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Abstract: Recently developed cameras in the low-cost sector exhibit lens distortion patterns that
cannot be handled well with established models of radial lens distortion. This study presents an
approach that divides the image sensor and distortion modeling into two concentric zones for the
application of an extended radial lens distortion model. The mathematical model is explained in
detail and it was validated on image data from a DJI Mavic Pro UAV camera. First, the special
distortion pattern of the camera was examined by decomposing and analyzing the residuals. Then,
a novel bi-radial model was introduced to describe the pattern. Eventually, the new model was
integrated in a bundle adjustment software package. Practical tests revealed that the residuals of the
bundle adjustment could be reduced by 63% with respect to the standard Brown model. On the basis
of external reference measurements, an overall reduction in the residual errors of 40% was shown.

Keywords: camera calibration; geometric modeling; photogrammetry; bundle adjustment; interior
orientation

1. Introduction
1.1. Pinhole Model

In photogrammetry and computer vision, the pinhole camera model is frequently
used to describe the mapping of an object point with world coordinates onto the camera
sensor, i.e., the image plane. Figure 1 shows the pinhole model with an image, a camera
and the world coordinate system.

Figure 1. Pinhole model. The corresponding X axis is colored red, Y in green and Z in blue. The ray
from the object point into the image is depicted in magenta. The principal point is the perpendicular
foot of the projection center onto the image.
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Model A describes the corresponding transformation of the object point vector from
the world coordinate system into the camera coordinate system (step 1). This is followed
by the projection into the image (perspective division, step 2), resulting in the image point
given in the camera coordinate system. Afterwards, the image point is shifted into the
image coordinate system defined by the image center (step 3).

Model A: Pinhole model

Step 1: ~Xc =
(
Xc Yc Zc

)T
= R T · (~Xw − ~XprojC)

Step 2:
(

xc
yc

)
= − c

Zc
·
(

Xc
Yc

)
Step 3:

(
xi
yi

)
=

(
xp
yp

)
+

(
xc
yc

)
where ~XprojC = center of projection coordinates in world coordinate system

R = rotation matrix of the camera coordinate system
~Xw = (Xw, Yw, Zw)T = object point in world coordinate system
c = principal distance
~Xc = (Xc, Yc, Zc)T = object point in camera coordinate system
~xc = (xc, yc,−c)T = image point in camera coordinate system
xi, yi = image point in image coordinate system
xp, yp = principal point in image coordinate system

These steps are often summarized in the collinearity equations [1], see Equation (1).

xi = xp − c · r11·(Xw−XprojC)+r21·(Yw−YprojC)+r31·(Zw−ZprojC)

r13·(Xw−XprojC)+r23·(Yw−YprojC)+r33·(Zw−ZprojC)

yi = yp − c · r12·(Xw−XprojC)+r22·(Yw−YprojC)+r32·(Zw−ZprojC)

r13·(Xw−XprojC)+r23·(Yw−YprojC)+r33·(Zw−ZprojC)

(1)

where rkl = elements of the rotation matrix R.

1.2. Lens Distortion

There are several influences that lead to a deviation of the pure pin hole model due to
different lens distortions, which are depicted in detail in the following.

1.2.1. Symmetric Radial Lens Distortion

Seidel aberrations [2] of spherical lenses cause symmetric radial image distortions
centered around the principal point. This effect leads to different image scales that depend
on the distance to the optical axis due to the changing refractive power of the lens. There are
two main types of radial distortions that are observable in practice: barrel and pincushion
distortion. Brown [3] introduced a correction term, which is a power series applied to the
radial distance from the principal point r:

∆r = A1 · r3 + A2 · r5 + A3 · r7 (2)

where r =
√

x2
c + y2

c = distance from the principal point;
∆r = correction term at the distance from the principal point;
A1, A2, A3 = parameters of radial distortion.

The corrections applied to the coordinates are:

∆xradial =
∆r
r · xc

∆yradial =
∆r
r · yc

(3)
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Figure 2 shows exemplary correction vectors for symmetric radial distortion applying
Equation (2).

Figure 2. Upper part: Correction vectors for symmetric radial lens distortion for different parameter
examples of a virtual camera. Lower part: Corresponding radial corrections as a function of the
image radius.

