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Abstract: Over the past four decades, Arctic sea ice coverage has steadily declined. This loss of sea
ice has amplified solar radiation and heat absorption from the ocean, exacerbating both polar ice loss
and global warming. It has also accelerated changes in sea ice movement, posing safety risks for
ship navigation. In recent years, numerical prediction models have dominated the field of sea ice
movement prediction. However, these models often rely on extensive data sources, which can be
limited in specific time periods or regions, reducing their applicability. This study introduces a novel
approach for predicting Arctic sea ice motion within a 10-day window. We employ a Self-Attention
ConvLSTM deep learning network based on single-source data, specifically optical flow derived from
the Advanced Microwave Scanning Radiometer Earth Observing System 36.5 GHz data, covering
the entire Arctic region. Upon verification, our method shows a reduction of 0.80 to 1.18 km in
average mean absolute error over a 10-day period when compared to ConvLSTM, demonstrating its
improved ability to capture the spatiotemporal correlation of sea ice motion vector fields and provide
accurate predictions.

Keywords: Arctic sea ice; Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E);
deep learning; Self-Attention Memory; Self-Attention ConvLSTM; optical flow; motion prediction

1. Introduction

Arctic sea ice has been melting at an accelerating rate far beyond the expectations of
climate models [1], and it will continue shrinking for decades due to global warming and
the Arctic amplification [2]. Arctic sea ice is a vital component of the polar regions and
plays a significant role in the Earth’s climate system. With the increasing human activities
in polar regions in recent years, the volume of traffic in the Arctic and Antarctic seas has
been on the rise. However, the unpredictable motion of sea ice poses significant safety
hazards to ships. To ensure the safe and efficient development of human activities in the
Arctic, it is essential to enhance the accuracy of short-term sea ice motion predictions.

Over the past decade, most predictions related to sea ice drift and extent, as well as
other related variables, have relied on numerical prediction models. These models include
fully coupled atmosphere–ocean global climate models, statistical regression methods, and
heuristic approaches [3–8]. While some of these models focus on longer time scales such
as quarterly or annual forecasts [9], others target short-term predictions [10,11]. These
numerical models rely on a wide array of data sources, including surface wind, ice thickness,
water flow, and ice collision rheological data. However, the availability of data sources may
be limited for specific time frames or regions, thereby restricting the model’s applicability.
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Moreover, wind, a key factor influencing sea ice drift, often limits the accuracy of numerical
models. Notably, the increase in average sea ice drift velocity in recent decades has outpaced
the increase in wind speed, further complicating predictions [12].

In recent years, the integration of Artificial Intelligence (AI) in sea ice research has
witnessed remarkable advancements, particularly in predicting sea ice density, thickness,
extent, and motion [13–16]. Petrou and Tian [17] leveraged the power of Recurrent Neural
Networks (RNNs) to predict sea ice motion using historical data from the Advanced
Microwave Scanning Radiometer Earth Observing System (AMSR-E). This groundbreaking
work highlighted the transformative potential of deep learning in enhancing the precision
of sea ice motion forecasts. Nonetheless, RNNs are plagued by the vanishing gradient
issue, complicating their training for long-term dependencies [18]. In a different approach,
Zhai and Bitz [19] adeptly utilized a Convolutional Neural Network (CNN) to simulate
Arctic sea ice dynamics, incorporating data like the prior day’s ice velocity, concentration,
and dominant surface winds. This innovative methodology emphasizes the growing
promise of deep learning in refining sea ice motion predictions. While CNNs excel in
spatial feature recognition, they grapple with long-term dependencies due to their inherent
local feature extraction mechanism [20]. Building on this, Petrou and Tian [21] employed
a convolutional long short-term memory (ConvLSTM) network for Arctic sea ice motion
prediction using AMSR-E datasets. This model adeptly integrates both long-term temporal
patterns and spatial correlations, presenting a compelling alternative to conventional
numerical forecasting techniques. The ConvLSTM, initially conceptualized for precipitation
nowcasting [22], does face challenges in grasping extensive spatial dependencies due to its
dependence on stacked convolutional layers, coupled with its limited interpretability. This
narrows its effective receptive field and poses optimization hurdles during training [23]. In
a comparative study, Hoffman et al. [24] employed data-centric machine learning methods
to juxtapose persistence (PS), linear regression (LR), and CNN models for Arctic sea-ice
motion prediction, using reanalysis wind data and satellite-derived sea-ice attributes. Their
findings underscored the CNN model’s superior predictive prowess, showcasing a robust
correlation with actual sea-ice velocities. However, this performance exhibited spatial and
seasonal variations. Furthermore, they probed the correlation between model performance
and fluctuations in ice motion-related properties to decipher processes undermining model
efficiency. Notably, their approach was confined to daily sea-ice motion predictions.

