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Abstract: The need for reliable wireless communication in remote areas has led to the adoption of
unmanned aerial vehicles (UAVs) as flying base stations (FlyBSs). FlyBSs hover over a designated
area to ensure continuous communication coverage for mobile users on the ground. Moreover, rate-
splitting multiple access (RSMA) has emerged as a promising interference management scheme in
multi-user communication systems. In this paper, we investigate an RSMA-enhanced FlyBS downlink
communication system and formulate an optimization problem to maximize the sum-rate of users,
taking into account the three-dimensional FlyBS trajectory and RSMA parameters. To address this
continuous non-convex optimization problem, we propose a TD3-RFBS optimization framework
based on the twin-delayed deep deterministic policy gradient (TD3). This framework overcomes
the limitations associated with the overestimation issue encountered in the deep deterministic
policy gradient (DDPG), a well-known deep reinforcement learning method. Our simulation results
demonstrate that TD3-RFBS outperforms existing solutions for FlyBS downlink communication
systems, indicating its potential as a solution for future wireless networks.

Keywords: downlink communication; flying base station; rate-splitting multiple access; twin-delayed
deep deterministic policy gradient; unmanned aerial vehicle

1. Introduction

In recent years, the increasing demand for wireless communication networks has been
driven by the widespread use of mobile devices, Internet of Things (IoT) applications, and smart
cities. To meet this demand, the next generation of wireless technology (6G) is being developed
to be even faster, more efficient, and more capable than its predecessors [1–4]. This advanced
technology could enable innovative applications and services that were previously un-
thinkable. However, IoT devices can be installed in remote and isolated locations such
as rural areas, mountains, and deserts. Establishing direct communication between IoT
devices can be challenging in these areas due to their considerable distance. Additionally,
ground base stations (BSs) are often absent in these remote areas due to the high economic
costs. To address these challenges, aerial access networks and space–air–ground integrated
networks have been developed [1–5]. Notably, due to exceptional merits such as high mo-
bility, maneuverability, and flexibility, unmanned aerial vehicles (UAVs) can be deployed
as flying base stations (FlyBSs or UAV-BSs), which enables rapid deployment in remote
locations, disaster-stricken zones, or temporary events [4,5]. In addition, UAVs can also
serve as wireless power transmitters, enabling energy delivery to ground users via wireless
power transfer technology [6].
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Concurrently, as the number of mobile users continues to grow, the available spectrum
resources have diminished significantly. In light of this, multiple access techniques have
become increasingly essential [7]. Recently, rate-splitting multiple access (RSMA) has
been proposed as a novel multiple access scheme to improve the efficiency of multi-user
communication systems [8,9]. Previous research has shown that RSMA outperforms other
advanced multiple access techniques, i.e., non-orthogonal multiple access (NOMA) [10,11].
Specifically, NOMA requires a single user to decode the messages of other co-scheduled
users to obtain its intended message [7], which reduces the communication performance.
In contrast, RSMA divides each user’s message into two parts: common and private. All
users can decode the common part, while the intended recipients only decode the private
parts. Then, the original message can be reconstructed from the common part and the
private part via a successive interference cancellation (SIC) technique [12]. RSMA can
be used with multi-antenna transmission to achieve an optimal performance with high
coverage. Several research efforts have been devoted to RSMA [10,11,13–18]. However,
they have been limited to terrestrial BSs. On the other hand, FlyBSs offer greater freedom
in system design, enabling new and innovative applications. For example, high-altitude
UAVs with RSMA have assisted in computation offloading from IoT devices and smart vehi-
cles [19,20]. However, these platforms are typically stationary in one stratosphere location,
limiting their mobility and flexibility. Additionally, they can be more expensive to build
and maintain than low-altitude UAVs and require a longer deployment time. Prior work
on RSMA-based FlyBS downlink communication systems has focused on developing opti-
mization techniques to improve the performance, but none of these studies have considered
time-varying environments [21–24]. In [25], multiple UAVs assist a BS in providing RSMA
communication services to ground users; however, they are deployed in fixed locations.
In [26], a FlyBS downlink communication system with RSMA is proposed; however, it is
limited to two-dimensional (2D) space, which restricts the system’s performance. To fully
exploit the FlyBS’s high mobility and flexibility, it should be operated in three-dimensional
(3D) space. In addition, optimizing RSMA-enabled FlyBS communications poses challenges
due to the complex interactions between the parameters of RSMA, FlyBS, and mobile users.
Traditional optimization methods may not solve these problems efficiently, especially in
dynamic environments where the channel conditions and user mobility change frequently.
Therefore, the optimization aspect of RSMA-enabled FlyBS systems with 3D trajectory
continues to be an open area of research.

Recent advances in machine learning have led to the emergence of deep reinforcement
learning (DRL) [27], a powerful technique that combines reinforcement learning and deep
learning to solve a wide range of optimization problems [28–32]. Deep Q-network (DQN)
is the first DRL algorithm [27]. DQN approximates the Q-function using a deep neural
network (DNN), which estimates the expected cumulative reward for taking a specific
action in a particular state and following a certain policy. The Q-function is then used
to select the action with the highest expected reward. However, DQN can be unstable
to train and slow to learn in complex environments. Additionally, when using DQN to
solve optimization problems, the action space must be discretized, which can reduce the
optimization performance. In contrast to DQN, the deep deterministic policy gradient
(DDPG) is specifically designed for scenarios involving high-dimensional continuous action
spaces [33]. DDPG employs an actor–critic architecture consisting of two DNNs: an actor
network and a critic network. The actor network is responsible for taking the optimal
action in a given state, while the critic network evaluates the quality of action chosen by
the actor network. At present, many studies have applied the DDPG algorithm to wireless
communication systems [19,20,26,34,35]. However, one shortcoming of DDPG is that the
learned Q-function often overestimates the Q-values, resulting in significant errors in the
policy. To address this issue, the twin-delayed deep deterministic policy gradient (TD3)
algorithm, a more recent DRL approach, has been introduced [36]. It uses three critical
modifications to DDPG: clipped double Q-learning, target policy smoothing, and delayed
policy updates. TD3 is more stable and robust than DDPG and it can perform better than
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other DRL techniques in various tasks [36]. However, to the best of our knowledge, there
is no existing research on applying TD3 to optimize RSMA-enabled FlyBS systems with
3D trajectories.