1.2.2. Decentering Lens Distortion

The decentering of the lens, i.e., due to the misalignment of individual elements of the
lens system, also leads to distortions in the image. Conrady [4] analyzed this effect mathe-
matically and could thereby show that there is a tangential as well as an asymmetric radial
component, where the latter is three times larger than the former. Therefore, Brown [5]
proposed the well-known parameterization that considers four parameters:

∆xdecentering = (B1 · (r2 + 2 · x2
c ) + 2 · B2 · xc · yc) · (1 + B3 · r2 + B4 · r4)

∆ydecentering = (B2 · (r2 + 2 · y2
c ) + 2 · B1 · xc · yc) · (1 + B3 · r2 + B4 · r4)

(4)

where xc, yc = camera coordinates centered at the principal point;
B1, B2, B3, B4 = parameters of decentering distortion.

Corrections are often not required in case of high-quality camera systems, and often
the model is reduced to two parameters [6] (Equation (5)). Luhmann et al. [6] recommend
the decentering distortion model mainly for low-cost or mobile phone cameras.

∆xdecentering = B1 · (r2 + 2 · x2
c ) + 2 · B2 · xc · yc

∆ydecentering = B2 · (r2 + 2 · y2
c ) + 2 · B1 · xc · yc

(5)

Figure 3 shows exemplary correction vectors for decentering distortion applying
Equation (5).
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Figure 3. Correction vectors for decentering lens distortion of a virtual camera for different
parameter examples.

1.2.3. Affinity and Non-Orthogonality

In addition to the radial and decentering lens distortions, affine parameters for non-
orthogonality and shear are often integrated in standard camera models to overcome effects
from camera electronics [7].

Equation (6) shows the correction terms with the two parameters C1 and C2:

∆xa f f inity = C1 · xc + C2 · yc
∆ya f f inity = 0

(6)

1.2.4. Pinhole Model Including Distortion

Eventually, all the previously explained corrections for distortion and affinity can
be summarized:

∆x = ∆xradial + ∆xdecentering + ∆xa f f inity
∆y = ∆yradial + ∆ydecentering + ∆ya f f inity

(7)

Consideration of these corrections leads to an extension of the pure pinhole model
(model A). The extended model (here called model B) is a widely used model [8].

Model B: Pinhole model including distortion

Step 1: ~Xc =
(
Xc Yc Zc

)T
= RT · (~Xw − ~XprojC)

Step 2:
(

xc
yc

)
= − c

Zc
·
(

Xc
Yc

)
Step 3:

(
∆x
∆y

)
= ∆r

r ·
(

xc
yc

)
+

(
B1 · (r2 + 2 · x2

c ) + 2 · B2 · xc · yc + C1 · xc + C2 · yc
B2 · (r2 + 2 · y2

c ) + 2 · B1 · xc · yc

)
with r =

√
x2

c + y2
c and ∆r = A1 · r3 + A2 · r5 + A3 · r7

Step 4:
(

xi
yi

)
=

(
xp
yp

)
+

(
xc
yc

)
+

(
∆x
∆y

)

The corrections can also be integrated into the collinearity equations:

xi = xp − c · r11·(Xw−XprojC)+r21·(Yw−YprojC)+r31·(Zw−ZprojC)

r13·(Xw−XprojC)+r23·(Yw−YprojC)+r33·(Zw−ZprojC)
+ ∆x

yi = yp − c · r12·(Xw−XprojC)+r22·(Yw−YprojC)+r32·(Zw−ZprojC)

r13·(Xw−XprojC)+r23·(Yw−YprojC)+r33·(Zw−ZprojC)
+ ∆y

(8)

1.3. Non-Physical Models for Distortion Corrections

There are distortions that may not be described fully by physically motivated parame-
ters. For this purpose, correction approaches based on mathematical functions only can
be used. Thereby, distortion can be, for instance, approximated by polynomials up to a
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certain order. Mathematical correction approaches with orthogonal, bivariate polynomials
of second and fourth order were first presented by Ebner [9] and Grün [10], respectively.
These models were mainly intended for application in aerial photogrammetry. More
recent approaches are based on polynomial series such as Chebychev polynomials [11],
Legendre polynomials [12], or considering Fourier series [13]. A combination of physical
and mathematical models is possible as well [14,15]. Some of these approaches consist
of a large number of polynomials or parameters and not all of them might be significant.
Furthermore, correlations among them may appear, which can lead to a poor convergence
behavior of the bundle adjustment.

Physical and mathematical approaches are usually well suited to correcting global dis-
tortion patterns. However, local effects may also occur, which can be corrected using the fi-
nite element method [14,16] or considering a local distortion model [17]. Luhmann et al. [8]
give an overview of the mathematical models and calibration techniques for a wide range
of cameras.