Through the aforementioned research, we have confirmed that certain machine learn-
ing techniques can achieve predictions of sea ice motion for the same day based on multiple
data sources, including observational data, reanalysis wind data, and other sea ice attribute
data. However, given the extensive volume of data, it becomes impractical to process it
within deep learning networks, potentially resulting in prohibitively high training costs.
In contrast, relying solely on a single satellite data source, deep learning techniques can
accurately forecast Arctic sea ice activity in the coming days. The key challenge lies in
selecting a network architecture that can capture both global spatial relationships and
spatiotemporal information while maintaining strong interpretability.

To address the challenge, in this study, we proposed a novel approach for predicting
sea ice motion in the upcoming days using the Self-Attention Convolutional Long Short-
Term Memory (SA-ConvLSTM) network [25] based on AMSR-E brightness temperature
data. We first compute adjacent satellite images using the optical flow method to generate
sea ice drift vectors between consecutive image pairs. We then organize these motion
vectors into sequences and train them using the SA-ConvLSTM architecture [25]. This
network combines the characteristics of Self-Attention (SA) mechanism and ConvLSTM
network, enabling it to not only more effectively capture global spatial relationships but
also extract both spatial and temporal features simultaneously [26]. The presence of the
Self-Attention mechanism has been demonstrated to enhance the interpretability of the
model’s prediction results [27–30]. The attention weights can be visualized to understand
the model’s focus on specific locations within the input data.
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Our study is structured as follows: In Section 2, the data used in the research is
introduced. Section 3 provides a detailed description of the methodology proposed by
us. The experimental results are summarized and discussed in Section 4. Finally, the
conclusions are presented in Section 5.

2. Data

Investigating large-scale sea ice movement relies on marine satellite remote sens-
ing data, as on-site observation and GPS data from buoys alone are insufficient. The
most commonly used data sources for this purpose are passive microwave sensors, e.g.,
AMSR-E [31–35], and microwave scatterometers such as QuikSCAT [36,37]. These sensors
are preferred due to their immunity to cloud cover and solar irradiation conditions, ensur-
ing year-round coverage of polar regions. They also provide an extended coverage range
of approximately 1400 km, facilitating multiple satellite passes over polar regions, which is
crucial for daily monitoring and forecasting.

The AMSR-E sensor, launched in 2002, represents a substantial advancement over
its predecessors. Table 1 shows the different frequency channels of the AMSR-E data
product released by National Snow and Ice Data Center (NSIDC) in 2018 [38] and their
respective applications. In general, data from the high-frequency channels of AMSR-E
typically exhibit higher accuracy compared to data from the low-frequency channels.
Therefore, data from the 36.5 GHz and 89.0 GHz channels are better suited for studying
sea ice motion. Additionally, the 36.5 GHz channel is less susceptible to atmospheric
interference than the 89GHz channels, leading to greater accuracy at the same spatial
resolution [33]. The selection of the 36.5GHz band is predicated on its proven efficacy
in delineating sea ice features, especially in the context of Arctic regions [17,21,39]. The
resolution-enhanced QuikSCAT scatterometer provides significantly improved spatial
resolution, but at the cost of higher noise, which may offset some of the advantages of the
higher spatial resolution [40].

Table 1. AMSR-E data frequencies and their applications.

Frequency (GHz) Applications

18.7 (K-band) Water vapor content in clouds and precipitation, sea surface temperature, sea
ice concentration.

23.8 (K-band) Atmospheric water vapor concentration, soil moisture.

36.5 (Ka-band) Sea ice concentration and type, sea surface temperature, precipitation estimation.

89.0 (W-band) Sea ice edges and leads, precipitation estimation, cloud liquid water content.

In our study, the original dataset comprises 280 AMSR-E level-3 brightness temper-
ature images captured by the AMSR-E sensor on NASA’s Aqua satellite. These images
have a spatial resolution of 12.5 km and cover the time span from 1 January 2018, to
7 October 2018. They encompass the entire North Pole region, with horizontal polarization
at 36.5 GHz. As illustrated in Figure 1, the four corner coordinates of the coverage rectangle
are as follows: upper left (30.96◦N, 168.35◦E), lower left (33.92◦N, 80.74◦W), upper right
(31.37◦N, 102.34◦E), and lower right (34.35◦N, 9.97◦W).

To facilitate further analysis, all raw brightness temperature images are converted to
8-bit grayscale images, and the entire dataset is normalized within the range defined by
the maximum and minimum brightness temperature values. Additionally, daily sea ice
concentration data are employed to mask out areas of open water and land in each image.
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Figure 1. AMSR-E image on 1 January 2018, with brightness temperature scale (in Kelvin).

3. Methods
3.1. Optical Flow

Optical flow, a pivotal technique in image analysis, is employed to determine the
motion of pixels between consecutive images. This method is extensively utilized in tasks
such as image recognition, segmentation, and tracking [41,42]. A fundamental assumption
of optical flow is the consistency in pixel motion, with only slight variations between succes-
sive images [43]. This technique negates the need for background scene modeling, focusing
instead on pixel positional changes across the image series. By examining the correlation
between pixels in successive images, the optical flow field is computed. This granular,
pixel-wise approach is especially effective for capturing intricate sea ice deformations.

