardo, D.; Buchli, J. Numerical search for local (partial) differential flatness. In Proceedings of the 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 3640–3646.

65. Krishnan, S.; Rajagopalan, G.A.; Kandhasamy, S.; Shanmugavel, M. Towards Scalable Continuous-Time Trajectory Optimization
for Multi-Robot Navigation. arXiv 2019, arXiv:1910.13463.

http://doi.org/10.1109/TRO.2015.2479878
http://doi.org/10.1002/rob.21524
http://doi.org/10.1007/s10107-015-0892-3
http://doi.org/10.1177/0278364914528132
http://doi.org/10.1109/TRO.2014.2351113
http://doi.org/10.1177/0278364913488805
http://doi.org/10.1007/s10514-012-9304-1
http://doi.org/10.1609/aaai.v25i1.7994
http://doi.org/10.1109/TRO.2010.2042539
http://doi.org/10.1007/s10846-014-0094-x
http://doi.org/10.1007/s10846-016-0408-2
http://doi.org/10.1002/rob.22084
http://doi.org/10.1002/(SICI)1099-1239(199809)8:11<995::AID-RNC373>3.0.CO;2-W

Remote Sens. 2023, 15, 5237 35 of 37

66. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Path planning for autonomous vehicles in unknown semi-structured environ-
ments. Int. J. Robot. Res. 2010, 29, 485–501. [CrossRef]

67. Florence, P.; Carter, J.; Tedrake, R. Integrated perception and control at high speed: Evaluating collision avoidance maneuvers with-
out maps. In Algorithmic Foundations of Robotics XII, Proceedings of the 12th International Workshop on the Algorithmic Foundations of
Robotics, San Francisco, CA, USA, 18–20 December 2016; Springer: Cham, Switzerland, 2020; pp. 304–319.

68. Lopez, B.T.; How, J.P. Aggressive 3-D collision avoidance for high-speed navigation. In Proceedings of the ICRA, Singapore,
29 May–3 June 2017; pp. 5759–5765.

69. Gordon, W.J.; Riesenfeld, R.F. B-spline curves and surfaces. In Computer Aided Geometric Design; Elsevier: Amsterdam, The
Netherlands, 1974; pp. 95–126.

70. Sethian, J.A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer
Vision, and Materials Science; Cambridge University Press: Cambridge, UK, 1999; Volume 3.

71. Sava, P.; Fomel, S. 3-D traveltime computation using Huygens wavefront tracing. Geophysics 2001, 66, 883–889. [CrossRef]
72. LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006.
73. Bergman, K.; Ljungqvist, O.; Glad, T.; Axehill, D. An Optimization-Based Receding Horizon Trajectory Planning Algorithm.

arXiv 2019, arXiv:1912.05259.
74. Chen, J.; Su, K.; Shen, S. Real-time safe trajectory generation for quadrotor flight in cluttered environments. In Proceedings of the

2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 1678–1685.
75. Head, J.D.; Zerner, M.C. A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries. Chem.

Phys. Lett. 1985, 122, 264–270. [CrossRef]
76. de Boor, C. Subroutine Package for Calculating with B-Splines; Report LA-4728-MS; Los Alamos Scientific Laboratory: Los Alamos,

NM, USA, 1971.
77. Qin, K. General matrix representations for B-splines. Vis. Comput. 2000, 16, 177–186. [CrossRef]
78. Hu, J.; Ma, Z.; Niu, Y.; Tian, W.; Yao, W. Real-Time Trajectory Replanning for Quadrotor Using OctoMap and Uniform B-Splines.

In Proceedings of the International Conference on Intelligent Robotics and Applications, Shenyang, China, 8–11 August 2019;
Springer: Cham, Switzerland, 2019; pp. 727–741.

79. Flores Contreras, M.E. Real-Time Trajectory Generation for Constrained Nonlinear Dynamical Systems Using Non-Uniform
Rational B-Spline Basis Functions. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 2008.

80. Preiss, J.A.; Hönig, W.; Ayanian, N.; Sukhatme, G.S. Downwash-aware trajectory planning for large quadrotor teams. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 250–257.

81. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Auton. Robot. 2013, 34, 189–206. [CrossRef]

82. Gao, F.; Shen, S. Online quadrotor trajectory generation and autonomous navigation on point clouds. In Proceedings of the 2016
IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Lausanne, Switzerland, 23–27 October 2016;
pp. 139–146.

83. Bentley, J.L. Multidimensional binary search trees used for associative searching. Commun. ACM 1975, 18, 509–517. [CrossRef]
84. Kala, R. Rapidly exploring random graphs: Motion planning of multiple mobile robots. Adv. Robot. 2013, 27, 1113–1122.

[CrossRef]
85. Zhu, Z.; Schmerling, E.; Pavone, M. A convex optimization approach to smooth trajectories for motion planning with car-like

robots. In Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015;
pp. 835–842.

86. Quinlan, S.; Khatib, O. Elastic bands: Connecting path planning and control. In Proceedings of the IEEE International Conference
on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; pp. 802–807.

87. Jacobson, D.; Mayne, D. Differential Dynamic Programming; Elsevier: New York, NY, USA, 1970.
88. Theodorou, E.; Krishnamurthy, D.; Todorov, E. From information theoretic dualities to path integral and Kullback–Leibler control:

Continuous and discrete time formulations. In Proceedings of the Sixteenth Yale Workshop on Adaptive and Learning Systems,
New Haven, CT, USA, 5–7 June 2013.

89. Lewis, F.L.; Syrmos, V.L. Optimal Control; John Wiley & Sons: New York, NY, USA, 1995.
90. Li, W.; Todorov, E. Iterative linear quadratic regulator design for nonlinear biological movement systems. In Proceedings of the

ICINCO (1), Setúbal, Portugal, 25–28 August 2004; pp. 222–229.
91. van den Berg, J. Iterated LQR smoothing for locally-optimal feedback control of systems with non-linear dynamics and

non-quadratic cost. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 1912–1918.
92. Sun, W.; Van Den Berg, J.; Alterovitz, R. Stochastic extended LQR: Optimization-based motion planning under uncer-

tainty. In Algorithmic Foundations of Robotics XI, Proceedings of the Eleventh International Workshop on the Algorithmic Foundations of
Robotics, Istanbul, Turkey, 3–5 August 2014; Springer: Cham, Switzerland, 2015; pp. 609–626.

93. Van Den Berg, J.; Wilkie, D.; Guy, S.J.; Niethammer, M.; Manocha, D. LQG-obstacles: Feedback control with collision avoidance
for mobile robots with motion and sensing uncertainty. In Proceedings of the 2012 IEEE International Conference on Robotics
and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 346–353.

http://doi.org/10.1177/0278364909359210
http://doi.org/10.1190/1.1444977
http://doi.org/10.1016/0009-2614(85)80574-1
http://doi.org/10.1007/s003710050206
http://doi.org/10.1007/s10514-012-9321-0
http://doi.org/10.1145/361002.361007
http://doi.org/10.1080/01691864.2013.805472

Remote Sens. 2023, 15, 5237 36 of 37

94. Todorov, E. General duality between optimal control and estimation. In Proceedings of the 2008 47th IEEE Conference on
Decision and Control, Cancun, Mexico, 9–11 December 2008; pp. 4286–4292.

95. Likhachev, M.; Gordon, G.J.; Thrun, S. ARA*: Anytime A* with provable bounds on sub-optimality. In Proceedings of the
Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–13 December 2003; pp. 767–774.

96. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
97. Perez, A.; Platt, R.; Konidaris, G.; Kaelbling, L.; Lozano-Perez, T. LQR-RRT*: Optimal sampling-based motion planning with

automatically derived extension heuristics. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation,
Saint Paul, MN, USA, 14–18 May 2012; pp. 2537–2542.

98. Kulathunga, G.; Devitt, D.; Fedorenko, R.; Klimchik, A. Path planning followed by kinodynamic smoothing for multirotor aerial
vehicles (MAVs). Russ. J. Nonlinear Dyn. 2021, 17, 491–505. [CrossRef]

99. Pacelli, V.; Arslan, O.; Koditschek, D.E. Integration of local geometry and metric information in sampling-based motion planning.
In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May
2018; pp. 3061–3068.