1.4. Motivation of This Work

UAV photogrammetry with low-cost cameras is used in a wide range of applications
such as archaeology, building modeling, ecology, forestry, hydrology or geomorphol-
ogy [18]. Some of these low-cost cameras revealed to be challenging to model with the
standard distortion models. For instance, Eltner et al. [19] applied the 10-parameter model
(model B, based on [3,7]) to a DJI Mavic Pro camera and showed that large errors remained
after bundle adjustment, which was indicated by large residuals. Figure 4 visualizes the
corresponding residual plot for the residual vectors of all image points that were included in
the self-calibration during bundle adjustment. There were unusually large radial deviations
around the image center and a clear systematic pattern remained.

Figure 4. Residual plot after free net bundle adjustment using model B.

Hastedt et al. [15] also studied this type of camera. They suspected that some UAV
camera lenses constructed from aspheric lenses may not be made of glass and that there
is some internal black box image pre-processing, such as filtering and other corrections,
that could lead to this behavior. In addition, ref. [20] highlighted that image pre-processing
by the UAV camera manufacturer can result in physically based lens distortion models
no longer being valid for actual bundle adjustment because only residual distortion is
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modeled. Hastedt et al. [15] proposed an extended Brown polynomial to overcome the
effects shown in Figure 4.

The article at hand presents an alternative parametrization for radial distortion that is
called the bi-radial model. In contrast to existing correction models, the bi-radial approach
divides the sensor into two concentric zones in which independent Brown polynomials are
applied. Our approach is compared with the method of [15].

The article is structured as follows: First, we analyze the special residual patterns. Thus,
the radial components of the residuals are computed and appropriate models are proposed.
The results of this analysis are then integrated into a bundle adjustment. Afterwards, the
new models are validated. Finally, the results are discussed and concluded.

2. Methods and Results

In this section, we first analyze the results of a bundle adjustment with fixed object
coordinates and without considering the distortions of the tested DJI Mavic Pro camera,
i.e., by using model A. Then, we introduce a new distortion model (bi-radial distortion
correction, Section 2.3), which we integrated in an extended bundle block adjustment to
calibrate the DJI Mavic Pro camera (Section 2.4). The results reveal an improved removal
of systematic residuals (Section 2.5). To further enhance the bi-radial correction, we also
present an automated segmentation of the distortion zones (Section 2.6) and eventually
validate the bi-radial distortion correction approach (Section 2.7).

2.1. Analysis of the Residual Patterns

We used a reference target field (Figure 5) to analyze the DJI Mavic Pro camera (see
Table 1). The target field has a size of approximately 7 m × 3 m × 1 m. The reference
coordinates of the target field were determined photogrammetrically using an image
block captured by a high-quality camera (Panasonic Lumix DMC-GX80 camera (from
company Panasonic) with a lens with a focal length of 20 mm) and performing a free
bundle adjustment with model B (standard model).

Table 1. Sensor specifications for the DJI Mavic Pro camera.

Model DJI Mavic Pro FC220
Sensor size in px 4000 × 3000 px

Sensor size in mm 6.2 mm × 4.65 mm 1

Company DJI
1 We assumed a pixel size of 1.55 µm.

(a) (b)

Figure 5. (a) Reference target field used for bundle adjustments. (b) Orientation of the images of the
Panasonic Lumix DMC-GX80 camera and locations of the object points. The schematic illustration
was created with the software package AICON 3D Studio (version 12.50.03).
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The coordinates, obtained photogrammetically by the data from the Panasonic Lumix
DMC-GX80 camera, were used as control points, i.e., they were kept fixed for a second
bundle adjustment using an image data set of the reference target field acquired with the
DJI Mavic Pro camera (from company DJI). Model A (pinhole model without distortion
correction) was applied in the bundle adjustment with the DJI data. This approach was
chosen to retrieve the full distortion pattern to identify systematics. The residuals of
the image points after the bundle adjustment are depicted as a vector field in Figure 6a,
revealing a similar behavior as already shown in Figure 4.

(a) (b)

Figure 6. (a) Residual plot after bundle adjustment using model A (i.e., pure pinhole model) with fixed
object coordinates. (b) Decomposition of the residual vector into radial and tangential components.

The residual vectors were decomposed into a radial and tangential part (Figure 6b).
The radial component was computed by projecting the residual vector onto the difference
vector between the principal point and the image point:

vrad =

~vT · ~xi−~xp
|~xi−~xp | for |~xi −~xp| 6= 0

0 otherwise
(9)

where ~v = residual vector of the image point;
~xi = image coordinate vector;
~xp = principal point coordinate vector.

The tangential component was calculated by the projection of the residual’s normal
onto the difference vector:

vtan =


(

vy
−vx

)T
· ~xi−~xp
|~xi−~xp | for |~xi −~xp| 6= 0

0 otherwise
(10)

where vx = x component of the residual vector;
vy = y component of the residual vector.