Taking into consideration that our dataset comprises AMSR-E images with dimensions
of 608 pixels in width and 896 pixels in height, our primary objective is to achieve precise
optical flow estimations. Sea ice motion is inherently intricate, influenced by numerous
interrelated factors. Our future research direction is geared towards achieving real-time
or near-real-time predictions of sea ice motion. Consequently, it is imperative to employ
the EpicFlow method for computing optical flow between consecutive AMSR-E images.
The EpicFlow method, proposed by Revaud et al. [44], calculates optical flow and is
distinguished by the following characteristics:

1. Efficiency : tailored for large-scale imagery, ensuring computational efficiency;
2. Precision: offers high-accuracy optical flow estimations, capturing detailed pixel

movements, ideal for tasks demanding precision such as object tracking and mo-
tion analysis;

3. Versatility: applicable across various domains, from computer vision to autonomous
driving, enhancing algorithmic performance and visual outcomes;

4. Adaptability: excellently handles intricate motion scenarios and dynamic backdrops,
managing swift and non-rigid motions and multiple object movements within scenes;

5. Real-time capability: due to its efficiency and precision, it is apt for real-time applica-
tions, facilitating instantaneous visual feedback.

The computational process of EpicFlow commences with two input images. Matches
are determined using DeepMatching [45], and edges from the initial image are extracted
using SED [46]. These data points are subsequently employed for high-density match
interpolation, producing a detailed dense correspondence field that initializes a single-level
energy minimization framework. Figure 2 provides an overview of the key steps in the
EpicFlow procedure.
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Figure 2. Two steps of the EpicFlow algorithm: dense matching by edge-preserving interpolation
from a sparse set of matches; variational energy minimization initialized with the dense matches.

In our study, we first convert all 280 original AMSR-E images into 8-bit grayscale
format to simplify calculations and reduce the impact of noise on the results. We use
AMSR-E data products that include daily sea ice concentration data, which is generated
using the NASA Team 2 (NT2) algorithm [47]. Grid cells with a value of 0 represent
open water, cells with a value of 110 indicate missing data, and cells with a value of
120 correspond to land. Grid cells with values between 1 and 100 represent percentages of
sea ice concentration. Consequently, we employ this sea ice concentration data to create
daily sea ice masks, effectively removing areas from each grayscale image that are not
related to sea ice. Subsequently, we apply the EpicFlow algorithm to calculate optical flow
on these masked images. Figure 3 exemplifies the application of EpicFlow on consecutive
AMSR-E brightness temperature images.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. Cont.
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(k)
Figure 3. An example of using EpicFlow to compute optical flow from consecutive days of raw
AMSR-E brightness temperature images. (a,f) represent the raw AMSR-E brightness temperature
images for 14 March 2018, and 15 March 2018, respectively. (b,g) depict the converted 8-bit grayscale
images. (c,h) illustrate the daily sea ice masks generated using sea ice concentration data. (d,i) show
the sea ice images after applying the masks. (e,j) display the sea ice edge images generated after
processing with EpicFlow. (k) displays the optical flow generated by EpicFlow, with colors indicating
the flow direction and color saturation representing flow speed, where higher saturation corresponds
to higher velocity.

3.2. Network Architecture

We introduce the SA-ConvLSTM architecture, a fusion of the ConvLSTM and a Self-
Attention Memory Module (SAM), to enhance predictive capabilities for large-scale and
long-term spatiotemporal sequence forecasting [25]. This architecture captures both global
and local spatial dependencies concurrently.

3.2.1. SAM Module

The SAM module employs a novel memory unit, denoted as M, to encapsulate spatial
information infused with temporal dependencies. Inputs to the SAM module include the
ConvLSTM-derived hidden layer state, Ht, from the current time step and the memory,
Mt−1, from the preceding time step.

Initially, the SA mechanism processes Ht to produce the feature, Zh. This mechanism
accentuates the significance of specific components within Ht. Simultaneously, Ht acts
as the Query, and Mt−1 is processed through the attention mechanism to produce the
feature, Zm. This emphasizes elements in Ht with pronounced dependencies on Mt−1. By
concatenating Zh and Zm, we derive the aggregated feature, Z, which embodies information
from the current time step and global spatiotemporal memory.

Subsequently, the aggregated feature, Z, interfaces with the gating structure found in
LSTM to update both the hidden layer state and memory unit. This results in the updated
hidden layer state, Ĥt, and the current time step memory, Mt. The formula for the SAM
module is as follows:

i′t = σ(Wm;zi ∗ Z + Wm;hi ∗Ht + bm;i)

g′t = tanh
(

Wm;zg ∗ Z + Wm;hg ∗Ht + bm;g

)
Mt =

(
1− i′t

)
◦Mt−1 + i′t ◦ g′t

o′t = σ(Wm;zo ∗ Z + Wm;ho ∗Ht + bm;o)

Ĥt = o′t ◦Mt

(1)

In the above equations:
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• i′t represents the input gate. It is a value processed through the sigmoid function and
controls how much of the new information g′t should be added to the memory Mt. This
gate mechanism determines how much of the previous memory should be retained in
the current time step t.

