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Abstract: Extensive occurrence of rice sheath blight has been observed in China in recent years due
to agricultural practices and climatic conditions, posing a serious threat to rice production. Assessing
habitat suitability for rice sheath blight at a regional scale can provide important information for
disease forecasting. In this context, the present study aims to propose a regional-scale habitat
suitability evaluation method for rice sheath blight in Yangzhou city using multisource data, including
remote sensing data, meteorological data, and disease survey data. By combining the epidemiological
characteristics of the crop disease and the Relief-F algorithm, some habitat variables from key
stages were selected. The maximum entropy (Maxent) and logistic regression models were adopted
and compared in constructing the disease habitat suitability assessment model. The results from
the Relief-F algorithm showed that some remote sensing variables in specific temporal phases are
particularly crucial for evaluating disease habitat suitability, including the MODIS products of LAI
(4–20 August), FPAR (9–25 June), NDVI (12–20 August), and LST (11–27 July). Based on these remote
sensing variables and meteorological features, the Maxent model yielded better accuracy than the
logistic regression model, with an area under the curve (AUC) value of 0.90, overall accuracy (OA)
of 0.75, and a true skill statistics (TSS) value of 0.76. Indeed, the results of the habitat suitability
assessment models were consistent with the actual distribution of the disease in the study area,
suggesting promising predictive capability. Therefore, it is feasible to utilize remotely sensed and
meteorological variables for assessing disease habitat suitability at a regional scale. The proposed
method is expected to facilitate prevention and control practices for rice sheath blight disease.

Keywords: habitat suitability; rice sheath blight; Maxent model; remote sensing data; meteorological
data

1. Introduction

Rice sheath blight (RSB), caused by Thanatephorus cucumeris (Frank) Donk., is one of
the most serious rice diseases in terms of occurrence area and damage in China, leading to
significant impacts on the quality and yield of rice [1]. The occurrence and prevalence of
RSB disease depend on favorable environmental conditions, such as high air temperature
and humidity, as well as the suitable growth status of the host crop. The most favorable con-
ditions for the growth of the pathogen are when the temperature reaches 28–30 ◦C and the
relative humidity exceeds 70% [2]. Moreover, the planting density and nitrogen level of the
rice plants have also been found to be associated with the disease occurrence [3,4]. The habi-
tat suitability of crop diseases and pests provides a measure of the ecological circumstances
that can satisfy the needs for their occurrence and prevalence. Therefore, the assessment of
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the habitat suitability is crucial for revealing the probability of disease occurrence, which,
in turn, provides further insights into disease forecasting and prevention.

The habitat suitability that determines the distribution and prevalence of crop diseases
and pests can be delineated by meteorological characteristics, geographical conditions,
and the growth status of host crops [5,6]. Among these factors, meteorological data have
been commonly used in disease forecasting due to their high availability. Gong et al. and
Owusu et al. have predicted the spatial distributions of soybean and wheat blast in China
using 19 bioclimatic variables derived from WorldClim [7,8]. However, meteorological
data generally exhibit low resolutions and can reflect climatic conditions only at a large
scale, without being able to indicate the spatial heterogeneity of the habitat conditions of
crop diseases and pests [9,10]. In contrast, remote sensing data can provide more detailed
and spatial continuous information on crop planting and growing status, as well as some
environmental conditions, which can complement meteorological data to provide com-
prehensive information on habitat suitability at a regional scale [11,12]. In recent years,
some attempts have been made to combine meteorological and remote sensing data for
evaluating the habitat conditions of crop diseases and pests. Moara et al. integrated MODIS
products, including land surface temperature (LST), enhanced vegetation index (EVI), and
normalized difference vegetation index (NDVI), with precipitation data to build a forecast-
ing model for sand flies and predict their distribution in Brazil [13]. Andreas et al. [14]
integrated NDVI and LST data from Landsat-TM8 images along with air humidity data to
predict the distribution of beetles within a regional ecosystem—a mountainous protected
area, achieving an area under the curve (AUC) exceeding 0.7. These studies demonstrate
the possibility of integrating multisource remote sensing data and meteorological data for
the effective characterization of habitat information.

To eliminate redundant features before classification, and to reduce the complexity of
disease forecasting models, some statistical approaches and optimization methods can be
applied in the modeling to form a feature set with high sensitivity and less redundancy [15].
The Relief-F feature selection algorithm was found to be an efficient tool for selecting
features, which is important for improving the performance of the learning algorithm [16].
Furthermore, it is also important to realize that the influence of the habitat features may
change over time [17], but few studies have investigated the temporal effect in assessing
disease habitat suitability. Therefore, to enhance the relevancy between the habitat variables
and the occurrence probability of crop diseases and pests, it is necessary to consider the
temporal effect in the feature selection process.