Both components are visualized as a function of the image radius r and as a func-
tion of the azimuth of the image point in Figure 7. In addition, the moving median is
depicted in red, which was computed using the neighbors around the measurement point
in a distance of 0.1 mm. The radial component (over r) shows a strong systematic behav-
ior (Figure 7a), whereas the tangential component appears to be randomly distributed
(Figure 7b). Figure 7c,d further reveal a systematic effect for both components regarding
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the azimuth that may show radial asymmetric effects. However, the radial component also
shows a high scattering when considering the azimuth (Figure 7c). Figure 7c also show
four vertical tails with larger radial components around the azimuth abscissae of about
±45° and ±135°. These values are caused by the residuals of the image corner points as
visible in Figure 6a. In the following, we concentrate on the radial component versus the
image radius.

(a) (b)

(c) (d)
Figure 7. (a) Radial components of the residuals plotted against the image radius. (b) Tangential
components of the residuals plotted against the image radius. (c) Radial components plotted against
the azimuth of the image point. (d) Tangential components plotted against the azimuth of the image
point. For all subplots, the moving median is shown in red.

Polynomial fits for the radial components versus image radius shown in Figure 7a
were computed using the radial Brown polynomials ∆r(r) = a0 · r + a1 · r3 + a2 · r5 and
∆r(r) = a0 · r + a1 · r3 + a2 · r5 + a3 · r7. In contrast to the bundle adjustment, the A0 term
was included in the polynomial fit to take the influence of the principal distance into account.
However, the linear A0 term had to be omitted in the bundle adjustment because it cannot
be separated from the principal distance [6]. To evaluate the quality of the polynomial

fit, the standard deviation of the unit weight s0 was computed as s0 =

√
∑n

i=1(vrad,i−∆r(ri))2

n−u
(where n = number of points and u = number of unknowns).

Figure 8 displays the fitted Brown polynomials. Significant deviations of the poly-
nomial to the points in the left part of the curve (corresponding to the central part of the
image format) become obvious, explaining the behavior noticed in [19], which is also visible
in Figure 6a. The Brown polynomials do not model the behavior of this lens well. The
standard deviations of the unit weights s0 of the polynomial fits considering three and four
parameters are 1.78 µm (1.15 px) and 1.52 µm (0.98 px), respectively.
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Figure 8. Radial components and fitted Brown polynomials with standard deviations of the unit
weight of the polynomial fit.

2.2. Extended Brown Polynomial Model

The extension of the radial function with even coefficients corresponds to the extended
radial polynomial of [15]. We fitted this extended model (Equations (11) and (12)) to
our data:

∆r(r) =
5

∑
i=1

ai · ri (11)

and

∆r(r) =
7

∑
i=1

ai · ri (12)

The extended polynomials are displayed in Figure 9a. With the adapted Brown model,
the standard deviation of the unit weight s0 (polynomial fit) can be decreased to 1.01 µm
(0.65 px) and 0.98 µm (0.63 px) when using five or seven parameters, respectively.

(a) (b)

Figure 9. (a) Radial components and fitted polynomials with Equations (11) and (12). (b) Radial
components and fitted bi-radial polynomials of Equation (13). Both with standard deviations of the
unit weight of the polynomial fit.

2.3. Bi-Radial Polynomial Model

In our new approach, we combine two Brown polynomials. This approach was
inspired by the residual plots shown in Figures 4 and 6a. The image space is divided into
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two concentric radial zones with a separate set of radial distortion parameters defined and
determined for each zone, i.e., a bi-radial approach. The polynomials are then applied
as follows:

∆r =

{
a1,0 · r + a1,1 · r3 + a1,2 · r5 + a1,3 · r7 for r < r0

a2,0 · r + a2,1 · r3 + a2,2 · r5 + a2,3 · r7 for r >= r0
(13)

Initially, the value r0 was manually set to 1.5 mm. The standard deviation of the
unit weight after the polynomial fit was s0 = 0.96 µm (0.62 px). Figure 9b shows the fitted
bi-radial function as well as the radial components as a function of r.

Both extended polynomials fit much better to the radial components than the standard
Brown polynomial. This holds especially for the center region of the image, which is most
relevant for tasks such as orthophoto mosaic generation. Note that the bi-radial model
performs slightly better, which can also be seen in the graphs in Figure 9.