• g′t represents new memory candidate values, processed through the hyperbolic tangent
function. It indicates the new information to be added to the memory Mt.

• Mt is the memory at the current time step t. Memory serves as the model’s internal
state and is responsible for storing information about the input sequence. Its update is
controlled by the input gate i′t and the new information g′t, as well as the forgetting of
the previous time step’s memory Mt−1.

• o′t is the output gate. It is a value processed through the sigmoid function and controls
how the information in the memory Mt affects the output. This gate mechanism
determines how much memory information should influence the output value Ĥt.

• Ĥt is the output at time step t and is obtained by multiplying the memory Mt with the
output gate o′t. This determines the impact of memory information on the model’s output.

• The weight matrices Wm;zi, Wm;hi, Wm;zg, Wm;hg, Wm;zo and Wm;ho along with bias
terms bm;i, bm;g and bm;o are parameters used to control the gating and memory updates.

The SAM Module provides an additional value in the SA-ConvLSTM network by
enhancing the network’s ability to capture long-range dependencies and contextual infor-
mation within the input data. It achieves this by allowing the network to focus on specific
regions or features of the input sequence that are most relevant for making predictions
at each time step. This attention mechanism helps the network adaptively weigh the
importance of different spatial and temporal elements, thus improving its ability to model
complex patterns and relationships within the data. It can capture dependencies that may
span a considerable time horizon, which is particularly valuable in tasks where distant
interactions or dependencies are crucial for accurate predictions, such as in time series
forecasting, natural language processing, or image analysis.

3.2.2. Base Model

The base network model seamlessly integrates Self-Attention and ConvLSTM through
direct cascading. The model is formulated as follows:

X̂t = SA(Xt), Ĥt−1 = SA(Ht−1)

it = σ
(
Wxi ∗ X̂t + Whi ∗ Ĥt−1 + bi

)
ft = σ

(
Wxf ∗ X̂t + Whf ∗ Ĥt−1 + bf

)
gt = tanh

(
Wxc ∗ X̂t + Whc ∗ Ĥt−1 + bc

)
Ct = ft ◦Ct−1 + it ◦ gt

ot = σ
(
Wxo ∗ X̂t + Who ∗ Ĥt−1 + bo

)
Ht = ot ◦ tanh(Ct),

(2)

In the above equations:

• SA represents the self-attention module.
• X̂t represents the result of applying a Self-Attention module to the input Xt at time step

t. Self-Attention helps the model capture relationships between different elements in
the input sequence.

• Ĥt−1 is the result of applying a Self-Attention module to the previous time step’s
hidden state Ht−1. It aids the model in capturing internal relationships within the
hidden state.

• it represents the input gate. It is a value processed through the sigmoid function (σ)
and controls how much of the new information gt should be added to the cell state Ct.

• ft is the forget gate. The forget gate, also processed through the sigmoid function,
determines how much information from the previous time step’s cell state Ct−1 should
be retained in the current time step.
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• gt represents new information, which is processed through the hyperbolic tangent
(tanh) function. It is used to calculate the value to be added to the cell state Ct and
serves as a candidate cell state.

• Ct is the cell state. It is the internal memory of the LSTM unit and stores information
about the input data. The forget gate ft controls what information is retained and
forgotten from the previous time step’s cell state, while it and gt control the addition
of new information.

• ot is the output gate. It is a value processed through the sigmoid function and determines
the extent to which information from the cell state Ct is passed to the hidden state Ht.

• Ht is the hidden state at time step t. It is the primary output of the LSTM unit. It
is obtained by multiplying the cell state Ct by the output gate ot and processing the
result through the hyperbolic tangent function.

• Wxi, Wxf, Wxc, Wxo, Whi, Whf, Whc, Who are weight matrices that are used to linearly
combine the transformed input sequence and the previous hidden state to compute
the input gate, forget gate, candidate cell state value, and output gate. These weight
matrices are learned as model parameters during training. bi, bf, bc, bo are bias
terms that help adjust the behavior of the gates and the computation of the candidate
cell state, similar to a standard LSTM. These bias terms are also learned as model
parameters during training.

The above formula represents the data processing process of the input data in the
SA-ConvLSTM base model. More specifically, when we are given the input of the sea ice
motion vector field, the basic model’s data processing can be decomposed into two main
components: the Self-Attention application and ConvLSTM operations.

