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Abstract: This study endeavors to produce a comprehensive land cover map for Morocco, addressing
the absence of such a detailed map in the country. Our research encompasses ecological and climatic
aspects specific to Morocco, while the methods used can be adapted to various regions and countries,
considering their unique climatic conditions and land cover types. A combination of MODIS and
Landsat datasets was employed to create a 5 km resolution Land Use and Land Cover (LULC)
map for the entire nation. The process involved the aggregation and advanced processing of these
datasets using surface processes algorithms. The resulting LULC map is the first of its kind for
Morocco, shedding light on land cover distribution nationwide. It shows that approximately 13.5%
of the country is covered by forests, predominantly in the Atlas and Rif mountains, Rabat–Sale,
and the southern regions. Grasslands occupy over 16% of the study area, mainly in the north-east
and west. Urban areas, including major cities like Casablanca, Rabat, and Marrakech, span nearly
3400 km2. Moreover, large areas of shrublands and bare lands are evident across the country, while
agricultural lands account for almost 20% of the national territory, mainly in the interior plains and
north-western Atlantic coast. This study forms a crucial basis for ecological and climatic research
in Morocco and serves as a valuable reference for various disciplines such as agriculture, natural
resource management, and climate modeling. The mapping of biophysical parameters for each land
cover class is a key feature of our research, and these parameters will be instrumental in a subsequent
study examining the impact of urban development on surface climate in Morocco. Overall, our study
underscores the importance of understanding biophysical parameters in addressing environmental
and societal challenges.

Keywords: Morocco; biophysical parameters; land cover; MODIS data; Landsat imagery

1. Introduction

Urbanization is transforming extensive tracts of land that were once covered with
vegetation or left bare. According to certain calculations, urban regions now cover nearly 3%
of the Earth’s surface and house over half of the global population [1]. From an ecological
standpoint, urbanization represents a significant and enduring land use change, with its
expansion closely tied to population growth and economic advancement.

Globally, urban expansion, has predominantly encroached upon agricultural land,
with estimates indicating over 60% of such expansion occurring on arable fields over the
past 50 years [2–4].

Urbanization in Morocco displays rapid expansion with significant spatial dispari-
ties occurring nationwide despite efforts to stabilize rural communities, involving both
established urban centers and a network of new units on the outskirts of major cities. This
trend has been particularly accelerated, with an annual growth rate of 3.6% between 1982
and 1994. This growth predominantly occurs in coastal regions of the north and west,
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while the arid or semi-arid southern regions experience less concentration of population.
Simultaneously, Morocco faces a yearly loss of approximately 22,000 hectares of fertile land,
attributed to urbanization, soil overexploitation, and suboptimal plowing methods [5,6].

However, urbanization tends to encroach upon the most fertile and productive lands.
The combined impact of this human-induced land use disruption becomes particularly
pronounced in certain areas, leading to potential changes in surface carbon storage, as
well as alterations in surface water and energy distribution. These changes can have
repercussions on local and regional biological, hydrological, and energy cycles [7]. In terms
of energy, for example, urbanization is characterized by the formation of urban heat islands
that exacerbate warming [8,9] in cities and increase energy consumption [10,11].

Land surface models (LSMs) play a pivotal role in understanding the interactions
involving carbon, energy, water, and momentum exchanges between the soil, vegetation,
and the atmosphere. While linked to atmospheric models, these LSMs suffered from coarse
resolutions [12–14]. However, advancements in incorporating finer details, like biophysical
parameters [12], were driven by the need to capture landscape complexity. LSMs require
precise characterization of land cover and related parameters, significantly influencing their
sensitivity and outcomes [15]. Misclassifying land cover introduces uncertainties, affecting
critical factors like leaf area index and roughness length, thereby influencing surface carbon,
water, and energy fluxes [16]. Accurate parameterization enhances LSMs’ reliability in
depicting intricate environmental processes which in turn serve to assess the interactions
between ecosystems and surface climate.

These models serve as interconnected interfaces within climate models, bridging the
gap between the Earth’s surface and the atmosphere, and prove invaluable in comprehend-
ing and replicating the intricate exchange of carbon, energy, water, and momentum among
the soil, vegetation, and the atmosphere. However, to operate effectively, these models
require several key components: a comprehensive land use map that defines all land cover
types, including artificial urban areas, and their corresponding biophysical attributes, which
encompass various characteristics such as morphology, optics, and physiology, particularly
with regard to vegetation [17]. It is important to note that these biophysical parameters
are highly contingent on the specific vegetation types [18]. Errors in the classification of
land cover can introduce uncertainties into critical calculations involving the fraction of
photosynthetically active radiation (FPAR), leaf area index (LAI), and roughness length
(Zo). These variables have substantial implications for the transfer of carbon, water, and
energy at the interface between the land and the atmosphere [16].

The paper outlines the methodology and structure for developing a continental-
scale gridded land cover dataset that incorporates fractions from 13 distinct land cover
types, derived from MODIS and Landsat data sources. For each category, the dataset
provides time series of biophysical parameters at 16 day intervals over Morocco for 2010.
These parameters are derived using algorithms designed for the Simple Biosphere model
(SiB2) [19]. While the grid maintains a consistent angular resolution of 0.05◦ × 0.05◦

latitude/longitude, for simplicity, the resolution is colloquially referred to as 5 km × 5 km
throughout the paper.

This dataset is designed for simulating surface state variables with the SiB2 model,
specifically exploring how urbanization dynamics influence surface climate.