100. Mason, M.T.; Salisbury, J.K., Jr. Robot Hands and the Mechanics of Manipulation; The MIT Press: Cambridge, MA, USA, 1985.
101. Liu, S.; Atanasov, N.; Mohta, K.; Kumar, V. Search-based motion planning for quadrotors using linear quadratic minimum time

control. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC,
Canada, 24–28 September 2017; pp. 2872–2879.

102. Ames, A.D.; Galloway, K.; Sreenath, K.; Grizzle, J.W. Rapidly exponentially stabilizing control Lyapunov functions and hybrid
zero dynamics. IEEE Trans. Autom. Control 2014, 59, 876–891. [CrossRef]

103. Wu, G.; Sreenath, K. Safety-critical and constrained geometric control synthesis using control Lyapunov and control barrier
functions for systems evolving on manifolds. In Proceedings of the 2015 American Control Conference (ACC), Chicago, IL, USA,
1–3 July 2015; pp. 2038–2044.

104. Ames, A.D.; Xu, X.; Grizzle, J.W.; Tabuada, P. Control barrier function based quadratic programs for safety critical systems. IEEE
Trans. Autom. Control 2016, 62, 3861–3876. [CrossRef]

105. Kolmanovsky, I.; Garone, E.; Di Cairano, S. Reference and command governors: A tutorial on their theory and automotive
applications. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 226–241.

106. Garone, E.; Nicotra, M.M. Explicit reference governor for constrained nonlinear systems. IEEE Trans. Autom. Control 2015,
61, 1379–1384. [CrossRef]

107. Arslan, O.; Koditschek, D.E. Smooth extensions of feedback motion planners via reference governors. In Proceedings of the 2017
IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 4414–4421.

108. Li, Z.; Arslan, O.; Atanasov, N. Fast and Safe Path-Following Control using a State-Dependent Directional Metric. arXiv 2020,
arXiv:2002.02038.

109. Aoyama, Y.; Boutselis, G.; Patel, A.; Theodorou, E.A. Constrained Differential Dynamic Programming Revisited. arXiv 2020,
arXiv:2005.00985.

110. Liu, C.; Pan, J.; Chang, Y. PID and LQR trajectory tracking control for an unmanned quadrotor helicopter: Experimental studies.
In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; pp. 10845–10850.

111. Cowling, I.D.; Whidborne, J.F.; Cooke, A.K. Optimal trajectory planning and LQR control for a quadrotor UAV. In Proceedings of
the International Conference on Control, Glasgow, UK, 30 August–1 September 2006.

112. Bangura, M.; Mahony, R. Real-time Model Predictive Control for Quadrotors. IFAC Proc. Vol. 2014, 47, 11773–11780.
. [CrossRef]

113. Ohtsuka, T.; Fujii, H.A. Real-time optimization algorithm for nonlinear receding-horizon control. Automatica 1997, 33, 1147–1154.
[CrossRef]

114. Ji, J.; Zhou, X.; Xu, C.; Gao, F. CMPCC: Corridor-based Model Predictive Contouring Control for Aggressive Drone Flight. arXiv
2020, arXiv:2007.03271.

115. Deng, H.; Ohtsuka, T. A parallel Newton-type method for nonlinear model predictive control. Automatica 2019, 109, 108560.
[CrossRef]

116. Mohamed, I.S.; Allibert, G.; Martinet, P. Model Predictive Path Integral Control Framework for Partially Observable Navigation:
A Quadrotor Case Study. arXiv 2020, arXiv:2004.08641.

117. Olivares-Mendez, M.A.; Campoy, P.; Mellado-Bataller, I.; Mejias, L. See-and-avoid quadcopter using fuzzy control optimized by
cross-entropy. In Proceedings of the 2012 IEEE International Conference on Fuzzy Systems, Brisbane, Australia, 10–15 June 2012;
pp. 1–7.