In the Self-Attention application, the sea ice motion vector data at time step t, repre-
sented by Xt, is first processed by the Self-Attention mechanism to produce X̂t. This step
allows the model to assign different weights to different parts of the input based on their
spatial and temporal relevance, emphasizing regions with significant ice movement or
patterns. Similarly, the hidden state from the previous time step, Ht−1, is transformed by
the Self-Attention mechanism to produce Ĥt−1. This ensures that the model can recognize
and leverage patterns and dependencies from its own previous states.

In the ConvLSTM operations, using the Self-Attention processed sea ice motion vector
data X̂t and hidden state Ĥt−1, the model computes the input gate it, forget gate ft, new
information gt, and the output gate ot. These gates regulate the flow of information through
the cell, determining which patterns to retain or discard. The cell state Ct is updated using
the gates and the new information. This state acts as the LSTM’s memory, preserving
essential patterns from the sea ice motion vector data and discarding irrelevant details. The
hidden state Ht for the current time step is then derived using the cell state and the output
gate. This hidden state can be used for subsequent processing or predictions, representing
the model’s understanding of the sea ice motion at that time step.

The Self-Attention mechanism allows the model to focus on important parts of the
sea ice motion vector data based on their spatial and temporal relevance. This ensures
the model adeptly highlights crucial ice movement patterns and downplays less pertinent
ones. The SA-ConvLSTM can understand global spatial relationships across RNN layers
and states, essential for understanding sea ice dynamics and making predictions. While
Self-Attention may increase computational needs, the model’s design, especially with
segmented optical flow images, ensures these demands remain manageable. This is vital
for the efficient processing of high-definition sea ice motion vector data.

3.2.3. SA-ConvLSTM

The SA-ConvLSTM architecture represents a groundbreaking fusion of Self-Attention
mechanisms with ConvLSTM networks. By integrating the SAM into the ConvLSTM
framework, as illustrated in Figure 4, the architecture elevates its capability to process
sequential data with spatial nuances. Central to this is the SAM’s ability to identify and
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prioritize distinct spatial features, enabling the model to focus on key patterns, thereby
enhancing its predictive accuracy.

Figure 4. The Self-Attention ConvLSTM block.

Fundamentally, the SA-ConvLSTM model combines Self-Attention and ConvLSTM,
making it ideal for the sea ice motion dataset. This blend captures spatial and temporal data
aspects, deepening insights into sea ice dynamics and improving predictions. The model
balances Self-Attention with LSTM to retain key patterns and discard irrelevant details,
enhancing performance in understanding complex sea ice dynamics. By integrating Self-
Attention and ConvLSTM, the model benefits from both: ConvLSTM captures local patterns,
while Self-Attention provides a wider context, improving the model’s understanding of sea
ice movements.

The inclusion of SAM in the ConvLSTM is not just a mere layer addition. It reshapes
the model’s data processing. SA-ConvLSTM emphasizes adaptability. Its structure permits
easy removal of the SAM, allowing a smooth return to classic ConvLSTM. This adaptability
benefits developers and researchers, letting them tailor the model’s depth to specific needs.
Whether needing SAM’s advanced insights for complex data or the efficiency of standard
ConvLSTM for basic tasks, SA-ConvLSTM stands out as a flexible tool.

3.3. Network Parameters

Our prediction model is trained using data from AMSR-E. It leverages daily optical
flow vectors generated by the EpicFlow method, resulting in a multitude of sequences,
each comprising 20 consecutive daily arrays. In these sequences, the initial ten arrays serve
as inputs, while the model predicts the subsequent ten arrays as outputs.

To create the validation set, we randomly select time-overlapping sequences during
network training. To ensure that there is no overlap with the validation set, we take care
to exclude any sequences with common dates. Additionally, we create a separate test
set by randomly selecting another batch of time-overlapping sequences. The remaining
sequences, with no shared dates with the validation and test sets, constitute the training
set. Each sequence is divided into 32 × 32 subsequences, corresponding to different times
but representing the same spatial region across the width and height of the image.

To enhance both training efficiency and accuracy, we exclude sequences devoid of
sea ice pixels from our training set, validation set, and test set. It is worth noting that a
prior study [21] retained non-sea ice pixels, such as land, in the training and validation sets.
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However, this approach could potentially hinder training efficiency and lead to confusion
between land and sea ice in prediction results. Consequently, our training and validation
sets exclusively contain sea ice pixels, encompassing both moving and non-moving sea ice.