2. Materials and Methods
2.1. Study Area

Morocco, situated in the northwestern part of Africa, is a Mediterranean nation that
extends along the northern coastline of the Atlantic Ocean, covering a land area of ap-
proximately 710,850 square kilometers [20]. Morocco is divided into 12 administrative
regions and had a population of approximately 33.8 million people in 2022, with over half
of its residents residing in urban areas [21]. Rabat serves as the administrative capital of
Morocco, while Casablanca holds the distinction of being the country’s economic capital
and its largest urban metropolis.
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Morocco is undergoing a notable trend of urbanization, with rural to urban migration
contributing to this shift. Over the period between 2004 and 2016, the urbanization rate
rose from 55% to 60.2% [22].

Morocco’s climate exhibits a diverse range of characteristics. Along the northern
coast, it tends to be temperate, featuring mild winters and hot, dry summers. As one
moves further inland, the climate becomes more continental, marked by colder winters and
similarly hot, dry summers. In the southern regions, the climate transitions from semi-arid
to fully arid as one enters the Sahara Desert [23].

Morocco is characterized by two broad climatic zones: coastal and inland. Temperature
variations are relatively small along the Atlantic coast. The northern and central areas
have a Mediterranean, moderate, and subtropical climate; however, in the mountains,
temperatures can reach as low as −18 ◦C. The peaks of the Atlas and Rif mountains are
covered with snow for most of the year (Figure 1).
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Figure 1. Geographical location of Morocco (The study region), the black contours represent the regions,
and the orange shapes indicate the cities where the population is greater than 500,000 inhabitants.

From a land use perspective, the Moroccan urban system is often described as highly
unbalanced, with a lack of intermediate-sized cities. However, Morocco’s urban structure
has changed significantly over the past 50 years, in terms of both in-city impervious surface
density and the overall number of cities. The urban agglomerations are not isolated points
but are part of a territorial network where some economic logics are at work.

2.2. Data

Within this section, an overview of the dataset employed in this study is provided,
encompassing both the products obtained from the Terra Moderate Resolution Imaging
Spectroradiometer (MODIS) and the Landsat Operational Land Imager (OLI) instruments.



Remote Sens. 2023, 15, 5389 4 of 22

2.2.1. MODIS Data

The sixth iteration of the Moderate Resolution Imaging Spectroradiometer (MODIS)
data product MCD12Q1, which focuses on Land Cover Type, is generated from a combina-
tion of data collected by the MODIS instrument onboard the Terra and Aqua satellites. It
offers comprehensive global land cover information spanning the years 2001 to 2018. The
creation of this product involves supervised classifications applied to the reflectance data
gathered by Terra and Aqua MODIS. Subsequently, these supervised classifications undergo
additional post-processing, which integrates pre-existing knowledge and observations, to
enhance the accuracy and specificity of the identified land cover classes [24].

MODIS vegetation indices, composited over 16 day intervals and various spatial
resolutions, offer a reliable basis for comparing canopy greenness consistently across
both space and time. This greenness is a composite measure of factors such as leaf area,
chlorophyll content, and canopy structure. These vegetation indices are derived from
reflectance data that have been adjusted to account for atmospheric influences in the
red, near-infrared, and blue wavelengths. One commonly used index is the Normalized
Difference Vegetation Index (NDVI), which quantifies the density of vegetation cover on
the land [18,25].

The Normalized Difference Vegetation Index (NDVI) is calculated using the following
formula:

NDVI =
NIR − RED
NIR + RED

(1)

where NIR represents near-infrared reflectance and RED represents red reflectance.

2.2.2. Landsat Data

The Impervious Surface Area (ISA) data employed in this study are sourced from the
Landsat Global Man-made Impervious Surface (GMIS) dataset. This dataset provides global
estimates of the fraction of impervious surfaces, which are derived from the Landsat Global
Land Survey (GLS) dataset for the reference year 2010. The GMIS dataset comprises two
main components: (1) the overall percentage of impervious cover, and (2) the corresponding
uncertainty values assigned to each individual pixel, providing insight into the reliability
of the overall impervious cover estimates [26].

These layers are spatially aligned and cover the same geographical area with a reso-
lution of 30 m. This spatial coverage encompasses the entire world, excluding Antarctica
and a few small islands. Notably, this dataset stands as one of the pioneering Impervious
Surface Area (ISA) datasets that provides insight into the extent of urbanization on a global
scale for the year 2010 [26].

This dataset serves a diverse range of users, catering to individuals interested in
investigating intricate urban land cover details on a global scale at the full 30 m resolution,
as well as modelers seeking to comprehend the climate and environmental ramifications
of man-made surfaces on continental and global levels. For instance, it finds relevance in
localized modeling studies focused on understanding the impacts of urban areas on energy,
water, and carbon cycles, as well as in country-level analyses [22].

2.3. Methods

The approach adopted for this work consists of three phases, (1) the method em-
ployed to create the land cover maps, (2) the method of validating these maps, and (3) the
description of the generation of biophysical parameters over the study area.

The first and third phases are detailed in [27], but a brief summary is provided in this
section.

2.3.1. Development of Land-Cover Maps

The land cover map is created through the amalgamation of two datasets: the Landsat-
based impervious surface data, which provides a detailed depiction of urban areas at a
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spatial resolution of 30 m, and the MODIS 500 m land cover map (MCD12Q1) for the year
2010, covering the designated study area (Figure 1).

The data fusion was performed considering the Landsat data as the most accurate and
was implemented as follows (Figure 2):

1. The different land cover types were aggregated from MCD12Q1 at 500 m and their
fractions in a 0.05◦ × 0.05◦ (equivalent to 5 km × 5 km) Climate Modeling Grid (CMG)
were obtained.