118. Gao, F.; Wu, W.; Gao, W.; Shen, S. Flying on point clouds: Online trajectory generation and autonomous navigation for quadrotors
in cluttered environments. J. Field Robot. 2019, 36, 710–733. [CrossRef]

119. Tordesillas, J.; Lopez, B.T.; Everett, M.; How, J.P. Faster: Fast and safe trajectory planner for flights in unknown environments.
arXiv 2020, arXiv:2001.04420.

120. Quinlan, S. Real-Time Modification of Collision-Free Paths; Number 1537; Stanford University: Stanford, CA, USA, 1994.
121. Zhou, B.; Gao, F.; Pan, J.; Shen, S. Robust real-time UAV replanning using guided gradient-based optimization and topo-

logical paths. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France,
31 May–31 August 2020; pp. 1208–1214.

http://doi.org/10.1177/0278364911406761
http://doi.org/10.20537/nd210410
http://doi.org/10.1109/TAC.2014.2299335
http://doi.org/10.1109/TAC.2016.2638961
http://doi.org/10.1109/TAC.2015.2476195
http://doi.org/10.3182/20140824-6-ZA-1003.00203
http://doi.org/10.1016/S0005-1098(97)00005-8
http://doi.org/10.1016/j.automatica.2019.108560
http://doi.org/10.1002/rob.21842

Remote Sens. 2023, 15, 5237 37 of 37

122. Powell, M.J. The BOBYQA Algorithm for Bound Constrained Optimization without Derivatives; Cambridge NA Report NA2009/06;
University of Cambridge: Cambridge, UK, 2009; pp. 26–46.

123. Liu, D.C.; Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 1989, 45, 503–528.
[CrossRef]

124. Houska, B.; Ferreau, H.J.; Diehl, M. ACADO toolkit—An open-source framework for automatic control and dynamic optimization.
Optim. Control Appl. Methods 2011, 32, 298–312. [CrossRef]

125. Kraft, D. A Software Package for Sequential Quadratic Programming; Forschungsbericht; Deutsche Forschungs- und Versuchsanstalt
fur Luft- und Raumfahrt (DFVLR): Cologne, Germany, 1988.

126. Parikh, N.; Boyd, S. Block splitting for distributed optimization. Math. Program. Comput. 2014, 6, 77–102. [CrossRef]
127. Fougner, C.; Boyd, S. Parameter selection and preconditioning for a graph form solver. In Emerging Applications of Control and

Systems Theory; Springer: Cham, Switzerland, 2018; pp. 41–61.
128. Svanberg, K. A class of globally convergent optimization methods based on conservative convex separable approximations.

SIAM J. Optim. 2002, 12, 555–573. [CrossRef]
129. Liu, X.; Wiersma, R.D. Optimization based trajectory planning for real-time 6DoF robotic patient motion compensation systems.

PLoS ONE 2019, 14, e0210385. [CrossRef]
130. Foehn, P.; Falanga, D.; Kuppuswamy, N.; Tedrake, R.; Scaramuzza, D. Fast trajectory optimization for agile quadrotor maneuvers

with a cable-suspended payload. In Proceedings of the RSS 2017: Robotics: Science and Systems 2017, Cambridge, MA, USA,
12–16 July 2017.

131. Geisert, M.; Mansard, N. Trajectory generation for quadrotor based systems using numerical optimal control. In Proceedings of
the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 2958–2964.

132. Shen, S.; Michael, N.; Kumar, V. Stochastic differential equation-based exploration algorithm for autonomous indoor 3D
exploration with a micro-aerial vehicle. Int. J. Robot. Res. 2012, 31, 1431–1444. [CrossRef]

133. Johnson, S.G. The NLopt Nonlinear-Optimization Package. 2014. Available online: http://abinitio.mit.edu/nlopt (accessed on 30
October 2023).