Following the aforementioned process, we generated an ice velocity dataset with
dimensions (279, 896, 608, 2). The number 279 represents the total number of optical flow
vector fields obtained after calculating the flow between adjacent frames from the original
set of 280 images. The dimensions 896 and 608 correspond to the height and width of each
vector field, respectively, and the ‘2’ signifies that each vector contains velocity information
in both the x and y directions. Given the vast size of this dataset, it cannot be directly
utilized as input for training the SA-ConvLSTM network. Therefore, data segmentation is
necessary. Since 32 is the greatest common divisor of 896 and 608, we have chosen 32 as the
minimum unit for slicing. Each vector field can be sliced into 532 smaller 32 × 32 blocks,
each with dimensions (32, 32, 2). Patches devoid of pixels falling within the sea ice mask
area are excluded from the dataset. Subsequently, the dataset is randomly shuffled, and
80% of it is designated as the training set, while 10% is allocated to both the testing and
validation sets, ensuring complete separation between the three sets. After this rigorous
preparation, we ultimately obtain the entire dataset, which comprises 33,404 sequences,
each consisting of 20 consecutive daily images. Out of these, 26,724 sequences are utilized
for training, while 3340 sequences are assigned to both the testing and validation sets.

To mitigate the adverse effects stemming from singular sample data and accelerate
convergence, we employ maximum–minimum normalization to map the data into the
[0, 1] range before initiating model training. Within the network architecture, linear output
units are employed in the SA-ConvLSTM network, as the required output consists of
optical flow real values. The weight matrices are initialized by sampling from a uniform
distribution, and biases are set to zero. To strike a balance between model complexity
and computational efficiency, our SA-ConvLSTM model is structured with a three-layer
architecture. Adding more layers can enhance the model’s representational capacity but
may also lead to overfitting and increased computational costs. Each layer consists of
128 hidden states to provide sufficient capacity for learning and representing complex
patterns in the data. The convolutional kernel size is set to 5 × 5 to ensure the capture of
local spatial patterns and to have a sufficient receptive field to consider the surrounding
context. The number of network layers and the convolutional kernel size are consistent
with the study [21]. Model training is conducted using the ADAM optimizer, with an initial
learning rate of 0.001, in alignment with a similar study [25]. After multiple experiments,
we find that setting the mini-batch size to 8 yields the best performance on the validation
set. The model converges quickly, thus providing a good balance between computational
efficiency and model performance. Additionally, to prevent overfitting, we implement an
early stopping mechanism by monitoring the ‘val_loss’ parameter. Training halts when
improvements become marginal, with a minimum delta (’min_delta’) of 0.0001 and a
patience setting of 5. The mode is set to ‘min’, and we retain the best weights using the
‘restore_best_weights’ parameter. In our training process, we employ the L2 loss function.

4. Results
4.1. Training Results

Figures 5 and 6 display the mean squared error (MSE) and mean absolute error (MAE)
across epochs during the training process. Our model’s training process was stopped
early, after only 5 epochs. Recent studies have demonstrated that adding the Self-Attention
mechanism to the model can significantly improve its convergence speed [48–52]. During
this short training period, the training loss rapidly decreased to 9.6016 × 10−5 and then
remained stable with minor fluctuations. The validation loss followed a similar pattern,
maintaining a nearly constant value around 9.6016 × 10−5. The changes in training MAE
appeared to mirror the training loss. Notably, during the third and fourth epochs, the
validation MAE experienced slight fluctuations but quickly stabilized. Our model has a
total of 8,306,946 parameters, with 8,306,178 of them being trainable and 768 being non-
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trainable. On the test set, our model achieved a loss of 8.6046 × 10−5 and a MAE of 0.005.
These results indicate that the model fits the training data well, and its performance on
both the validation and test sets suggests that it has not overfitted.

Figure 5. Training and validation loss (MSE) trends. The blue dots represent the training loss, and
the blue lines represent the validation loss. The horizontal axis represents epochs, and the vertical
axis represents the error for each epoch.

Figure 6. Training and validation MAE trends. The blue dots represent the training MAE, and the
blue lines represent the validation MAE. The horizontal axis represents epochs, and the vertical axis
represents the error for each epoch.

4.2. Comparison with Reference Optical Flow

In our experiments, we employ the first 10 optical flow patches from each test set
sequence as inputs to predict the subsequent 10 patches. Initially, we compare the predicted
optical flow with the reference optical flow patches for both the x and y motion axes at each
pixel location. Pixels outside the sea ice zone are excluded from the comparison. Figure 7
illustrates the error statistics for each future prediction step. For instance, if the input
comprises patches from days 1–10, step 1 represents the prediction patch for day 11, step 2
for day 12, and so on. After eliminating non-sea ice pixels, approximately 700,000 pixels
are retained for each prediction step.
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Figure 7. Comparison of predicted optical flow and reference optical flow for all sea ice pixels in each
prediction step in the future. The Root mean square error (RMSE) in km, and mean absolute error
(MAE) in km are calculated for both x and y axes.

Table 2 provides a clear representation of the accuracy of motion prediction compared
to the reference optical flow. Unsurprisingly, the initial prediction step stands out as the
most accurate, with the minimum error observed in both motion axes. As we project our
predictions further into the future, the trend becomes evident: during the first three days,
there is a notable and rapid increase in prediction error. This is followed by a more gradual
and steady rise over the subsequent seven days.