2. The 30 m × 30 m Landsat ISAs were also aggregated to 0.05◦ × 0.05◦ and co-registered
in the same CMG.

3. These Landsat ISA fractions were imposed into the CMG as a replacement for the
urban fraction from MODIS.

When incorporating Landsat Impervious Surface Area (ISA) data into the CMG,
any disparities between the Landsat ISA fraction and the MODIS urban fraction were
distributed proportionally among the other non-urban land cover types already present
within the CMG. This distribution was influenced by the fractions of existing vegetation
classes within the CMG. In scenarios where the MODIS urban class was at 100%, any
differences were allocated across non-urban land cover types that were imported from
neighboring cells. The resultant dataset forms a gridded representation at the CMG level,
spanning the entire study area; each CMG encompassing up to 13 distinct land cover
classes, as outlined in Table 1.
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Table 1. Land cover classes.

Class Code Name

00 LC00 Inland water
01 LC01 Evergreen Broadleaf
02 LC02 Deciduous Broadleaf
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Table 1. Cont.

Class Code Name

03 LC03 Mixed forest
04 LC04 Evergreen Needleleaf
05 LC05 Deciduous Needleleaf
06 LC06 Open and close Savannas
07 LC07 Grassland
08 LC08 Urban buildup (ISA)
09 LC09 Shrubs with bare soil
10 LC10 Tundra
11 LC11 Barren/desert
12 LC12 Cropland

The land cover map and the fraction of each land cover type resulting from this
approach is illustrated in Figures 3 and 4.
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2.3.2. Validation of the Land Use Map

In order to provide reliability to the final product, it is necessary to have a verification
phase to compare our results with data from other land use observations over the study area.

The verification of the maps was performed in two steps:

1. The first using the maps published by the Food and Agriculture Organization (FAO) [28]
and

2. The second using maps published by the Moroccan Department of Water and Forests [29].

It is necessary at this point to note that the nomenclature of the MODIS land cover
classification legend is the same as that used in the Simple Biosphere Model (SiB2) of [19] as
modified in [30] but with different code numbers. As this work is intended for a modeling
study using the SiB2 legend (Table 1), we continue to refer to it as MODIS.

The global land cover data created by the FAO-Land and Water Division is the result
of combining various national, regional, and/or sub-national land cover databases. This
process generates a series of comprehensive thematic land cover layers, with each pixel
nominally measuring 30 m by 30 m. The information in these layers is calculated as a
weighted average of land cover data derived from available large-scale datasets.

This database is developed with a spatial resolution of 30 m by 30 m. The methodology
employed is built upon the utilization of the Land Cover Classification Legend System
(LCCS) and the System of Economic and Environmental Accounting (SEEA). These systems
serve as the foundation for harmonizing different land cover legends from global, regional,
and national sources, ensuring consistency and compatibility across the dataset.

The primary advantage of this product lies in its capacity to retain and uphold the
high-resolution land cover data that are already accessible and in use at the local and
national levels.

The main FAO land cover types existing in Morocco are classified to be compared with
those obtained from the MODIS data aggregation.

This classification is based on the nomenclature provided by the FAO source file and
the fraction of the classes within each CMG, and therefore Table 2 is generated in order to
reclassify and provide a new nomenclature corresponding to that of the MODIS classes.

The land cover class correspondence between FAO and MODIS is summarized in Table 2.
The FAO map was first aggregated from 30 m × 30 m to 0.05◦ × 0.05◦ to facilitate

comparison.
The approach employed to compare the classes of the FAO map and those of the map

developed from MODIS and Landsat data (referred to as the MODIS map hereafter) is
based on studying the intersection of the same land cover type at each CMG between the
two maps, regardless of the fraction, as long as it is greater than zero. For example, at the
pixel level, several types of land covers can coexist. A comparative analysis was conducted,
examining each land cover type individually between the two maps. The intersection
between the LCXX type in the FAO map and the corresponding LCXX type in the MODIS
map was explored, considering three possible scenarios:

1. If FAO type LCXX and the same MODIS type LCXX exist in the pixel, it is inferred that
type LCXX exists at this pixel, and the MODIS classification is confirmed.

2. If the FAO LCXX type exists but the same MODIS LCXX type does not exist in the pixel,
it is inferred that the LCXX type exists at the pixel level, and the MODIS classification
is invalid.

3. If the FAO type LCXX does not exist, but the MODIS type LCXX exists in the pixel,
it is inferred that the LCXX type does not exist at this pixel. In this case, the MODIS
classification is invalidated, and the FAO type is substituted for the MODIS type.

The analysis of the intersection between the FAO map and the MODIS map resulted
in a hybrid map n◦1.
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Table 2. Correspondence of FAO-MODIS classes.

Code FAO Sellers et al. 1996 [19] SiB-Code

11 Post-flooding or irrigated croplands (or aquatic) Cropland 12
14 Rainfed croplands Cropland 12

20 Mosaic cropland (50–70%)/
Vegetation (grassland/shrubland/forest) (20–50%) Cropland 12

30 Mosaic vegetation (grassland/shrubland/forest)
(50–70%)/cropland (20–50%) Savanah 6

50 Closed (>40%) broadleaved deciduous forest (>5 m) Broadleaf deciduous trees 2
70 Closed (>40%) needle leaved evergreen forest (>5 m) Needleleaf evergreen trees 4

100 Closed to open (>15%) mixed broadleaved and needle
leaved forest (>5 m) Mixed Forest 3

110 Mosaic forest or shrubland (50–70%)/grassland (20–50%) Shrubland/Grassland 7 + 9
120 Mosaic grassland (50–70%)/forest or shrubland (20–50%) Grassland 7

170 Closed (>40%) broadleaved forest or shrubland
permanently flooded—Saline or brackish water Grassland/Savanah 7

190 Artificial surfaces and associated areas (Urban areas > 50%) Urban 8
200 Bare areas No vegetation/Bare soil 11 (desert) + 9 (bare)
210 Water bodies Water 0

Source: [19,28].