Motivated by the above discussion, this paper proposes a TD3-based optimization
framework, TD3-RFBS, to optimize an RSMA-enhanced FlyBS system with a 3D trajectory.
The system has potential practical implications, such as facilitating emergency communica-
tion services in disaster zones, connecting rural communities to the Internet, and enabling
remote monitoring and control of critical infrastructure. The key contributions of this work
can be summarized as follows:

• We introduce an RSMA-enhanced FlyBS system, where the FlyBS equipped with a
multi-antenna array serves mobile ground users in hard-to-reach areas. At the same
time, the communication channel is improved by RSMA technology. To maximize
the downlink sum rate, we formulate an optimization problem that considers the 3D
FlyBS trajectory and RSMA parameters, i.e., the precoding matrix and common rate
vector, while considering the mobility of ground users.

• We transform the problem into a Markov decision process (MDP) by carefully defining
the state space, action space, and reward function. To solve the MDP model, we
develop the TD3-RFBS optimization framework, which stands for Twin-Delayed Deep
Deterministic policy gradient for Rate-splitting multiple access-enhanced Flying Base
Station. The TD3 algorithm is used to overcome the overestimation bias issue present
in the well-known DDPG algorithm. In the framework, the FlyBS engages, monitors,
and acquires knowledge of channel patterns without any pre-existing channel state
information (CSI) to optimize its actions.

• We conduct extensive simulations to evaluate the performance of the TD3-RFBS
framework. The results confirm that the framework outperforms baseline solutions,
including DDPG and local search-based counterparts regarding the learning conver-
gence and total achievable rate.

Structure: The rest of this paper is organized as follows. Section 2 reviews the back-
ground and related work. Section 3 presents the system model and problem formulation.
Section 4 describes the MDP model and introduces our proposed framework based on the
TD3 algorithm. The simulation results and performance analysis are presented in Section 5.
Finally, we conclude the paper in Section 6.

Notations: Matrices and vectors are represented by boldface uppercase and lowercase
symbols, respectively. The transpose, Hermitian transpose, and trace of a matrix are
denoted by (·)T, (·)H, and tr(·), respectively. A complex number’s real and imaginary parts
are represented by <(·) and =(·). E(·) denotes the expectation operator, ⊗ denotes the
Kronecker product, || · || denotes the Euclidean norm, | · | denotes the absolute value, and I
denotes the identity matrix.

2. Related Work

Recently, rate-splitting multiple access (RSMA) technology has emerged as a promising
approach for advancing next-generation mobile networks [8,9]. Table 1 presents a com-
prehensive comparison of studies closely related to our work on downlink RSMA-based
communication systems. According to the principles of RSMA, each message intended
for a user is partitioned into two parts: a common part and a private part. The common
parts are merged into a single common signal, and the private part is encoded into a
private signal for each user individually. By decoding interference partially and treating
the remainder as noise, RSMA enables effective interference management. This allows
RSMA to enhance various aspects of communication systems, such as reliability, energy
efficiency, spectrum efficiency, and quality of service (QoS). RSMA outperforms other
multiple access techniques by offering greater flexibility and powerful interference manage-
ment capabilities [10]. In downlink RSMA, numerous studies have focused on optimizing
the transmission power and precoding vectors for both the common and private signals
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to achieve various objectives, such as sum-rate maximization [10,13–15], max–min rate
fairness [16,17], and energy efficiency maximization [11,18].

Table 1. A comparison with existing studies on downlink RSMA-based communication systems.

References Optimization
Objective

Optimization
Method FlyBS FlyBS Trajectory Time-Varying

Environment

[10] Sum-rate
maximization

Alternating
optimization 7 Not applicable 7

[11] Energy efficiency Successive convex
approximation 7 Not applicable 7

[13] Sum-rate
maximization DRL (i.e., PPO) 7 Not applicable 3

[14] Sum-rate
maximization

Successive convex
approximation 7 Not applicable 7

[15] Sum-rate
maximization Evolutionary game 7 Not applicable 3

[16] Max–min rate
fairness Iterative algorithm 7 Not applicable 7

[17] Max–min rate
fairness

Successive convex
approximation 7 Not applicable 7

[18] Energy efficiency Successive convex
approximation 7 Not applicable 7

[21] Sum-rate
maximization

Alternating
optimization 3 Optimal position 7

[22] Sum-rate
maximization

Alternating
optimization 3 Optimal position 7

[23] Sum-rate
maximization

Alternating
optimization 3 Optimal position 7

[24] Energy efficiency Sub-problem
decomposition 3 Optimal position 7

[25] Sum-rate
maximization DRL (i.e., PPO) 3 Fixed position 3

[26] Sum-rate
maximization DRL (i.e., DDPG) 3 2D trajectory 3

Our work Sum-rate
maximization DRL (i.e., TD3) 3 3D trajectory 3

The symbol 3 is used to denote that an aspect is included in the study, while 7 indicates that it is not.

Nonetheless, the studies above have predominantly focused on terrestrial-fixed BSs.
In contrast, UAV-aided communication systems offer greater cost-effectiveness and po-
tential for improved QoS due to their high mobility, on-demand coverage, and ability to
establish line-of-sight (LoS) links compared to their terrestrial counterparts. In [21], the au-
thors explored the simultaneous optimization of the UAV position and RSMA variables
to maximize the downlink weighted sum-rate in a UAV-aided communication system.
However, their objective was to find the optimal placement for UAV deployment, not
the UAV trajectory. Similarly, several studies [22–24] investigated the performance of
downlink communication in a UAV-BS setting utilizing RSMA to serve multiple users.
These works adopted alternating optimization, sub-problem decomposition, and iter-
ative approaches, which are problem-specific, challenging to extend to general cases,
and do not consider the time-varying environment [21–24]. On another front, DRL has
been widely used to solve non-convex optimization problems in wireless communication
systems [13,19,20,25,26,34,35,37]. The work [25] proposed a multi-UAV-assisted BS system
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to deliver communication services to ground users with both downlink and uplink RSMA
transmissions. It used proximal policy optimization (PPO) to solve the sum-rate maximiza-
tion problem in the system. However, PPO can be slow to converge, especially in complex
environments, and it requires a large amount of data to train effectively, which can be a chal-
lenge in some applications. In [34], the authors utilized a UAV with an intelligent reflecting
surface as a relay to assist downlink communications from a terrestrial BS to ground users.
In [19,20,37], RSMA-based high-altitude UAVs assisted IoT devices or connected vehicles
with computation offloading. In [26], the authors investigated a UAV-supported downlink
communication system with RSMA. However, these studies limit the UAV flying trajectory
to a 2D space or deploy the UAVs in a fixed position, which restricts the mobility and
flexibility of the UAVs [19,20,25,26]. In addition, the well-known DDPG algorithm, which
is used in [19,20,26,34,37], suffers from the overestimation problem, which can degrade the
performance of wireless communication systems. The TD3 algorithm can address this issue
through three improved techniques: clipped double Q-learning, target policy smoothing,
and delayed policy updates. TD3 has proven more efficient than DDPG, PPO, and other
DRL approaches in various learning tasks [36].