In addition to the optimized habitat features, the modeling approach is also important
to develop a concise and robust habitat suitability assessment model. There are different
forms of models that can potentially be applied in the habitat suitability assessment of crop
diseases and pests, including statistical models, machine learning models, and ecological
niche models [16,18,19]. Based on some meteorological factors, Sun et al. [20] used a
stepwise regression model, backpropagation neural networks, and support-vector machines
to evaluate the habitat suitability of the stripe virus in rice, which yielded corresponding
accuracies of 77.35%, 93.75%, and 98.95%, respectively. Meanwhile, for ecological niche
models, by employing Maxent and the Genetic Algorithm for Rule-set Prediction (GARP),
Stephanie et al. [21] successfully predicted the potential distribution of the fall armyworm
in invaded (Canada, United States) and native (East Asia) regions. Amanda et al. [22]
developed the presence-only Maxent model for invasive cheatgrass distribution in Rocky
Mountain National Park, Colorado, USA, fitted with limited data derived from the remotely
sensed MODIS images, and compared with a presence–absence GLM (generalized linear
model). The AUC of the Maxent model reached 0.96, which was significantly higher than
that of the GLM model (0.83). This result indicates that Maxent is an appropriate model,
particularly when model construction is supported by limited resources.

Unlike the habitat evaluation works at a large scale (i.e., national, continental, or even
global), the disease habitat suitability assessment model at the regional scale can provide
important information to facilitate disease management, early warning, and resource



Remote Sens. 2023, 15, 5530 3 of 17

allocation. Currently, despite the fact that the regional-level habitat suitability assessment
models for RSB disease are still lacking, the tight linkage between the habitat factors and
the disease occurrence implies the possibility of combining meteorological and remote
sensing data to conduct the disease habitat suitability analysis at a regional level. Here,
we hypothesize that the disease habitat suitability assessment models can be driven by
multisource information, including remote sensing and meteorological variables, and yield
the potential distribution information of the disease at the regional scale for RSB disease.
The main objectives of this study are as follows:

(1) To indicate the habitat characteristics of RSB, different types of satellite remote sensing
data and meteorological data are used and analyzed. The Relief-F algorithm is adopted
for feature selection, and a temporal optimization method is proposed.

(2) Based on the optimized habitat features at appropriate stages, the habitat suitability
assessment model for RSB is established at the regional level. The Maxent and logistic
regression models are used and compared.

(3) With the aid of the field survey data on disease occurrence, the accuracy and effec-
tiveness of the established models are assessed. In addition, the spatial distribution
patterns of the predicted risk areas in different years (2018–2020) are analyzed.

2. Materials and Methods
2.1. Study Area

The study area was located in Yangzhou, Jiangsu Province, China (119◦14′–119◦30′E;
32◦15′–32◦41′N) (Figure 1), which is a representative rice cultivation region in the middle
and lower reaches of the Yangtze River. As a major plain area in China, this region is mainly
characterized by relatively high temperatures, abundant rainfall, and high humidity in
summer, which is favorable for RSB disease [23,24]. Therefore, the disease is frequent in
the study area, thus providing an ideal scenario for habitat suitability analysis.
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2.2. Survey Data
2.2.1. Meteorological and Field Survey Data

The field disease survey was conducted in three consecutive years (2018–2020). The
selected survey points were generally evenly distributed within the region (Figure 1), and
the GPS coordinates were recorded at the center of each plot. In addition, information on
RSB disease and phenology was recorded in each survey plot. The disease survey was
conducted by an experienced investigator of plant pathology. By carefully checking the
corresponding symptoms of RSB on rice leaves or stalks, the occurrence of the disease was
recorded as 0 (absence) or 1 (presence). The numbers of investigated plots in the study
area in 2018, 2019, and 2020 were 98, 81, and 137, respectively. The meteorological dataset
included precipitation, temperature, and the minimum temperature of the coldest month
for China, generated by Peng, S. (2020) [25]. The dataset was processed using a delta spatial
downscaling scheme based on the global 0.5◦ climate dataset released by the CRU and the
global high-resolution climate dataset published by WorldClim, yielding data with a spatial
resolution of 1 km. Additionally, it was validated using 496 independent meteorological
observation points, ensuring the credibility of the validation results. In this study, the
meteorological data from June to August in 2018–2020 were used, corresponding to the
period from the tillering stage to the heading stage of paddy rice. The RSB undergoes a rapid
expansion within this period. The daily meteorological parameters were averaged to obtain
the monthly data and were used as habitat meteorological features in constructing the
habitat suitability assessment models. In addition, considering the temperature in winter
also has a significant impact on the overwintering pathogen quantity, so the minimum
temperature of the coldest month (January) in the winter season was also included [26].