Furthermore, to validate the forest areas, the map of forest species published by the
Department of Water and Forests (DEF) [29] was used as a baseline. The intersection of
these areas with the forested regions on Hybrid Map n◦1 was re-examined using the same
3-step approach detailed above.

For the DEF map, the approach to the reclassification of types differs from that adopted
for the FAO map, since the DEF map is provided by species, and therefore it was necessary
to classify these species according to their characteristic parameters based on the basic
parameters mentioned in [17]. Subsequently, each class is renamed based on the same
approach used by the FAO classes and using the same nomenclature.

The forest formations in Morocco exhibit a diverse composition of species, encom-
passing approximately 9,631,896 hectares, which accounts for approximately 13.5% of the
country’s total land area [29]. These forests comprise both natural deciduous tree species
such as holm oak, cork oak, and argan trees, as well as coniferous tree species including
Atlas cedar, Berber cedar, and various pine species. They are distributed across various
bioclimatic stages, ranging from semi-arid to sub-humid to humid regions [29].

The forest species map published by the DEF has an initial resolution of 30 m × 30 m.
It has been aggregated to a resolution of 0.05◦ in order to compare it with the hybrid map
n◦1 resulting from the comparison of the MODIS classification with that of FAO.

The DEF map includes only a few MODIS type classes: type 0 (Inland water), types 1
to 5 (forest types), and type 6 (savannah) represented by Alpha species (Table 3).

Table 3. Correspondence of tree species from the Department of Water and Forests with those from
MODIS.

Plant Species from DEF Sellers et al. 1996 [19] SiB-Code

Zen oak Broadleaf evergreen trees 1
Holm oak Broadleaf evergreen trees 1
Cedar oak Broadleaf evergreen trees 1
Argan tree Broadleaf evergreen trees 1

Other deciduous trees Broadleaf evergreen and deciduous trees 1 et 2
Deciduous reforestation Broadleaf evergreen and deciduous trees 1 et 2

Saharan Acacias Broadleaf deciduous trees 2
Tamarix Broadleaf deciduous trees 2
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Table 3. Cont.

Plant Species from DEF Sellers et al. 1996 [19] SiB-Code

Cedar tree Needleleaf evergreen trees 4
Juniper trees Needleleaf evergreen trees 4

Pine trees Needleleaf evergreen trees 4
Softwood reforestation Needleleaf evergreen and deciduous trees 4 et 5

Thuja Needleleaf deciduous trees 5
Fir tree Needleleaf deciduous trees 5
Alpha Savanah 6

Source: [19,29].

The forest formations occupy 6,212,056 ha or an average 9% of the national territory,
generally, the largest part of forests are located on the mountainous massifs of the Rif and
Atlas and also at the level of coastal plains, while the Saharan acacias are present in low
density in the region of Dakhla [29,31,32].

According to the administrative region’s limits, the distribution of forest areas (exclud-
ing Alpha) is as follows: the region of Sous-Massa, is mainly argan and cedar, and that of
the Dakhla–Oued-Eddahab, consists of acacia, and have large sparse forest areas not very
productive. On the other hand, the northern and central regions of Tangier-Tetouan-Al
Hoceima, Fez-Meknes, and Marrakech-Safi are populated with productive stands provided
the high potential of forest production in these regions [29,31,32].

The validation is carried out with the help of the confusion matrix which aims to
measure the quality of our MODIS classification by comparing it to observations from
FAO and DEF pixel by pixel. This validation analysis was performed using the ArcGIS
10.3 software.

To ensure that the urban class map provided by FAO also presents a ground reality,
we compared it at its original resolution of 30 m × 30 m with images available on Google
Earth (GE).

The approach utilized well-calibrated and validated satellite-based datasets, specif-
ically MODIS and Landsat imagery, known for their reliable land cover classification.
Validation was performed by comparing the results with higher-resolution ground obser-
vations from two distinct sources: Food and Agriculture Organization (FAO) data and
Moroccan Department of Water and Forests (DEF) data. While some discrepancies were
noted, it is essential to highlight that this paper presents the first-ever satellite-based land
cover classification for Morocco. This map not only distinguishes various land use types
but also facilitates the assessment of vegetation phenology variations across different re-
gions and climate zones. Despite the initial challenges and discrepancies, our study offers
valuable insights into land cover classification and biophysical parameters for Morocco.

To execute this verification, a confusion matrix was employed. Multiple points within
the FAO urban area were randomly selected. Subsequently, the presence of these points
within the urban area, as depicted in the Google Earth (GE) imagery, was compared.

The results of the validation analysis are presented in Section 3.

2.3.3. Biophysical Parameters

The procedure employed to produce biophysical parameters for the various vegetation
types within the study area is detailed in the work of [17].

These biophysical parameters are calculated directly from the NDVI and land cover types.
These parameters define the phenology of the vegetation as well as its physiological behavior.

The calculated biophysical parameters are:

• Fraction of Photosynthetically Active Radiation «FPAR»: represents the portion of
incoming solar radiation absorbed by green vegetation within the visible spectral range
of 0.4-0.7 µm. FPAR is a crucial biophysical parameter that plays a significant role in
characterizing processes like photosynthesis and the exchange of energy and water
between vegetation and the atmosphere. Moreover, it finds extensive applications in
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monitoring various aspects, including crop growth status, drought conditions, changes
in land use, and vegetation dynamics like phenology [33]. Due to its significance,
FPAR has been recognized as one of the Essential Climate Variables (ECV) by both
the Global Terrestrial Observing System (GTOS) and the Global Climate Observing
System (GCOS) [34]. Satellite observation stands out as the sole method capable
of providing FPAR data with spatiotemporal coverage on both regional and global
scales. Numerous studies have underscored the notion that an increasing proportion
of diffuse radiation can enhance the efficiency of light utilization [35–37], even though
the overall photosynthetically active radiation reaching the canopy top may have
decreased. In various regions around the world, recent research has demonstrated a
trend of diminishing total radiation alongside an increase in the fraction of diffuse
radiation. For instance, Zhu et al. [38] reported a substantial decrease in total radiation
over the past five decades in China. This finding holds significant importance for
global climate change investigations, particularly concerning atmospheric, water,
and vegetation cycles, and has a direct impact on the accuracy of carbon budget
estimations [39–41]. The Fraction of Absorbed Photosynthetically Active Radiation
(FPAR) is calculated using the SiB2 model, which involves several parameters and
mathematical equations to estimate the amount of incoming photosynthetically active
radiation absorbed by vegetation. The specific formula used for FPAR calculation is as
follows:

FPAR =

(
FPARmax − FPARmin

SRimax − SRimin

)
(SR − SRimin) + FPARmin (2)

where the vegetation index by quotient SR:

SR =
NIR

R
=

1 + NDVI
1 − NDVI

(3)

And:
FPARmax = 0.95;
FPARmin = 0.001;
SRimax : the SR value corresponding to the percentile 98% of the NDVI for vegetation
type i;
SRimin: the SR value corresponding to the percentile 5% of the NDVI for vegetation
type i.

• Leaf Area Index «LAI»: is a measure that quantifies the extent of leaf area present
within an ecosystem. It holds significant importance in various ecological processes,
including photosynthesis, respiration, rainfall interception [42–44], as well as calcula-
tions related to albedo and surface roughness. LAI, being a fundamental characteristic
of vegetation, has been recognized as a pivotal climate variable within the realm of
global climate change research [45].

• Canopy Greenness Fraction «G»: Represents the proportion of soil that is covered by
green vegetation. In practical terms, it serves as a measure of the spatial coverage of
vegetation. One notable advantage of using this fraction is that it is not influenced by
the direction of lighting and is highly responsive to the quantity of vegetation present.
Due to these characteristics, the fraction G is a promising alternative to traditional
vegetation indices for monitoring ecosystems [46].

• Canopy Roughness Length: Denoted as Z0, is a critical parameter employed in numer-
ical models to characterize surface roughness. This parameter exerts influence over
the strength of mechanical turbulence and the exchanges of turbulent properties above
the surface. Z0 is determined by considering the frontal area of the average surface
element (facing the wind) divided by the ground area it occupies. In the context of
sub-grid scale vertical heat exchange, which occurs through turbulent eddies, this
can be expressed as the vertical gradient of potential temperature multiplied by the
roughness length. A shorter roughness length signifies reduced exchange between the
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Earth’s surface and the atmosphere. However, it also corresponds to a more robust
near-surface wind flow, particularly at the standard height of 10 m above ground
level [47].

• Canopy Zero Plane Displacement: In turbulent airflow over rough surfaces with
significant roughness elements, a height scale represents a specific vertical distance
that characterizes the average level of momentum transfer between the moving air
and the roughness elements. In conditions of neutral stability, the logarithmic wind
profile assumes a linear shape only when the zero-plane displacement length adjusts
the vertical axis. Various formulas are available to establish a connection between
this height scale and the geometric attributes of the roughness elements, such as
silhouette spacing and area. Tables containing precomputed values for different
surface types can be found in many micro-meteorological references, such as [48].
These tables provide valuable data for assessing and modeling turbulent flows over
diverse terrains and surfaces.

• Bulk Boundary-Layer Resistance Coefficient and the Ground to Canopy Air-Space
Resistance Coefficient: In the article [49], the significance of boundary resistance
coefficient and ground to canopy air space resistance coefficient in energy efficiency
is discussed in detail. The authors suggest that the boundary resistance coefficient
is a measure of the resistance to air flow between two surfaces and is important in
determining the energy efficiency of a building. Similarly, the ground to canopy air
space resistance coefficient is the resistance to air flow between the surface and the
canopy of a building and impacts the energy efficiency of the building. As such, it
is clear that understanding the significance of boundary resistance coefficient and
ground to canopy air space resistance coefficient is essential in order to maximize
energy efficiency. In 2008, DJ Sailor published a study in the journal Elsevier on
energy and buildings. This study explored the advantages and disadvantages of two
different thermal resistance coefficients, boundary resistance coefficient and ground
to canopy air space resistance coefficient. The boundary resistance coefficient is a
measure of the amount of heat that is transferred between two objects or layers, such
as building walls or natural surfaces [50]. In a 2015 study conducted by V Kapsalis and
D Karamanis of Energy and Buildings, the impact of boundary and ground to canopy
air space resistance coefficients on heat transfer was explored. The authors used a
two-dimensional numerical model to calculate the convective heat exchange between
the canopy and the ground, as well as the air temperature near the ground. The
study found that the boundary and ground to canopy air space resistance coefficients
had a significant influence on the heat transfer process. Specifically, the boundary
resistance coefficient had a stronger influence on the heat transfer than the ground
to canopy air space resistance coefficient. This was attributed to the fact that the
boundary resistance coefficient had a higher impact on the air temperature near
the ground, which in turn had an effect on the heat transfer process. The results
of this study provide valuable insight into the impact of boundary and ground to
canopy air space resistance coefficients on heat transfer, which can be used to improve
building design and energy efficiency [51]. The boundary resistance coefficient and the
ground to canopy air space resistance coefficient are two closely related parameters
that together can provide important insights into the performance of a provided air
flow system. By determining the values of these coefficients, diligent researchers can
identify potential problems in the design of any air flow system, leading to better
designs and more reliable systems. The understanding and application of boundary
resistance and ground to canopy air space resistance coefficients is therefore essential
for any researcher delving into the related field of air flow systems [51].
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The FPAR exhibits a linear relationship with the NDVI, as established in [17]. FPAR is
directly employed in the computation of photosynthesis, a crucial process that impacts fac-
tors such as stomatal conductance and the fluxes of carbon assimilation and water vapor in
ecosystems. This relationship underscores the significant role FPAR plays in understanding
and modeling vegetation dynamics and its influence on various environmental processes.