Different from the previous studies, we focus on a multi-antenna FlyBS with RSMA
that can fly along a 3D trajectory while providing communication services to mobile
ground users. The multi-antenna technology has been extensively employed in ground-
based BSs [10,11,13–18]. By leveraging the benefits of increased signal strength, expanded
coverage, reduced interference, and beamforming capabilities, multi-antenna arrays can
provide reliable and high-quality wireless services. With recent technological advancements
such as miniaturized antennas, low-power electronics, and improved signal processing
techniques, the integration of multi-antenna arrays into FlyBSs holds immense potential
for enhancing communication capabilities in remote and underserved areas [21,24–26].
Lastly, we leverage the TD3 algorithm to solve the optimization problem rather than the
well-known DDPG algorithm, which suffers from an overestimation bias.

3. System Model and Problem Formulation

This section begins with an introduction to the system model for a FlyBS system en-
hanced by RSMA, including mobility, channel, and signal models. Following this, the prob-
lem of maximizing the sum-rate is formulated.

3.1. System Model

We investigate the RSMA-enhanced FlyBS model depicted in Figure 1. The system
comprises a UAV-BS or FlyBS equipped with a uniform rectangular array containing
N = N1×N2 antennas and K single-antenna ground users (GUs or sensors devices installed
in remote areas). Due to obstacles such as high buildings, mountains, or long distances,
a direct link between the ground BS and the GUs is unavailable. Therefore, the FlyBS is
used to transmit data to GUs. The group of K GUs is denoted by K = {1, 2, . . . , K}. Similar
to [4,20,34], the operation time is divided into T equal time slots, each with a duration of τ,
which is sufficiently small to assume that the network topology remains constant within
each time slot. The collection of time slots is represented as T = {1, 2, . . . , T}.
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Figure 1. RSMA-enhanced FlyBS system.

3.1.1. Mobility Model

The location of the FlyBS and GU k are denoted by q0(t) = (x0(t), y0(t), z0(t)) and
qk(t) = (xk(t), yk(t), zk(t)), respectively, in a 3D Cartesian coordinate system. Accordingly,
the distance between the FlyBS and GU k can be calculated by

dk(t) =
√
(x0(t)− xk(t))2 + (y0(t)− yk(t))2 + (z0(t)− zk(t))2. (1)

During time slot t with duration τ, the FlyBS can fly towards an azimuth angle of
φ0(t) ∈ [0, 2π] and an elevation angle of θ0(t) ∈ [0, π] with a velocity of v0(t) ∈ [0, v0,max]
(m/s), where v0,max denotes the maximum velocity of FlyBS. Hence, its mobility at time
slot t + 1 can be expressed by [34]

x0(t + 1) = x0(t) + v0(t)τ sin(θ0(t)) cos(φ0(t))
y0(t + 1) = y0(t) + v0(t)τ sin(θ0(t)) sin(φ0(t))
z0(t + 1) = z0(t) + v0(t)τ cos(θ0(t))

. (2)

We assume that each GU k moves randomly within the considered area with a velocity
vk(t) ∈ [0, vk,max] (m/s), where vk,max denotes the maximum velocity of the GU k. In
addition, the operation of FlyBS is limited in a region of [xmin, xmax]× [ymin, ymax] with a
height between [zmin, zmax]. Thus, we have

xmin ≤ x0(t) ≤ xmax
ymin ≤ y0(t) ≤ ymax
zmin ≤ z0(t) ≤ zmax

. (3)

3.1.2. Channel Model

In multi-antenna technology, a uniform rectangular array (URA) offers the advantage
of higher gain while maintaining a compact size compared to a traditional uniform linear
array [38]. By employing radiation beam patterns in both elevation and azimuth planes,
URAs provide additional degrees of freedom that enhance interference suppression, wire-
less network coverage, and system capacity. Therefore, we consider equipping the FlyBS
with the URA of dimensions N = N1 × N2, as illustrated in Figure 2.
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Figure 2. Geometry of URA with N = N1 × N2 antennas.

For simplicity of presentation, we omit the time slot index in the following discussion.
Let hk ∈ CN×1 represent the air-to-ground channel from the FlyBS to GU k. The channel hk
is assumed to follow a widely recognized Rician fading model [26,34,35]. Consequently,
the channel connecting the FlyBs and GU k can be expressed as

hk = Lk

(√
κ

κ + 1
hLoS

k +

√
1

κ + 1
hNLoS

k

)
, (4)

where hLoS
k is the deterministic LoS component, hNLoS

k ∼ CN (0, 1) is the non-line-of-sight
(NLoS) component, κ is the Rician factor, and Lk is the distance-dependent large-scale path
loss. According to [26,34,38], since the FlyBS equipped the URA, the LoS component of the
channel hLoS

k is computed by

hLoS
k = ak

(
φAoD

k , θAoD
k

)
= ak,N1

(
φAoD

k , θAoD
k

)
⊗ ak,N2

(
φAoD

k , θAoD
k

)
, (5)

where φAoD
k and θAoD

k represent the azimuth and elevation angle-of-departure (AoD) at
the FlyBS to GU k, respectively, and ak ∈ CN×1 represents the antenna array response
between the FlyBS and GU k. Furthermore, ak,N1

(
φAoD

k , θAoD
k
)

and ak,N2

(
φAoD

k , θAoD
k
)

can be
calculated as

ak,N1

(
φAoD

k , θAoD
k

)
=
[
1, ej 2π

λ d cos φAoD
k sin θAoD

k , . . . , ej 2π
λ (N1−1)d cos φAoD

k sin θAoD
k

]T
,

ak,N2

(
φAoD

k , θAoD
k

)
=
[
1, ej 2π

λ d sin φAoD
k sin θAoD

k , . . . , ej 2π
λ (N2−1)d sin φAoD

k sin θAoD
k

]T
,

(6)

where λ represents the carrier wavelength, d represents the distance between the antennas,
cos φAoD

k sin θAoD
k = x0−xk

dk
, and sin φAoD

k sin θAoD
k = y0−yk

dk
.