2.4. Bundle Adjustment with the Extended Radial Correction Functions

Both extended functions of Sections 2.2 and 2.3 for the radial distortion correction
were implemented in bundle adjustments. The model in [15], with addition of additional
even coefficients (O1, O2, O3) to the Brown model and hence in total using six parameters
for the radial distortion description, is included in model C. Thus, the corresponding radial
correction function was used:

∆rextensionC = O1 · r2 + A1 · r3 + O2 · r4 + A2 · r5 + O3 · r6 + A3 · r7 (14)

Model C: Full polynomial radial distortion model

Step 1: ~Xc =
(
Xc Yc Zc

)T
= RT · (~Xw − ~XprojC)

Step 2:
(

xc
yc

)
= − c

Zc
·
(

Xc
Yc

)
Step 3:

(
∆x
∆y

)
= ∆rextensionC

r ·
(

xc
yc

)
+

(
B1 · (r2 + 2 · x2

c ) + 2 · B2 · xc · yc + C1 · xc + C2 · yc
B2 · (r2 + 2 · y2

c ) + 2 · B1 · xc · yc

)
with r =

√
x2

c + y2
c and ∆rextensionC = O1 · r2 + A1 · r3 + O2 · r4 + A2 · r5 + O3 · r6 + A3 · r7

Step 4:
(

xi
yi

)
=

(
xp
yp

)
+

(
xc
yc

)
+

(
∆x
∆y

)

Model C was applied to the image data of the DJI Mavic Pro camera. Again, the object
coordinates of the reference target field (obtained photogrammetically using the Panasonic
Lumix DMC-GX80 camera) were kept fixed during the bundle adjustment. The computed
parameters pi with their standard deviations sp,i and significance values are summarized
in Table 2.

Table 2. Interior orientation parameters of Model C, their standard deviation and significance.

Parameter Estimated Value Standard Deviation Significance | pi
sp,i

|

c 4.6894 mm 0.0031 mm 1500
xp −0.03608 mm 0.00029 mm 120
yp 0.00121 mm 0.00021 mm 5.8
O1 −0.0278 mm−1 0.0028 mm−1 9.9
A1 0.1061 mm−2 0.0045 mm−2 24
O2 −0.1074 mm−3 0.0036 mm−3 30
A2 0.0499 mm−4 0.0015 mm−4 33



Remote Sens. 2023, 15, 5283 11 of 20

Table 2. Cont.

Parameter Estimated Value Standard Deviation Significance | pi
sp,i

|

O3 −0.01110 mm−5 0.00033 mm−5 34
A3 0.000960 mm−6 0.000029 mm−6 34
B1 0.0000739 mm−

1 0.0000049 mm−1 15
B2 −0.0000457 mm−1 0.0000035 mm−1 13
C1 0.000054 0.000011 5.1
C2 −0.0003508 0.0000099 36

Table 3 shows the correlations between the parameters of model C. The radial distor-
tion parameters (A1, A2, A3, O1, O2, O3) reveal high correlation values between each other,
partly almost 100%. High correlations between radial distortion parameters are a typical
phenomenon, even for model B.

Table 3. Correlations between the parameters of model C.

c xp yp O1 A1 O2 A2 O3 A3 B1 B2 C1 C2
c 1

xp 0.003 1
yp −0.02 0.042 1
O1 −0.971 0.011 −0.002 1
A1 0.93 −0.014 0.006 −0.988 1
O2 −0.88 0.016 −0.009 0.959 −0.991 1
A2 0.828 −0.018 0.012 −0.923 0.97 −0.994 1
O3 −0.778 0.018 −0.014 0.883 −0.943 0.978 −0.995 1
A3 0.73 −0.019 0.016 −0.843 0.912 −0.957 0.983 −0.996 1
B1 −0.025 0.888 0.048 0.024 −0.026 0.026 −0.025 0.024 −0.023 1
B2 0.009 0.053 0.722 −0.008 0.008 −0.007 0.006 −0.004 0.003 0.045 1
C1 0.019 0.029 0.076 0.008 −0.012 0.016 −0.019 0.022 −0.024 0.02 0.084 1
C2 0.027 −0.052 −0.056 −0.026 0.025 −0.024 0.023 −0.021 0.02 −0.017 0 0.008 1

In model D, the second extension option, i.e., the bi-radial radial distortion correction,
was integrated (see Equation (15)).