The Leaf Area Index (LAI) exhibits a non-linear relationship with the Fraction of
Photosynthetically Active Radiation (FPAR). The calculation of LAI differs for broadleaf
and needle crops, and when both types are present, it utilizes a linear mixed model, as
outlined in [17]. LAI serves as a fundamental biophysical parameter that determines the
quantity of light intercepted by the canopy, which is essential for photosynthesis. In optimal
growth conditions, the maximum LAI value for a closed canopy is associated with the lower
canopy leaves’ capacity to intercept sufficient light to sustain a positive carbon balance.
This parameter plays a critical role in various components of energy and water balances,
including albedo, transpiration, and conductance.

The green fraction (G) plays a role in adjusting the Leaf Area Index (LAI) over different
time periods and influences the balance between green and non-green (dead) vegetation
within the canopy [19].

Additionally, parameters like Z0, D, C1, and C2 are integral in the aerodynamic calcu-
lations of turbulence fluxes within land surface models. These parameters are estimated
through functional relationships that rely on satellite-derived data, properties that vary
with land cover, and standard aerodynamic principles. They are crucial for accurately
modeling and simulating processes related to heat, moisture, and momentum exchange
between the Earth’s surface and the atmosphere in land surface models [19].

While acknowledging the limitations and uncertainties associated with the surface
processes algorithm in generating biophysical parameters, it is important to emphasize its
demonstrated reliability. Although the surface processes algorithm used relies on input
data from remote sensing sources MODIS and ISA, which may have inherent limitations
due to sensor calibration issues, atmospheric correction errors, and cloud contamination,
this study has showcased its competence in diverse regions. For instance, the surface
processes algorithm used relies on input data from remote sensing sources MODIS and
ISA, which may have inherent has been effectively employed in Marrakech, a city situated
within the study region of Morocco, and in Oran, Algeria, which shares comparable
climatic conditions with Morocco. These successful applications underscore the algorithm’s
adaptability and robustness. Furthermore, the concerns pertaining to various vegetation
types and the quality of input data have been diligently addressed through an extensive
data validation process. This process integrates ground truth data from the Food and
Agriculture Organization (FAO), the Moroccan Department of Water and Forests (DEF),
and Google Earth images, resulting in a high occurrence rate and significantly enhanced
data reliability. This rigorous validation framework has further bolstered the credibility of
the biophysical parameters obtained using this surface processes algorithm.

3. Results & Discussion
3.1. Land Cover Map

To generate a final land cover map for Morocco, the intersection of the MODIS land
cover with the FAO map was used to produce a hybrid-1 map. This resulting hybrid-1 map
was then further confronted to the DEF forest distribution to validate its forest classification
resulting in hybrid-2 map. Finally, the urban area in hybrid-2 map was validated using
Google Earth imagery.

The result of the validation of the hybrid-1 showed a correspondence of more than
80% between the two original maps (Table 4). Most of the land cover classes, from type 2
to type 8 were validated at over 90% accuracy. However, the desert and cropland classes
have a lesser accuracy but more than 87%. The least accurate classification was that of bare
lands. Indeed, bare lands have reflectance characteristics close to those of artificial surfaces
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and often are confused by the classification algorithms. Nevertheless, the urban class was
further discriminated using Google Earth imagery.

Table 4. Matrix for calculating the intersection and error rate of FAO pixels with MODIS pixels for
each land cover type existing in Morocco.

Type of Land Cover Accuracy (%)

type 0 81
type 2 100
type 3 93.8
type 4 90.3
type 6 90.5
type 7 98.7
type 8 93
type 9 14

type 11 89.8
type 12 87.2
Mean 83.8

The second validation effort concerns the intersection between the first hybrid map
(hybrid-1) and the DEF map, resulting in a hybrid-2 map. A statistical analysis was
performed on this map based on the number of pixels with the same label in both maps,
and the results are shown in (Table 5).

Table 5. Pixel by pixel accuracy matrix between the intersection of the huybrid-1 map and the DEF
map for the forest types existing in the region of study, the water, and the savanna classes. Note that
forest types 1, 3, and 5 do not exist in the study region.

Type of Land Cover Accuracy (%)

type 0 67.24
type 2 87.69
type 4 70
type 6 64.44
Mean 72.34

The final step consisted of comparing hybrid-2 with GE imagery. Figure 5 shows a
comparison of the hybrid-2 urban class and the GE images, this comparison was performed
by creating contours on the hybrid-2 urban area and overlaying them over GE images.
The verification was performed by superposition between the two polygons (hybrid-2)
urban class and GE urban class, and shows a good agreement. However, one needs to
keep in mind that the GE map is for 2021 while our data are for 2010. Moreover, ancillary
information suggests that the substantial differences between GE and hybrid-2 urban areas
are primarily attributed to variations in their respective time periods.

The final land cover map is shown in Figure 6.
The final land cover map therefore includes MODIS forest classes consistent with those

of FAO and Water and Forests, in which the short vegetation class (Alpha) was imposed as
ground truth and assigned to type 6 because of its morphological characteristics [52–54]
which are comparable with the characteristics described in [17] which provides the different
morphological, optical, and physiological characteristics of this vegetation type.