3.1.3. Signal Model

Following the one-layer RSMA principle [8,10], the FlyBS divides the intended mes-
sage for each GU k into common and private parts. Next, the common part messages of all
GUs are encoded using a shared codebook into a common signal s0, designed to reduce
interference. All GUs subsequently decode the common signal s0. On the other hand,
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the private part of the message for each GU is encoded using an independent codebook
into a dedicated private signal sk, ∀k ∈ K, which can only be decoded by the correspond-
ing GU. It is important to emphasize that the shared codebook for the common signal is
accessible to all GUs, while the codebooks for the private signals are exclusively known
by their corresponding GUs. This distinction enables each GU to differentiate between its
private signal and the private signals of other GUs [8]. Accordingly, the vector comprising
the K + 1 signals for transmission is represented as s = [s0, s1, . . . , sK]

T, with E(ssH) = I.
A precoding matrix P = [p0, p1, . . . , pK] ∈ CN×(K+1) is used to precode the signals. Here,
pi ∈ CN×1 is the linear precoder corresponding to the signal si, ∀i ∈ {0, 1, . . . , K}. Thus,
the received signal rk at GU k can be expressed as

rk = hH
k Ps + nk

= hH
k p0s0︸ ︷︷ ︸

desired common signal

+ hH
k pksk︸ ︷︷ ︸

desired private signal

+ ∑
i∈K\{k}

hH
k pisi︸ ︷︷ ︸

interference

+ nk︸︷︷︸
noise

, (7)

where nk ∼ CN (0, σ2) represents the additive white Gaussian noise at GU k with noise
power σ2. The transmission power of FlyBS is limited by tr(PPH) ≤ Pmax, where Pmax
represents the maximum transmit power [11,21].

The decoding process at GU k is as follows. Initially, GU k decodes the common
signal s0 by considering all private signals as noise. Once s0 is completely decoded, it is
eliminated from the obtained signals using the SIC technique, enabling the extraction of
private signals [12]. Afterward, GU k decodes its desired private signal sk by considering
the private signals of other GUs as noise. By combining the common part and the private
part from the decoded signals, GU k can retrieve its message. The signal-to-interference-
plus-noise ratio (SINR) for the common signal s0 and private signal sk at GU k can be
respectively determined by

γc
k =

∣∣hH
k p0

∣∣2
∑i∈K

∣∣hH
i pi

∣∣2 + σ2
,

γ
p
k =

∣∣hH
k pk

∣∣2
∑i∈K\{k}

∣∣hH
i pi

∣∣2 + σ2
.

(8)

Accordingly, the achievable rate of decoding s0 and sk at GU k is denoted as Rj
k =

B log2(1 + γ
j
k), ∀j ∈ {c, p}, where B is the bandwidth. Furthermore, the attainable rate of

the common signal is defined as Rc = mink∈K{Rc
k} to guarantee the successful decoding

of the common signal s0 by all GUs. Let Ck denote the part of the common rate allocated
to GU k, such that ∑k∈K Ck = Rc. Thus, the overall achievable rate (in bits/second/Hertz,
or bit/s/Hz) of GU k can be given as

Rk = Ck + Rp
k . (9)

3.2. Problem Formulation

This paper focuses on the joint optimization of the precoding matrix P, the common
rate vector c = [C1, C2, . . . , CK], and the 3D trajectory of the FlyBS (taking into account the
azimuth angle φ0, elevation angle θ0, and velocity v0) to maximize the sum-rate of all GUs
across all time slots. The optimization problem can be formulated as
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max
P,c,φ0,θ0,v0

∑
k∈K

Rk (10a)

s.t. ∑
k∈K

Ck ≤ Rc, (10b)

Ck ≥ 0, ∀k ∈ K, (10c)

Rk ≥ Rmin, ∀k ∈ K, (10d)

tr(PPH) ≤ Pmax, (10e)

0 ≤ φ0 ≤ 2π, 0 ≤ θ0 ≤ π, 0 ≤ v0 ≤ v0,max, (10f)

xmin ≤ x0 ≤ xmax, ymin ≤ y0 ≤ ymax, zmin ≤ z0 ≤ zmax, (10g)

where (10b) ensures that every GU can successfully decode the common signal, (10c)
ensures that each GU’s portion of the common rate is a positive value, (10d) guarantees the
QoS for the GUs by a minimum required rate Rmin, and (10e), (10f), and (10g) ensure that
the FlyBS’s parameters, such as the transmit power, directional angles, velocity, and location,
are within the accessible ranges. It can be observed that the defined problem is non-convex and
difficult to be addressed by conventional optimization approaches. DRL shows its advantages in
solving problems in highly dynamic environments [19,20,26,34,35]. The next section presents a
DRL-inspired optimization framework to address the optimization problem.

4. TD3-RFBS Optimization Framework for RSMA-Enhanced FlyBS System

To tackle the challenges posed by the high complexity and dynamic nature of the
optimization problem, we reformulate it as an MDP model. Subsequently, we propose a
DRL-based algorithm under the TD3 framework to solve the MDP model.