It is important to note that, despite this gradual decline in performance, our model
consistently maintains a high level of accuracy. Even after 10 prediction steps, which is a
substantial time horizon, the error values remain impressively low and exhibit remarkable
stability. This robust performance over an extended forecast horizon highlights the model’s
reliability and suitability for applications requiring accurate optical flow predictions.

Table 2. Comparison of the predicted motion and the reference optical flow in the entire Arctic, for
each prediction step in the future (fut). RMSE and MAE are in km.

x Axis y Axis

Fut RMSE MAE RMSE-MAE RMSE MAE RMSE-MAE

1 1.17 1.15 0.02 0.91 0.87 0.04
2 1.57 1.55 0.02 1.34 1.31 0.03
3 1.85 1.82 0.03 1.67 1.64 0.02
4 2.03 1.99 0.04 1.91 1.88 0.03
5 2.09 2.05 0.04 2.00 1.96 0.04
6 2.12 2.08 0.04 2.03 2.00 0.03
7 2.14 2.10 0.04 2.06 2.02 0.04
8 2.15 2.11 0.04 2.07 2.03 0.04
9 2.16 2.12 0.04 2.08 2.04 0.04

10 2.17 2.13 0.04 2.09 2.05 0.04

Avg. 1.94 1.91 0.035 1.81 1.78 0.035

4.3. Comparison with Drift Data Inherent in the AMSR-E Product

To comprehensively evaluate the accuracy of our proposed method, we conducted a
comparative analysis by assessing the predicted motion against the drift data inherent in
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the source AMSR-E data product. This product includes daily sea ice drift data derived
from the maximum cross correlation (MCC) feature tracking algorithm developed by the
University of Colorado (CU). The basic method of this algorithm is quite simple. Two
spatially coincident images were obtained, which were separated by a period of time. Select
the target area in the first (old) image that can be defined by pixels or pixel groups. Then,
select the search area around the target area in the second (newer) image. Compare the
correlation with the target region in the first image with all regions (the size of the target
region) in the search area of the second image. The area with the highest correlation is
determined as the location of the target movement. A filtering algorithm is then used to
remove at least some problematic matches.

To be more specific, Gridded Level 3 daily composite Tbs at 12.5 km on the polar
stereographic grid are used as input for the MCC algorithm. Ice motions are calculated
from two composite images using the sliding window to find the correlation peak, which
determines the distance a feature has moved. The drift is then computed by dividing the
distance by the time separation (24 h). A sea ice mask is applied to only retrieve ice motion
where concentration is above the standard sea ice extent threshold of 15% concentration.
False correlations can occur due to clouds or variability of ice surface features. To eliminate
this, first a minimum correlation threshold of 0.7 is applied to eliminate weak matches. Next
a post-processing filter program is run to remove at least some questionable and erroneous
motions. This uses the fact that motion is highly spatially correlated and requires that
each vector be reasonably consistent in speed and direction with at least two neighboring
motion estimates.

Table 3 shows the errors between our prediction vectors and the motion vectors from
AMSR-E data product in the future 10 days. As anticipated, the data reveals a distinct
trend in prediction accuracy. Initially, on the first day of prediction, our model achieves
the lowest error in motion prediction, indicating a high degree of accuracy for short-term
forecasts. However, as the forecast horizon extends into the future, we observe a gradual
increase in prediction error. This trend is a common characteristic of predictive models, as
the inherent uncertainties in longer-term predictions become more pronounced.

Table 3. Accuracy evaluation of the predicted motion versus drift data inherent in original AMSR-E
data product in the entire Arctic, for each prediction step in the future (fut). RMSE and MAE are in km.

x Axis y Axis

Fut RMSE MAE RMSE-MAE RMSE MAE RMSE-MAE

1 1.80 1.64 0.16 1.30 1.06 0.24
2 2.56 2.44 0.12 2.11 1.94 0.17
3 3.10 2.97 0.13 2.74 2.58 0.16
4 3.46 3.32 0.14 3.22 3.06 0.16
5 3.58 3.44 0.14 3.38 3.22 0.16
6 3.65 3.49 0.16 3.45 3.30 0.15
7 3.68 3.53 0.15 3.50 3.34 0.16
8 3.71 3.56 0.15 3.53 3.37 0.16
9 3.73 3.57 0.16 3.55 3.39 0.16

10 3.75 3.59 0.16 3.57 3.41 0.16

Avg. 3.30 3.15 0.147 3.03 2.86 0.168

It is important to note a significant difference when comparing the data in Table 3 with
that in Table 2: the average MAE and RMSE values are consistently higher by approximately
1.0–1.3 km in Table 3. The difference between the two tables can be attributed to the inherent
characteristics of the MCC feature tracking algorithm and the optical flow method. The
MCC algorithm tends to produce a sparse drift velocity field. This sparsity presents a
challenge when attempting to obtain comprehensive, large-scale continuous drift estimates.
In contrast, the optical flow method generates a denser optical flow field. This higher
density of information contributes to the relatively more accurate predictions observed in
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Table 2. This emphasizes the importance of choosing the appropriate algorithm for specific
applications in sea ice prediction.