Also, the examination of this map reveals that about 96,320 km2 (including more
than 30,000 km2 of alfatiere layers-savannahs) that is to say a rate of 13.5% of the national
territory is occupied by forest formations, which are distributed largely on the mountains of
Atlas, Rif, in the vicinity of the region of Rabat–Salé represented by the forest of Maâmoura
and also in the south of Morocco.
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Figure 5. Upper panel: example of classification results for the 3 urban areas of Marrakech (a1),
Casablanca (b1), and Rabat–Sale–Kenitra (c1). The red areas represent the areas classified as urban
in the elaborated map. The images in the lower panel are Google Earth (GE) images of the same
size showing, in gray color, for the same 3 urban areas of Marrakech (a2), Casablanca (b2), and
Rabat–Sale–Kenitra (c2), the urban areas within the urban perimeters represented in red lines. The
GE images are provided for visual comparison only.

In addition, grasslands are distributed over more than 16% of the study area generally
in the north–east and west of Morocco, urban areas occupy almost 3400 km2 distinguished
by large cities such as (Casablanca, Rabat, Sale, Fez, Marrakech, Agadir, Oujda, and others).
The shrubby areas with bare land are distributed in the major part of the country also for
the bare land which represents the largest fraction of land occupation and which extends
over the whole part of the Sahara and at the level of the east of the country, on the other
hand the agricultural areas occupy almost 20% of the national territory and extend largely
in the interior plains and on the Atlantic coast north–west of the country.

The study of land use is a privileged entry in the evaluation of the interactions between
man and his environment, so the information derived from the analysis of land use is
always useful in identifying appropriate strategies to better manage the state of land
use. To this end, our land use map offers interested actors a co-constructed and evolving
reference tool to better understand the Moroccan territory, and proves useful in obtaining
an overview of how our study area is organized in order to facilitate decision-making by
the different administrations.
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Figure 6. Final land cover map resulting from the two steps of validation of the MODIS data with
the FAO map, and the resulting map confronted the Department of Water and Forestry (DEF) map
to validate the forest types. Validation of the urban pixels was performed using Google Earth
7.3.6.9345 imagery.

Currently, there are no land cover maps of this type and scale available for Morocco,
and several biophysical parameters corresponding to each type of land cover have been
generated, namely FPAR, LAI, NDVI, etc., which will be used later in other studies, such as
the study of the relationship between land cover and surface climate by applying models
to the ground over the entire Moroccan territory.

3.2. Biophysical Parameters

As stated earlier, the land cover map is required for estimating the biophysical param-
eters using remote sensing. Here, a satellite-derived map adapted to the study region has
been used and validated with ground observations from the FAO and the DEF.

For each of the land cover classes within the CMG, seven biophysical parameters were
computed using the final land cover map and the 16 day composite NDVI series for the
year 2010 to estimate the biophysical parameters, as detailed in Section 2.

We used the simple biosphere model (SiB2) formulation [17,19] to calculate, map and
geo-reference the biophysical parameters to each land cover type.

Figure 7 shows the annual cycle of the biophysical parameters (LAI and FPAR) ob-
tained from MODIS for the classes (mixed forest (LC3), savanna (LC6), grassland (LC7),
shrubland (LC9), and cropland (LC12)).
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For the mixed forest class, the leaf area index varies little over the year with a minimum
value of 4.89 m2.m−2 and a maximum value of 6.41 m2.m−2 during the growing season in
the wetland; however, the FPAR parameter remains almost constant throughout the year.
The absolute maximum LAI value is 8.0 m2.m−2.
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Figure 7. The annual variation in biophysical parameters, where (a1,a2) represent FPAR and LAI for
LC3, (b1,b2) for LC6, (c1,c2) for LC7, (d1,d2) for LC9, and (e1,e2) for LC12, in different climatic zones,
including humid (wet), semiarid, arid, and hyper-arid regions.

However, the two parameters FPAR and LAI of class 6 show almost the same pattern
as those of the mixed forest class with a minimum value of order 2.08 m2.m−2 for LAI and
0.69 for FPAR in the semi-arid zone, and in the arid zone the values show a minimum of
1.41m2.m−2 for LAI and 0.59 for FPAR.

The LAI of the LC7 grassland class ranges from 0.13 m2.m−2 to 0.87 m2.m−2 and
that FPAR is between 0.07 and 0.41 for the same land use class. For type LC9, the LAI
varies from 0.34 m2.m−2 to 2.05 m2.m−2 and that FPAR varies from 0.09 to 0.45 which is
comparable to the class 12 intervals with an LAI between 0.34 m2.m−2 and 2.94 m2.m−2

and an FPAR ranging from 0.21 to 0.82.
The annual cycle of vegetation phenology, as deduced from remote sensing data, is

marked by four pivotal transition dates that delineate significant phases in the dynamics
of vegetation over the course of a year: (1) Greening, (2) Maturity, (3) and Senescence and
Dormancy [55–57].

In this research, phenological changes in the greenness of the prevailing natural
vegetation were deduced by examining MODIS satellite imagery. Our primary focus
during the initial analysis was on two significant events: greening, which signifies the
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emergence and growth of green vegetation; and senescence, which represents the decline
and loss of green vegetation within the observed area.

While utilizing MODIS daily surface reflectance data can enhance the temporal reso-
lution for analysis, providing insights at a daily time step, it is important to note that the
standard temporal resolution of MODIS composites, which occur at 16 day intervals, is
determined by the frequency of data gaps due to cloud cover in various regions worldwide.
Consequently, this 16 day interval does not provide the accuracy required to precisely
characterize swift events such as the emergence and rapid development of leaves during
the spring season [58,59].

The graphs in Figure 7 reveal that for LC3 (mixed forests), the biophysical parameters
NDVI, FPAR, and LAI remain constant during all 23 periods of the year. This stability
can be attributed to evergreen trees characterized by consistently high NDVI, resulting in
maximum FPAR and LAI values.