4.1. Markov Decision Process Transformation

An MDP is a mathematical framework for modeling sequential decision-making prob-
lems. We transform the original problem into an MDP model, expressed as a tuple 〈S ,A,R, γ〉.
Here, S denotes the state space, A denotes the action space, R denotes the reward func-
tion, and γ ∈ [0, 1) denotes the discount factor. In this setup, the FlyBS acts as the agent,
while the entire communication system is considered the environment. At each time step t,
the agent observes its present state s(t) ∈ S . Based on this observation, the agent selects
an action a(t) ∈ A. After executing the action a(t), the agent moves to a new state s(t + 1)
and receives an immediate reward r(t). The agent aims to discover an optimum policy
that maximizes the total reward, considering the discount factor γ. The discount factor
determines how much the agent values future rewards relative to immediate rewards.
When γ is set to 0, the agent only cares about immediate rewards. As γ increases, the agent
places more weight on future rewards. Each component of the MDP model is explained in
more detail below.

• State: At every time interval, the state s(t) comprises the present location information
of both the FlyBS and K GUs. By utilizing these observed locations, it is possible to
estimate the CSI between the FlyBS and the respective GUs [34]. The state s(t) is
represented as

s(t) = {q0(t), qk(t)}, ∀k ∈ K. (11)

• Action: At each state s(t), the agent makes decisions on the joint action a(t), which
encompasses the optimization variables of the precoding matrix P(t), the common rate
vector c(t), and the parameters of the FlyBS (i.e., the azimuth angle φ0(t), elevation
angle θ0(t), and velocity v0(t)). It is formally given as

a(t) = {P(t), c(t), φ0(t), θ0(t), v0(t)}, (12)

where pi(t) ∈ P(t), ∀i ∈ {0, 1, . . . , K} is the complex-valued linear precoder for
the signal si and pi,n(t) ∈ pi(t) = <(pi,n(t)) + j=(pi,n(t)), ∀n ∈ {1, 2, . . . , N}. It
is worth noting that the action defined in the above equation contains both discrete,
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continuous, and complex-valued variables which are not directly accessible to the
DRL-based learning algorithms. To address this issue, we redefine the precoding
matrix P(t) as P(t) = [p0(t), p1(t), . . . , pK(t)], where pi(t) ∈ CN×1 is reformed
as pi(t) ∈ R2N×1 = [pi,1(t), pi,2(t), . . . , pi,2N(t)], ∀i ∈ {0, 1, . . . , K} and pi,n(t) ∈
[0, 1], ∀n ∈ {1, 2, . . . , 2N} [35]. Hence, the original value of pi,n(t) can be computed by

<(pi,n(t)) =
Pmax pi,2n−1(t)√

ψi(t)
,

=(pi,n(t)) =
Pmax pi,2n(t)√

ψi(t)
,

(13)

where ψi(t) = ||pi(t)||. In addition, by applying the softmax function to the element
of c(t), we define c(t) as the normalized vector of c(t), where the Ck(t) ∈ c(t) is
calculated as

Ck(t) =
eCk(t)

∑K
i=1 eCi(t)

. (14)

Furthermore, we define φ0, θ0, v0 ∈ [0, 1] as normalized variables of φ0, θ0, and v0,
respectively, to eliminate the effect of diversity of the variables. Thus, we have

φ0(t) = φ0(t)2π,

θ0(t) = θ0(t)π,

v0(t) = v0(t)v0,max.

(15)

As a result, all the action variables are normalized in the range of [0, 1]. The action a(t)
can be rewritten by

a(t) = {P(t), c(t), φ0(t), θ0(t), v0(t)}. (16)

• Reward: The agent is given an immediate reward r(t) upon performing action a(t).
This study aims to maximize the system sum-rate. Therefore, the reward is determined
by the combined achievable rate of all GUs, which is represented as

r(t) = ∑
k∈K

Rk(t). (17)

The agent aims to maximize the discounted cumulative reward, expressed as

R = max
a(t)

E
[

T

∑
t=1

γt−1r(t)

]
. (18)

4.2. TD3-RFBS Optimization Framework

Since the action space is continuous and high-dimensional, the existing works use the
DDPG algorithm as a DRL method for decision making [19,20,26,34,35]. However, DDPG
is sensitive to the hyperparameters and DNN size and it often overestimates the Q-value,
leading to suboptimal or unstable policies. Recently, the TD3 algorithm was proposed to
tackle the above issues with three key techniques [36]:

• Clipped double Q-learning: TD3 uses two critic networks instead of one, as in DDPG.
By using the minimum Q-value from the target networks, TD3 improves the accuracy
of value estimates and reduces the overestimation bias.

• Target policy smoothing: TD3 adds noise to the target action when updating the policy.
This makes the policy more robust to Q-value estimation errors.

• Delayed policy updates: TD3 updates the policy and target networks less frequently than
the critic networks. This prevents the policy from exploiting the overestimated Q-values.
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TD3 is a more stable and robust algorithm with these three improvements than DDPG.
To address the defined MDP model, we propose the TD3-RFBS optimization framework,
which leverages the advantages of TD3 over DDPG. TD3 contains three main DNNs:
one actor network and two critic networks. The actor network selects actions based on
the existing state, whereas the critic networks assess the actions produced by the actor
network. Using two critic networks is intended to address the issue of overestimating
the Q-values. Each main network is accompanied by a target network for stabilizing
the training process. Accordingly, TD3 consists of six DNNs: an actor network µ(s|θµ)
with parameter θµ, two critic networks Q1(s, a|θQ1) and Q2(s, a|θQ2) with parameter θQ1

and θQ2 , respectively, a target actor network µ′(s|θµ′) with parameter θµ′ , and two target
critic networks Q′1(s, a|θQ′1) and Q′2(s, a|θQ′2) with parameter θQ′1 and θQ′2 , respectively.
During the training procedure, the actor network µ(s|θµ) is used to generate action a(t) as

a(t) = µ(s(t)|θµ) +N (0, σ), (19)

where N represents a noise following the Gaussian process. When the agent takes action
a(t), the environment changes from state s(t) to state s(t + 1). The agent is given a reward
r(t) corresponding to the state–action pair (s(t), a(t)). This sample (s(t), a(t), r(t), s(t + 1))
is saved in the experience replay buffer R, which is utilized for updating the network
parameters. A randomly sampled mini-batch of S transition tuples is extracted fromR to
update the actor and critic networks. The critic networks are updated by minimizing the
loss function L(θQj)j=1,2, given by