A remarkable distinction arises when examining the errors along the x axis (latitude)
and y axis (longitude) in both Tables 2 and 3. Specifically, the errors along the x-axis are
consistently higher than those along the y-axis. This observation implies that predicting sea
ice movement in the latitude direction (x-axis) is inherently more challenging compared to
predictions in the longitude direction (y-axis). This difference could be attributed to various
factors, including the complex interplay of environmental variables, ocean currents, and
atmospheric conditions that influence sea ice drift differently in these two directions. This
underscores the imperative for additional research and refinement to more comprehensively
grasp the intricacies of sea ice movement in both geographical axes.

4.4. Comparison with Previous Methods

Our SA-ConvLSTM model is also compared with RNN [17] and ConvLSTM [21] on the
AMSR-E data, as detailed in Table 4. To provide a baseline for reference, we also consider a
simple approach of replicating the last observed input optical flow. The aggregated results
are summarized in Table 4, where the average errors for predicting Arctic sea ice motion
over 10 future time steps are presented.

Notably, our SA-ConvLSTM network outperforms both the fully connected conditional
LSTM network [17] and the ConvLSTM network [21] when relying solely on the AMSR-E
data source. Compared to ConvLSTM, our method shows a reduction of 0.80 to 1.18 km
in average MAE over a 10-day period. This achievement underscores the effectiveness of
incorporating a Self-Attention Memory (SAM) module into the ConvLSTM architecture.
The SAM module enhances the model’s capacity to capture spatiotemporal information,
particularly at small and medium scales. These findings carry significant promise for future
research endeavors focused on developing more precise unsupervised learning methods for
Arctic sea ice prediction. An especially promising research direction involves the expansion
of similar models to handle larger-scale applications, which could potentially lead to even
more accurate predictions.

Table 4. Comparison with previous deep learning methods. RMSE and MAE are in km.

x Axis y Axis

Method RMSE MAE RMSE MAE

baseline 4.94 3.61 4.43 3.10
[17] 4.53 3.36 3.71 2.68
[21] 4.21 3.09 3.71 2.58

Ours 1.94 1.91 1.81 1.78

4.5. Visualization Example

Figure 8 presents a comparative example between the step 1 prediction vector and
the reference optical flow. To facilitate visualization, a close-up of the original image
range is displayed, with vectors drawn at intervals of 56 pixels vertically and 38 pixels
horizontally. These vectors are magnified 20 times to ensure clear visibility. While it is
worth noting that in some instances, the predicted motion vectors slightly underestimate
the true amplitude of the reference optical flow vector orientation, overall, they exhibit a
strong correlation. In conclusion, the quantitative results presented above, in combination
with this visual assessment, underscore the effectiveness of the proposed method, which
combines SA-ConvLSTM with optical flow, in delivering satisfactory predictions for future
sea ice movement. This approach indeed represents a promising avenue for further research
in the field.
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Figure 8. Close-up look of one-step predicted motion vectors (Prediction), reference optical
flow (Reference-1), and the motion data from AMSR-E product (Reference-2) for the day pair of
20–21 May 2018. All vectors are magnified by 20 times for visualization. Background: AMSR-E image
from 20 May 2018.

5. Conclusions

In this paper, we have presented a novel approach to predict sea ice motion using
the SA-ConvLSTM network and optical flow input, leveraging only satellite AMSR-E
single source data. Our methodology takes advantage of past relevant features to enhance
the prediction of the current time step. We have achieved this by constructing a Self-
Attention Memory module capable of capturing long-range dependencies in both spatial
and temporal dimensions. We have extensively compared our model against both reference
optical flow data and motion vectors extracted from the AMSR-E data product. Our results
indicate that our model consistently provides satisfactory predictions for Arctic sea ice
motion over the next 10 days.

Notably, our proposed approach outperforms previous ConvLSTM-based multistep
prediction methods. Despite being trained exclusively on sparse-resolution reference
flow data, our model demonstrates remarkable accuracy and stability. As a consequence,
our method presents a promising alternative or complementary approach for complex
numerical models that traditionally rely on multi-source data.

Moreover, our method is particularly well-suited for predicting motion vector fields at
lower resolutions or small to medium-sized scales. For the prediction of high-resolution
vector fields, additional preprocessing steps are required, such as cutting the fields into
smaller segments and concatenating the output prediction results. Looking ahead, our
future work will focus on extending our prediction methods to address the challenges
posed by large-scale sea ice motion vector fields. We believe that further research in
this direction will continue to advance our understanding and prediction capabilities in
the field of sea ice dynamics. The data used in our study can be downloaded from [53]
https://doi.org/10.6084/m9.figshare.24354901.v3.

https://doi.org/10.6084/m9.figshare.24354901.v3
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