For the savannahs located in eastern Morocco, the beginning of the growth phase was
between the beginning and the middle of October and ends in the beginning of June. The
cycles of grassland and agriculture (LC7 and LC12 respectively) have almost the same
paces during the whole year, where the growth phase starts in the middle of September or
even beginning of October and ends around the beginning of May.

Moving on to the comparison of the variation in the biophysical parameters of the two
land use classes (agriculture and forest) in to the regional climate (humid, semi-arid, arid,
and hyper-arid [60]) illustrated in Figure 7. The analysis indicates that mixed forests exhibit
two distinct FPAR/LAI cycles. It is clear that regions with wetter climates consistently
show significantly higher values compared with semi-arid areas.

Regarding the agriculture class, it is evident that FPAR and LAI cycles exhibit the
highest values in wetland regions, followed by semi-arid and arid areas, while hyper-arid
areas consistently have the lowest values.

The duration of the growing season stands as a crucial factor influencing plant growth
and distribution. A lengthened growing season has the potential to enhance plant productiv-
ity and open up new opportunities for planting in both the agricultural and forestry sectors.

Moving from wetlands with lower temperatures to dry lands with higher tempera-
tures, we can observe an extension of the growing season for various vegetation types.
Paradoxically, trees are more vulnerable to frost and despite the warming temperatures,
the cooler climate at an earlier period is less favorable for fertilization and pollination.

The 2010 data on biophysical parameters (FPAR, LAI, NDVI, etc.) for various vege-
tation types in Morocco, distributed across different climatic zones, provide insight into
vegetation responses to environmental and climatic variations. These data play a critical
role in the balance of energy, carbon, and hydrological fluxes. Each zone, whether charac-
terized as humid, semi-arid, arid, or hyper-arid, present unique conditions that influence
both plant growth and these essential balances. Analyzing the seasonal trends of these
parameters for each zone highlights challenges and opportunities. The conclusions are
as follows:

Mixed forests (LC03): In humid areas, these parameters favor active vegetation and
continuous carbon sequestration, while in semi-arid zones, more pronounced seasonal
variations are observed.

Savannah (LC06): In semi-arid zones, vegetation exhibits relatively stable growth,
with seasonal variations affecting carbon fixation. In arid areas, similar seasonal variations
are observed but with lower parameter values.

Grasslands (LC07): In humid areas, vegetation maintains steady growth. In semi-arid,
arid, and hyper-arid zones, growth is more limited, and seasonal variations impact energy,
carbon, and hydrological balances.

Shrubs with bare soil (LC09): In humid areas, vegetation efficiently utilizes light,
displaying high foliage density and increasing vigor. In semi-arid and arid zones, the
ability to use light is limited, with seasonal variations. In hyper-arid areas, vegetation
struggles to utilize light and maintain high foliage density.
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Cropland (LC12): In humid areas, photosynthesis is more efficient, while in semi-arid
and arid zones, seasonal variations influence the hydrological balance. In hyper-arid zones,
carbon sequestration capacity is limited but contributes to hydrological balance stability.

In summary, variations in biophysical parameters reflect climatic disparities among
Morocco’s zones, impacting plant growth, carbon sequestration, canopy density, and energy
balance. These data are crucial for natural resource management and biodiversity preservation.

4. Conclusions

In conclusion, this study has successfully provided Morocco with its first comprehen-
sive land use and land cover (LULC) map. The critical need for such a detailed represen-
tation of the country’s diverse ecological and climatic characteristics has been addressed.
Our research integrated MODIS and Landsat datasets to generate a high-resolution (5 km)
LULC map, offering a detailed overview of land cover across Morocco.

The results of our analysis revealed that approximately 13.5% of Morocco’s land area
is occupied by forest formations, with concentrations in regions such as the Atlas and
Rif mountain ranges, the vicinity of Rabat–Sale, and the southern parts of the country.
Grasslands span over 16% of the study area, mainly in the north-east and west, while urban
areas occupy nearly 3400 km2, including major cities like Casablanca, Rabat, and Marrakech.
Additionally, large expanses of shrublands and bare lands are prevalent in various regions,
while agricultural areas cover almost 20% of the national territory, primarily in the interior
plains and along the north-western Atlantic coast.

A significant contribution of this research is the mapping of biophysical parameters
for each land cover class, which includes Leaf Area Index (LAI), Normalized Difference
Vegetation Index (NDVI), and Fraction of Absorbed Photosynthetically Active Radiation
(FPAR). These parameters play a crucial role in ecological and climatic studies and provide
essential insights for environmental and societal applications.

Furthermore, the methodology developed here holds the potential for adaptation
and utilization in regions and countries with similar ecological and climatic characteris-
tics, underlining the significance of understanding biophysical parameters in addressing
environmental and societal challenges.

Our study has a broader implication. It is the first to map land cover and its biophysical
parameters at the national level over Morocco. These data serve as a foundational resource,
applicable to diverse fields such as agriculture, natural resource management, climate
modeling, environmental research, and more. Enhancing our understanding of these
biophysical parameters provides us with the tools to address numerous environmental and
societal challenges, including sustainable land use, biodiversity conservation, and climate
change mitigation and adaptation.

Furthermore, the practical applications of biophysical parameters, such as LAI, FPAR,
and NDVI, extend far beyond environmental understanding. These parameters find utility
in various fields, including agriculture, natural disaster prediction, urban planning, and
more. Their versatility and potential make them indispensable decision-making tools,
contributing significantly to the development of sustainable management strategies and
the mitigation and adaptation to complex challenges posed by environmental and societal
changes. An improved understanding of these biophysical parameters is not only relevant
but also imperative in addressing Morocco’s environmental and societal challenges.
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