L(θQj) = S−1
S

∑
i
(Yi −Qj(si, ai|θQj))2, j = 1, 2, (20)

Yi = ri + γ min
j=1,2

Q′j
(

si+1, µ′(si+1|θµ′) + ε|θQ′j
)

, ε ∼ clip(N (0, σ),−c, c), (21)

where ε represents a smoothing noise and c is the binding of noise. TD3 employs delayed
policy updates and utilizes the deterministic policy gradient to update the actor network
parameters every f iterations, as

∇θµ J(θµ) = S−1
S

∑
i
∇aQ1(s, a|θQ1)|s=si ,a=µ(si)

∇θµ µ(s|θµ)|si . (22)

Lastly, TD3 employs a soft update approach to update the target network parameters.
This is performed at a rate of ρ� 1 every f iterations and can be expressed as

θµ′ ← ρθµ + (1− ρ)θµ′ ,

θ
Q′j ← ρθQj + (1− ρ)θ

Q′j , j = 1, 2.
(23)

Algorithm 1 describes the training process for the TD3-RFBS optimization frame-
work. An actor network and two critic networks are initialized with random parameters,
and corresponding target networks are created by copying the parameters from the original
networks (lines 1–2). An experience replay bufferR is established to store the experience
samples (line 3), with a predetermined capability that replaces the earliest sample with a
new one upon reaching its limit. During each episode, an action a(t) is generated from
the current policy and noise given the current state s(t), resulting in an immediate reward
r(t) and a next state s(t + 1) (lines 6–8). The sample (s(t), a(t), r(t), s(t + 1)) is then stored
in the buffer R (line 9). To train the networks, a mini-batch of S transitions is randomly
sampled from the buffer (line 10). The parameters of the critic networks are updated using
the loss function (lines 11–12). The actor network is updated using a delayed update
strategy with deterministic gradient descent, and the target networks are updated using
a soft update constant (lines 14–15). After the specified number of episodes, the training
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phase terminates, yielding a proficiently trained actor network (line 19). The trained actor
network can then generate actions in real-time execution.

Algorithm 1 Training process for the TD3-RFBS optimization framework.

1: Set up actor network µ(s|θµ) and two critic networks Qj(s, a|θQj ), j = 1, 2 with parameters θµ

and θQj , j = 1, 2
2: Set up target networks µ′ and Q′j, j = 1, 2 with parameters θµ′ ← θµ, θQ′j ← θQj , j = 1, 2
3: Establish experience replay bufferR
4: for each episode do
5: for t ∈ {1, . . . , T} do
6: Observe state s(t)
7: Select action with exploration noise a(t) = µ(s(t)|θµ) +N (0, σ)
8: Perform action a(t), observe reward r(t) and new state s(t + 1)
9: Save transition (s(t), a(t), r(t), s(t + 1)) inR

10: Arbitrarily sample a mini-batch of S transitions (si, ai, ri, si+1) fromR
11: Yi = ri + γQ′j(si+1, µ′(si+1|θµ′ ) + ε|θQ′j ), ε ∼ clip(N (0, σ),−c, c)

12: Update the critic networks: L(θQj ) = S−1 ∑S
i (Yi −Qj(si, ai|θQj ))2, j = 1, 2

13: if t mod f then
14: Update the actor network: ∇θµ J = S−1 ∑S

i ∇aQ1(s, a|θQ1 )|s=si ,a=µ(si)∇θµ µ(s|θµ)|si

15: Update the target networks: θµ′ ← ρθµ + (1− ρ)θµ′ , θQ′j ← ρθQj + (1− ρ)θQ′j , j = 1, 2
16: end if
17: end for
18: end for
19: return well-trained actor network µ(s|θµ).

4.3. Computational Complexity

In the following, the computational complexity of the TD3-RFBS framework is an-
alyzed. According to [20,39], the computational complexity for a DNN is based on the
number of multiplications as O

(
∑L−1

l=0 nlnl+1

)
, where L is the number of layers and nl is

the number of neurons of the l-th layer. In training mode, the TD3-RFBS algorithm uses a
finite number of DNNs and requires S×M× T iterations to complete the training phase,
with S being the mini-batch size, M being the total count of episodes, and T being the
number of steps per episode. As a result, the overall computational complexity can be
estimated as O

(
SMT ∑L−1

l=0 nlnl+1

)
.

In execution mode, the critic networks do not contribute to decision making. Instead,
the FlyBS algorithm solely relies on the trained actor network to perform real-time decisions
in a dynamic environment. The computational complexity associated with this process is
approximately O

(
∑L−1

l=0 nlnl+1

)
.

5. Performance Evaluation and Discussion

In this section, we present comprehensive simulation results to demonstrate the
effectiveness of our optimization framework. First, we describe the simulation settings.
Then, we conduct a convergence analysis and compare the performance of our framework
against several baseline methods.

5.1. Simulation Setup

We developed the RSMA-enhanced FlyBS communication system using Python (Ver-
sion 3.10) and trained it using PyTorch (Version 1.12.1). We consider a FlyBS equipped
with URA of N antennas. The FlyBS serves K single-antenna GUs randomly distributed in
a 500 m× 500 m flat area. The initial FlyBS coordinate is set to (500, 500, 100) m and the
height range is limited to [50, 200] m. The maximum speed of FlyBS and GUs are set
to 20 and 5 m/s, respectively. The current simulation setup is limited in capturing the
complexities of real-world environments, such as mountainous terrains. As an alternative,
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the Rician factor value is employed to control the communication channel quality, enabling
a network performance assessment under varying channel conditions [26,34,35]. Unless
otherwise specified, other parameters are set to their default values as shown in Table 2.

Table 2. Parameter setup.

Parameter Value

System

Number of GUs, K 8
Channel bandwidth, B 1 MHz

Noise power, σ2 −174 dBm/Hz
GUs’ maximum velocity 5 m/s

FlyBS’s maximum velocity 20 m/s
FlyBS’s maximum transmit power, Pmax 10 dBm

Number of antennas, N 16
Rician factor, κ 10

Large-scale path loss, Lk 30 + 22 log(dk) dB
Time slot duration, τ 0.1 s

Algorithm

Optimizer Adam
Discount factor, γ 0.95

Size of replay buffer 1 × 106

Size of mini-batch, S 64
Actor learning rate, lrµ 1 × 10−3

Critic learning rate, lrQ 3 × 10−3

Frequency of policy updates, f 2
Policy noise variance, σ 0.2

Noise clip, c 0.2
Soft update rate, ρ 1 × 10−3

Number of training episodes 2000
Number of testing episodes 100

Number of time slots in each episode 300

To demonstrate the efficacy of the proposed framework, we compare it to several
baseline algorithms, which are defined as follows.