∆rextensionD =

{
A1,0 · r + A1,1 · r3 + A1,2 · r5 + A1,3 · r7 for r < r0

A2,1 · r3 + A2,2 · r5 + A2,3 · r7 otherwise
(15)

Model D: Bi-radial distortion model

Step 1: ~Xc =
(
Xc Yc Zc

)T
= RT · (~Xw − ~XprojC)

Step 2:
(

xc
yc

)
= − c

Zc
·
(

Xc
Yc

)
Step 3:

(
∆x
∆y

)
= ∆rextensionD

r ·
(

xc
yc

)
+

(
B1 · (r2 + 2 · x2

c ) + 2 · B2 · xc · yc + C1 · xc + C2 · yc
B2 · (r2 + 2 · y2

c ) + 2 · B1 · xc · yc

)
with r =

√
x2

c + y2
c and ∆rextensionD =

{
A1,0 · r + A1,1 · r3 + A1,2 · r5 + A1,3 · r7 for r < r0

A2,1 · r3 + A2,2 · r5 + A2,3 · r7 otherwise

Step 4:
(

xi
yi

)
=

(
xp
yp

)
+

(
xc
yc

)
+

(
∆x
∆y

)
The estimated parameters of the interior orientation with their standard deviations and

significance values are summarized in Table 4. Note that the standard deviation of the cam-
era constant is ca. five times smaller in model D due to a more relaxed correlation situation.
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Table 4. Interior orientation parameters of Model D, their standard deviation and significance.

Parameter Estimated Value Standard Deviation Significance | p
sp
|

c 4.75027 mm 0.00055 mm 8600
xp −0.03619 mm 0.00028 mm 130
yp 0.00125 mm 0.00020 mm 6.2

A1,0 −0.01530 mm−1 0.00015 mm−1 99
A1,1 0.01959 mm−2 0.00037 mm−2 53
A1,2 −0.00776 mm−3 0.00031 mm−3 25
A1,3 0.000978 mm−4 0.000079 mm−4 12
A2,1 0.000344 mm−5 0.000045 mm−5 7.7
A2,2 −0.0000056 mm−6 0.0000074 mm−6 0.76
A2,3 0.00000101 mm−6 0.00000038 mm−6 2.6
B1 0.0000702 mm−1 0.0000046 mm−1 15
B2 −0.0000441 mm−1 0.0000032 mm−1 14
C1 0.000049 0.000010 4.9
C2 −0.0003453 0.0000094 37
r0 1.5 mm

Table 5 shows the correlations between the parameters of model D. The parameter
groups for the radial distortion correction (group 1: A1,0, A1,1, A1,2, A1,3 and group 2: A2,1,
A2,2, A2,3) reveal high correlation values between each other within the groups, sometimes
almost 100%. However, the correlations between groups are close to zero.

Table 5. Correlations between the parameters of model D.

c xp yp A1,0 A1,1 A1,2 A1,3 A2,1 A2,2 A2,3 B1 B2 C1 C2
c 1

xp 0.062 1
yp −0.102 0.041 1

A1,0 −0.368 0.005 −0.005 1
A1,1 −0.013 −0.006 0.011 −0.795 1
A1,2 0.008 0.002 −0.008 0.732 −0.98 1
A1,3 −0.004 −0.001 0.006 −0.679 0.944 −0.99 1
A2,1 −0.692 −0.008 0.013 0.523 0.011 −0.008 0.005 1
A2,2 0.667 0.007 −0.019 −0.508 −0.011 0.008 −0.005 −0.991 1
A2,3 −0.638 −0.006 0.022 0.489 0.01 −0.007 0.004 0.969 −0.993 1
B1 −0.02 0.888 0.047 0.014 −0.009 0.005 −0.002 0.003 −0.003 0.003 1
B2 0.012 0.052 0.718 −0.008 −0.001 0.002 −0.003 −0.022 0.018 −0.016 0.044 1
C1 0.148 0.028 0.076 −0.011 −0.001 −0.001 0.001 −0.02 −0.004 0.019 0.019 0.084 1
C2 0.008 −0.054 −0.058 −0.001 −0.004 0.005 −0.007 −0.006 0.005 −0.004 −0.019 −0.002 0.008 1

Table 6 depicts the standard deviations of the unit weights s0 of the bundle adjustments
of the different models applied to the data of the DJI Mavic Pro camera to enable a first
assessment of differences between different approaches. It already becomes obvious that
models C and D reveal a similar performance and that they seem to be significantly better
than Model B. A further accuracy analysis is shown in Section 2.7.

Table 6. Standard deviation of the unit weight after the bundle adjustment with fixed object coordi-
nates and considering different models describing lens distortions.

Model s0 after Bundle Adjustment

Model A (pure pinhole model) 0.00211 mm =̂ 1.37 px
Model B (standard distortion model—Brown) 0.00098 mm =̂ 0.64 px

Model C according to [15] 0.00057 mm =̂ 0.37 px
Model D (bi-radial r0 = 1.5 mm—our method) 0.00054 mm =̂ 0.35 px
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2.5. Systematic Effects in the Residual Errors of the Extended Distortion Models

Residual plots were computed to give a visual impression of potential remaining
systematic residual errors (Figure 10 for model C and Figure 11 for model D, i.e., bi-radial).
Both plots show randomly distributed residuals that have much smaller magnitudes
compared to those in model B (see Figure 4).