134. Zhou, X.; Wang, Z.; Ye, H.; Xu, C.; Gao, F. EGO-Planner: An ESDF-free Gradient-based Local Planner for Quadrotors. IEEE Robot.
Autom. Lett. 2020, 6, 478–485. [CrossRef]

135. Dembo, R.S.; Steihaug, T. Truncated Newton algorithms for large-scale optimization. Math. Program. 1983, 26, 190–212. [CrossRef]
136. Andersen, E.D.; Andersen, K.D. The MOSEK interior point optimizer for linear programming: An implementation of the

homogeneous algorithm. In High Performance Optimization; Springer: New York, NY, USA, 2000; pp. 197–232.
137. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual; Gurobi Optimization, LLC: Beaverton, OR, USA, 2018.
138. Stellato, B.; Banjac, G.; Goulart, P.; Bemporad, A.; Boyd, S. OSQP: An operator splitting solver for quadratic programs. Math.

Program. Comput. 2020, 12, 637–672. [CrossRef]
139. Kamel, M.; Stastny, T.; Alexis, K.; Siegwart, R. Model predictive control for trajectory tracking of unmanned aerial vehicles using

robot operating system. In Robot Operating System (ROS); Springer: Cham, Switzerland, 2017; pp. 3–39.
140. Gertz, E.M.; Wright, S.J. Object-oriented software for quadratic programming. ACM Trans. Math. Softw. 2003, 29, 58–81.

[CrossRef]
141. Tordesillas, J.; How, J.P. MADER: Trajectory Planner in Multi-Agent and Dynamic Environments. arXiv 2020, arXiv:2010.11061.
142. Tordesillas, J.; How, J.P. MINVO basis: Finding simplexes with minimum volume enclosing polynomial curves. arXiv 2020,

arXiv:2010.10726.
143. Conn, A.R.; Gould, N.I.; Toint, P. A globally convergent augmented Lagrangian algorithm for optimization with general

constraints and simple bounds. SIAM J. Numer. Anal. 1991, 28, 545–572. [CrossRef]
144. Tang, L.; Wang, H.; Li, P.; Wang, Y. Real-time Trajectory Generation for Quadrotors using B-spline based Non-uniform

Kinodynamic Search. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali,
China, 6–8 December 2019; pp. 1133–1138.

145. Andersson, J.A.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi: A software framework for nonlinear optimization and
optimal control. Math. Program. Comput. 2019, 11, 1–36. [CrossRef]

146. Biegler, L.T.; Zavala, V.M. Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide
dynamic optimization. Comput. Chem. Eng. 2009, 33, 575–582. [CrossRef]

147. Kulathunga, G.; Hamed, H.; Klimchik, A. Residual Dynamics Learning for Trajectory Tracking for Multi-rotor Aerial Vehicles.
arXiv 2023, arXiv:2305.15791.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/BF01589116
http://doi.org/10.1002/oca.939
http://doi.org/10.1007/s12532-013-0061-8
http://doi.org/10.1137/S1052623499362822
http://doi.org/10.1371/journal.pone.0210385
http://doi.org/10.1177/0278364912461676
http://ab initio.mit.edu/nlopt
http://doi.org/10.1109/LRA.2020.3047728
http://doi.org/10.1007/BF02592055
http://doi.org/10.1007/s12532-020-00179-2
http://doi.org/10.1145/641876.641880
http://doi.org/10.1137/0728030
http://doi.org/10.1007/s12532-018-0139-4
http://doi.org/10.1016/j.compchemeng.2008.08.006

	Introduction
	Motion Model Selection
	Exact Model
	Empirical Model
	Differential Flatness

	Initial Waypoint Identification
	Initial Trajectory Generation
	Define Trajectory
	Minimum-Snap-Based Trajectory Generation
	Polynomial Trajectory Generation as QP
	Unconstrained Polynomial Trajectory Generation
	Unconstrained Polynomial Trajectory Generation with Collision Avoidance
	Covariant Gradients for Trajectory Generation
	B-Spline-Based Trajectory Generation
	Convex Hull Property
	Continuity

	Bernstein Piece-Wise Trajectory Generation
	Comparison of Several Trajectory Techniques

	Free Space Extraction
	Continuous Trajectory Refinement
	Receding Horizon Trajectory Planning
	LQR-Based Trajectory Generation
	MPC-Based Trajectory Generation
	Disturbance Estimation

	Solving the Trajectory Planning Problem
	Conclusions
	References