• TD3-RFBS: Our proposed optimization framework is based on the TD3 algorithm with
a normalized action space. It optimizes the precoding matrix, common rate vector,
and 3D trajectory for the RSMA-enabled FlyBS to maximize the system sum-rate.

• TD3 algorithm for NOMA-based FlyBS (TD3-NFBS): TD3-NFBS uses the NOMA
scheme for the communication channel between the FlyBS and GUs, as opposed to the
RSMA scheme in TD3-RFBS. In NOMA, the user with the stronger signal must decode
all other users’ messages before accessing its own [7]. The TD3 algorithm optimizes
the precoding matrix and 3D trajectory to maximize the system sum-rate.

• DDPG-based approach (DDPG) [20,26,34]: The formulated MDP model is solved
using the well-known DDPG algorithm [33]. Action normalization is also applied to
ensure fair comparisons.

• Local search-based approach (Local Search) [20,34]: An action is randomly generated
within the feasible policy space. A local search algorithm then improves the action
with a favorable reward at each step.

To assess the effectiveness of the methods, we use the sum-rate metric, which represents
the total achievable rate of all users. A higher sum-rate indicates better performance. We run
ten simulations for each method and compute the average values to ensure reliability.

5.2. Convergence Analysis

To assess the convergence of TD3-RFBS, we compare its convergence patterns of
reward values using different learning rates. The learning rate is a critical parameter that
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significantly impacts the learning performance. We consider three sets of learning rates:
(lrµ, lrQ) = {(1× 10−2, 3× 10−2), (1× 10−3, 3× 10−3), (1× 10−4, 3× 10−4)}, where lrµ

and lrQ represent the learning rates of the actor and critic networks, respectively. All
other hyperparameters are set to their default values. Figure 3 illustrates the convergence
outcomes for the three sets of learning rates. Among them, the set (lrµ, lrQ) = (1× 10−3,
3× 10−3) demonstrates the most favorable training performance in terms of higher rewards
and stability. Consequently, this particular set of learning rates is chosen for the rest of
the simulations.
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lr = 1 × 10 3, lrQ = 3 × 10 3

lr = 1 × 10 4, lrQ = 3 × 10 4

Figure 3. Convergence behavior of TD3-RFBS with three different learning rate configurations.

A comparative analysis is performed to evaluate the convergence of TD3-RFBS and
DDPG, as illustrated in Figure 4. To ensure a fair comparison, the same hyperparameters
are used for both methods, except those specific to TD3-RFBS. While TD3-RFBS and
DDPG exhibit similar reward values at the initial stages, TD3-RFBS demonstrates superior
convergence, achieving a higher and more stable reward after approximately 100 episodes.
This is because DDPG is susceptible to overestimating value functions, which can lead
to suboptimal policies. To mitigate this issue, TD3-RFBS employs two critic networks to
generate two Q-value functions and uses the minimum Q-value during policy updates. It
helps to reduce overestimation bias and improve the performance of TD3-RFBS.
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Figure 4. Convergence behavior of TD3-RFBS in comparison with DDPG.
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5.3. Performance Analysis

In the following, to demonstrate the effectiveness of RSMA over NOMA, we assess
the performance of TD3-RFBS and TD3-NFBS. We also investigate the impact of 3D and
2D FlyBS trajectories on performance. Finally, we compare the performance of TD3-RFBS,
DDPG, and Local Search in the RSMA-enabled FlyBS system with a 3D trajectory by varying
the transmission power and Rician factor.

5.3.1. Comparison of Multiple Access Schemes

Figure 5 compares the achievable sum-rate of the FlyBS system optimized by the
TD3 algorithm using RSMA signaling (TD3-RFBS) and NOMA signaling (TD3-NFBS).
As transmit power increases, both schemes exhibit an improved performance. However,
RSMA performs better than NOMA due to rate-splitting and effective interference man-
agement. With NOMA, increased transmit power also increases interference, limiting the
performance gains. Additionally, NOMA is complex due to the requirement for the user
with the stronger signal to decode the messages of all other users, necessitating multi-layer
SIC [10]. In contrast, RSMA achieves a superior performance to NOMA with a one-layer
SIC, substantially reducing the complexity of the receiver. These results suggest that
RSMA is a more effective signaling scheme for optimizing the system sum-rate in the
FlyBS network.
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Figure 5. Sum-rate performance of the TD3-RFBS with its counterpart, TD3-NFBS, for different
transmit power levels.

5.3.2. Comparison of 3D and 2D FlyBS Trajectories

In TD3-RFBS with 2D space (TD3-RFBS 2D), the FlyBS maintains a fixed altitude of
100 m, while in TD3-RFBS with 3D space (TD3-RFBS 3D), the FlyBS can fly at altitudes
ranging from 50 to 200 m. The starting position of the FlyBS is set to (500, 500, 100) m.
Figure 6 illustrates an example of the FlyBS trajectories obtained by TD3-RFBS 3D and
TD3-RFBS 2D. We can see that the FlyBS trajectory obtained by TD3-RFBS 3D is more
complex than the FlyBS trajectory obtained by TD3-RFBS 2D. This is because TD3-RFBS 3D
has the freedom to fly at different altitudes, which allows it to improve the channel quality.
As a result, TD3-RFBS 3D is expected to outperform TD3-RFBS 2D regarding coverage,
capacity, and reliability.
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Figure 6. FlyBS trajectories obtained by TD3-RFBS. (a) 3D trajectory; (b) 2D trajectory.