Figure 10. Residual plot after bundle adjustment with fixed object coordinates using model C.

Figure 11. Residual plot after bundle adjustment with fixed object coordinates using model D.

Again, the residuals were decomposed into a radial and tangential part. Figure 12
shows the result for model C, whereas Figure 13 depicts the components for the bi-
radial model (D). For model C, an oscillation in the radial components becomes obvi-
ous (Figure 12a). This effect could be caused by the high correlations between the radial
distortion parameters of model C. The correlations between the parameter groups for
radial distortion of model D are close to zero. However, this effect does not influence the
standard deviation of the unit weight significantly. The components reveal the aspired
non-systematic behavior for the bi-radial model D (Figure 13a).
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(a) (b)

(c) (d)
Figure 12. Residuals after bundle adjustment using model C. (a) Radial components versus image
radius. (b) Tangential components versus image radius. (c) Radial components versus the azimuth of
the image point. (d) Tangential components versus the azimuth of the image point. For all subplots,
the moving median is shown in red.

(a) (b)

(c) (d)
Figure 13. Residuals after bundle adjustment using model D: (a) Radial components versus image
radius. (b) Tangential components versus image radius. (c) Radial components versus the azimuth of
the image point. (d) Tangential components versus the azimuth of the image point. For all subplots,
the moving median is shown in red.



Remote Sens. 2023, 15, 5283 15 of 20

2.6. Strategy for Automatic Zone Segmentation of the Bi-Radial Model

To date, the radial zone segmentation radius r0 of the bi-radial model had been
manually set to 1.5 mm. In general, the optimal value should be determined automatically.
However, r0 cannot be estimated in bundle adjustment due to its discrete nature. An
obvious first approach is an iterative (brute force) computation of the bundle adjustment
with different values of r0, where the best r0 corresponds to the lowest standard deviation
of the unit weight. Accordingly, Figure 14a shows the standard deviation of the unit weight
as a function of the limit value r0. In the range of 1.3 mm < r0 < 1.8 mm, s0 does not change
significantly, indicating that the selection of the segmentation value for the concentric zones
is rather uncritical.

(a) (b)

Figure 14. (a) Standard deviation of the unit weight s0 of the bundle adjustment as a function of r0.
(b) Standard deviation of the unit weight s0 of the polynomial fit as a function of r0.

A much less computationally intensive approach is the brute force computation of the
polynomial fit introduced in Section 2.1. Only one bundle adjustment using model A is
performed for the polynomial analysis. Then, the radial components of the residuals are
calculated (Equation (9)). Afterwards, a polynomial fit in the residual data is performed
by a step-wise increase in the values of r0. The standard deviation of the unit weight of
the polynomial fit as a function of r0 is displayed in Figure 14b. The behavior coincides
with the former approach (shown in Figure 14a), and therefore the polynomial analysis
is recommended.

2.7. Validation

The aim of this subsection is to evaluate the accuracy of the proposed extended models
C and D. Their validation was performed by comparing the object coordinates, which
were calculated in a free net adjustment (self-calibration) using images captured with
the UAV camera, to the reference coordinates, which were independently obtained by a
second camera with a significantly higher accuracy potential (Nikon D300 camera (from
company Nikon) with a Nikkor lens with a focal length of 20 mm). The same target field as
in Section 2.1 was used (Figure 5; 7 m × 3 m × 1 m), this time with four additional scale
bars of superior precision included. Figure 15 shows the object points and the position of
the scale bars as well as the image network geometry used for both cameras.

Figure 16 shows the combined violin plots (including extreme values, blue) and box
plots (including outliers in magenta) of the standard deviations (sX, sY, sZ) of the object
point coordinates from the bundle adjustment. The standard deviations of the unit weights
are also listed below the plots. The Nikon D300 camera revealed the smallest values for
the standard deviations (left side of Figure 16). The standard deviations of the DJI Mavic
Pro camera - computed with the different models B, C and D - highlight that the errors
could be reduced using models C and D. The median of sZ was reduced by two thirds in
the case of model D when compared to model B. Models C and D (bi-radial) showed a
similar behavior, with model D indicating slightly better values. However, both models
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still exhibited higher standard deviations compared to the values obtained with the Nikon
camera data (using model B).

Figure 15. Object points and scale bars as well as the image orientations (illustration created with
AICON 3D Studio (version 12.50.03)).

Figure 16. Combined violin and box plots of the object coordinates’ standard deviations computed in
the bundle adjustment and corresponding standard deviation of the unit weight (s0) in mm and in px.

In order to evaluate the accuracy of the different models, the object coordinate sets
obtained from the image bundles of both cameras (DJI Mavic Pro and Nikon D300) were
compared, with the latter camera providing the reference coordinates. Therefore, the
parameters of a least-squares rigid transformation were computed to align the coordinates
to the reference. The rigid body transform was chosen because the bundle adjustment was
performed with scale bars so that the scale is comparable between the coordinate sets. The
distribution of the residual vectors is visualized on the left side of Figure 17. The estimation
of the parameters was performed between the data sets of the Nikon D300 using model
B and the DJI Mavic Pro using different models (i.e., model B in Figure 17a, model C in
Figure 17b, model D in Figure 17c). Model C and model D show significantly smaller
residual vectors than model B. Differences between model C and D are hardly noticeable.
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The standard deviations of the unit weights of the parameter determination of the rigid
body transformation were 0.39 mm for the first case (DJI model B), 0.23 mm for the second
(DJI model C), and 0.24 mm the third case (DJI model D).

(a)

(b)

(c)

Figure 17. Residuals (left side, scale factor 300) and combined violin and box plots (right side) for
the residuals’ lengths of the rigid body transformation between: (a) DJI Mavic Pro camera (model B)
and Nikon D300 camera (model B), (b) DJI Mavic Pro camera (model C) and Nikon D300 camera
(model B), (c) DJI Mavic Pro camera (model D) and Nikon D300 camera (model B).
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Residual systematics are still visible in Figure 17 and deviations, especially of the
points in the foreground, are noticeable. Due to their smaller number, these foreground
points have a smaller effect on the transformation parameter computation than the
many more points on the wall in the background. This circumstance may lead to
higher residuals.

Figure 17 also shows the combined violin and box plots for the residual vector lengths
of the rigid body transform using the different models for the DJI Mavic Pro camera. The
median residual vector length is 0.62 mm for the first case (standard Brown model B) and
the maximum amounts to 2.1 mm. For models C and D, the median residual vector length
is 0.35 mm and the maximum deviations are 1.1 mm. These (standard) deviations are
considered as accuracy values.

3. Discussion

Based on the results presented, the following conclusions were drawn:

• In this study, we could demonstrate that the estimation of a bi-radial distortion
model can decrease the errors during bundle adjustment when using low-cost UAV
cameras that might be difficult to model with standard, physics-based models
such as the Brown model. The unusual systematic errors of the DJI Mavic Pro
camera could be reduced using the proposed bi-radial model (model D) as well as
model C (extended polynomial of radial distortion). The standard deviations of
the unit weights of the bundle adjustment could be significantly reduced (60% for
model C and 64% for model D). The improvement was also recognizable visually
in the residual vector plots. The improvement was most evident in the center of
the images.

• In model C, some residual systematics still remained (Figure 12a), which were no
more visible in our proposed model D (Figure 13a).

• In contrast to model C, a segmentation zone radius r0 has to be determined for
our proposed model D. Our experiments revealed that there was a range, between
1.3 mm and 1.8 mm, in which the results did not change significantly. Furthermore,
an automatic determination method is possible (as shown in Section 2.6). The addi-
tional step of the determination of r0 requires a higher computing effort compared
to model C.

• For the accuracy evaluation, the object coordinates computed via free bundle adjust-
ment of the DJI Mavic Pro camera with the different models were compared to the
reference coordinates obtained by a well-known camera. The residuals of a rigid body
transformation were analyzed, where the standard deviation of the unit weight of the
transformation was reduced by 40% using models C and D compared to the standard
Brown model (model B). Model C and model D showed similar residuals and the
differences were hardly noticeable.

• Future work could concentrate on a constraint in which the polynomials of the bi-radial
model fit together at the transition point between both zones concerning function
value and the derivative similar to spline constraints.

4. Conclusions

Popular low-cost UAV-based cameras such as the very widespread DJI Mavic Pro
camera often show unusual lens distortion patterns, which cannot be handled well by
standard camera modeling and calibration approaches. We introduce a novel bi-radial lens
distortion model consisting of separate polynomials for two concentric image zones. While
standard models show clear systematic effects in residual plots after bundle adjustment,
the new model provides significantly better precision values and leaves no systematic
effects in the residual plot, with the most evident improvement at the image center. The
segmentation of the image space into the two zones can be performed automatically and
this turned out to be rather uncritical. The model may also be useful for modeling mobile
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phone imaging devices and other similar low-cost cameras. It may also be easily extended
to a segmentation of the image into more than two concentric zones.
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