Figure 7 shows the sum-rate achieved by TD3-RFBS 3D and TD3-RFBS 2D for different
transmit power levels. As the transmission power increases, the system sum-rate increases
proportionally. Notably, controlling the FlyBS altitude improves the system sum-rate. For in-
stance, at a transmit power of 20 dBm, the sum-rate for TD3-RFBS 3D is 19.07 bit/s/Hz,
which is a 15.09% improvement over the sum-rate of 16.57 bit/s/Hz for TD3-RFBS 2D.
The key to TD3-RFBS 3D’s superior performance is its ability to control the FlyBS altitude.
Positioning the FlyBS at a suitable altitude can reduce interference and improve the LoS
links to the GUs. In contrast, with a 2D trajectory as in TD3-RFBS 2D, the FlyBS cannot
change its altitude in any channel conditions, which limits its performance.
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Figure 7. Sum-rate versus transmit power for 3D and 2D FlyBS trajectories using TD3-RFBS.

5.3.3. Comparison of Algorithms

We assess the effectiveness of TD3-RFBS against DDPG and Local Search algorithms
across varying parameters in the network environment with the RSMA-enabled commu-
nications and 3D trajectory of the FlyBS. Figure 8 plots the downlink sum-rate achieved
by TD3-RFBS, DDPG, and Local Search versus the transmit power of the FlyBS. As the
FlyBS’s transmission power escalates, the sum-rate of all methods also increases linearly.
Compared to Local Search, DRL-based approaches consistently achieve a higher sum-rate.
Local Search starts with an initial solution and iteratively improves it by making small
changes; however, it can become stuck in the local optima and may not find the global
optimum. One advantage of DRL approaches, TD3-RFBS, and DDPG over Local Search is
their ability to learn from experience and improve their performance over time. Of the two
compared DRL approaches, TD3-RFBS achieves better results than DDPG since TD3-RFBS
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overcomes the overestimation issue of DDPG in policy learning. At a transmit power
of 20 dBm, TD3-RFBS obtains a sum-rate of 19.07 bit/s/Hz, which is 8.66% and 17.57%
higher than the sum-rate values achieved by DDPG and Local Search, which are 17.55 and
16.22 bit/s/Hz, respectively.

Finally, the proposed framework and baseline schemes are evaluated in fading chan-
nels with various Rician factor values. Fading channels are suitable models for emulating
realistic channel conditions in wireless communications, such as multipath scattering, tem-
poral dispersion, and Doppler shifts that arise from the relative movement between the
transmitter and receiver [26,34,35]. Figure 9 shows the achievable sum-rate results for five
values of the Rician factor, κ = {10−1, 100, 101, 102, ∞}. As the Rician factor diminishes
in value, the NLoS element within the communication channel experiences an increase,
rising uncertainty in the channel condition. In particular, when the Rician factor is ∞, it
represents an ideal scenario without any chaotic signal, resulting in an optimal performance
for all methods. We can observe that TD3-RFBS performs well in an environment with a
Rician factor of 101, where the obtained sum-rate value is close to that of the ideal scenario.
In contrast, DDPG and Local Search can only achieve results near the ideal situation when
the Rician factor is up to 102. Overall, the sum-rate increases with the Rician factor value
and our proposed framework, TD3-RFBS, outperforms the comparison schemes.
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Figure 8. Sum-rate achieved by three compared methods for various transmit power levels of FlyBS.
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Figure 9. Sum-rate performance of three methods with varying Rician factor values.
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5.4. Practical System Implication

Throughout the evaluations, TD3-RFBS efficiently optimizes the FlyBS trajectory
and RSMA parameters for various configurations in the RSMA-enabled FlyBS system.
This work has significant practical implications for future wireless networks, as it can
improve the performance and reliability of aerial communication systems. This could
benefit diverse applications such as disaster management, remote sensing, search and
rescue, smart agriculture, and intelligent transportation systems [1,5,19–21]. Examples are
as follows.

• Disaster management: FlyBSs can provide communication coverage in areas where
terrestrial BSs have been damaged or destroyed by natural disasters, such as hur-
ricanes and earthquakes. The TD3-RFBS optimization framework can improve the
performance of these systems, leading to more reliable and efficient communications
in disaster areas, which can be critical for search and rescue efforts.

• Remote sensing: FlyBSs can collect data on remote areas, such as forests, mountains,
and oceans, for various applications, including environmental monitoring and re-
mote control of critical infrastructure. The TD3-RFBS optimization framework can
increase the spectral efficiency of these systems, leading to more timely and accurate
data collection.

While the practical implementation of the proposed framework may face challenges
such as hardware and software requirements, regulatory issues, and cost considerations, we
believe that these challenges can be overcome through further research and development.

6. Conclusions

This paper investigated a sum-rate maximization problem in an RSMA-enhanced
FlyBS system. Since the problem is non-convex and the TD3 algorithm is superior to the
DDPG algorithm, we reformulated the problem as an MDP. We developed an optimization
framework that utilizes TD3, namely TD3-RFBS, to solve the MDP model. This framework
jointly optimizes the 3D FlyBS trajectory, precoding matrix, and common rate allocation
without requiring prior knowledge of CSI. Simulation results showed that the TD3-based
algorithm outperformed the DDPG-based algorithm in terms of reward and convergence.
Moreover, the proposed framework achieved significant rate improvements compared to
other baseline solutions in various scenarios with time-varying channel conditions.

In future work, the system model could be extended to include a multi-FlyBS environ-
ment, paving the way for developing multi-agent DRL methods to tackle the optimization
challenge. To enhance the realism of the simulation environment, future work could focus
on incorporating detailed terrain models that capture the impact of geographical features
on communication channels. Additionally, exploring new communication technologies,
such as reconfigurable intelligent surfaces and terahertz communications, could further en-
hance the system sum-rate. Finally, further research and development in practical systems
are necessary to fully realize the potential of the proposed optimization framework.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two-dimensional
3D Three-dimensional
BS Base station
CSI Channel state information
DDPG Deep deterministic policy gradient
DNN Deep neural network
DRL Deep reinforcement learning
FlyBS Flying base station
GU Ground user
IoT Internet of Things
LoS Line-of-sight
MDP Markov decision process
NLoS Non-line-of-sight
NOMA Non-orthogonal multiple access
QoS Quality of service
RSMA Rate-splitting multiple access
SIC Successive interference cancellation
TD3 Twin-delayed deep deterministic policy gradient
UAV Unmanned aerial vehicle
URA Uniform rectangular array
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