2.2.2. Remote Sensing Data

As a form of continuous Earth observation data, satellite remote sensing data have
the merits of high availability and standardization, making them valuable sources of
information for assessing the habitat suitability of crop diseases and pests. Considering the
sensitivity of RSB to temperature and crop growth status, the MODIS vegetation products
and land surface temperature (LST) product were used as influencing factors of RSB habitat
(Table 1). The MODIS LST product (MOD11A2/MYD11A2, 1 km resolution) reflects the
respiration and transpiration of the rice plants, as well as the microclimatic conditions in the
fields [27], which are crucial for environmental monitoring and agricultural management
and reflect the thermal conditions in the rice fields. On the other hand, the MODIS
vegetation products (MOD15A2, 250 m resolution) used in this study included the net
primary productivity (NPP), the fraction of photosynthetically active radiation (FPAR), the
leaf area index (LAI), and the NDVI. The LAI directly reflects the growth status of rice plants
from jointing to maturity, while the NPP indicates the growth of rice plants and the organic
matter accumulation process. Meanwhile, the FPAR represents the fraction of incident
radiation above the crop canopy used for plant photosynthesis, reflecting the physiological
activity of the host crop [28,29]. The NDVI is a classic vegetation index reflecting the
comprehensive vigor and nutritional status of the crop plants [30]. Moreover, to extract
the rice-planting area at a finer resolution, some moderate-resolution remote sensing data
(i.e., Sentinel-1 and Sentinel-2 images) were also used in this study for rice mapping.

Table 1. Representation of habitat variables of rice sheath blight.

Habitat Variable Temporal Quantity Data Source Temporal Step

Leaf Area Index
(LAI) 12 (June–August) MOD15A2 8 days

Normalized Difference Vegetation Index
(NDVI) 6 (June–August) MOD13Q1 16 days

Net Primary Productivity
(NPP) 1 MOD15A2 1 year
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Table 1. Cont.

Habitat Variable Temporal Quantity Data Source Temporal Step

Fraction of Photosynthetically Active
Radiation (Fpar) 12 MOD15A2 8 days

Monthly Average Temperature 3 (June–August) The National Meteorological
Administration of China 1 month

Monthly Precipitation 3 (June–August) The National Meteorological
Administration of China 1 month

The Coldest Month Temperature 1 The National Meteorological
Administration of China 1 month

Land Surface Temperature (LST) 8 (July–August) MOD11A2/MYD11A2 8 days

2.3. Methods

To construct a habitat suitability assessment model for RSB at the regional scale, the
Relief-F method was performed on habitat features that were extracted from multisource
data (i.e., remote sensing, meteorological data) to obtain the optimized features for some
specific stages. Based on these features, the habitat suitability assessment model was
constructed according to the Maxent and logistic regression methods. The overall flowchart
of the modeling process is illustrated in Figure 2.
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Figure 2. Flowchart of the methodology adopted in this study.

2.3.1. Selection of Remote Sensing Habitat Features

In this study, considering the high information redundancy of satellite remote-sensing-
based RSB habitat variables and their potential impacts on the disease occurrence at
different rice growth stages, the Relief-F algorithm was used to optimize the remote sensing
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habitat features. In addition, the sensitivity analysis was also conducted at different stages
to determine the appropriate time window of features for habitat suitability assessment.

In the Relief-F algorithm’s feature selection process, a rigorous statistical analysis
was employed, focusing on the correlation between features and target classes, to allocate
weights. Through an examination of the variance differences between 0 and 1 samples,
the algorithm can effectively discern which features play more pivotal roles in delineating
the disease suitability, and these critical features were assigned higher weights [16]. This
analysis aimed at identifying the most statistically significant feature combinations. In
particular, given the multiple consecutive temporal remote sensing features can better
reflect the continuity and cumulative effects of the habitat conditions of crop diseases,
whereas the single-phase remote sensing data are prone to containing some random errors,
an in-depth statistical analysis was conducted to evaluate temporal patterns and assess
remote sensing habitat features within various time windows. For the FPAR, LAI, and LST
data with 8-day intervals, three consecutive phases were grouped, whereas for the NDVI
data with a 16-day interval, two consecutive phases were grouped. The remote sensing
habitat features in different time windows were subsequently weighted and ranked, and
the combinations with the highest contribution were selected as input remote sensing
habitat features, as shown in Table 2.

Table 2. Temporal combinations of the remote sensing habitat features.

Habitat Feature Temporal Phase Temporal Combination

LAI;
FPAR

0609, 0617, 0625 C1
0617, 0625, 0703 C2
0625, 0703, 0711 C3
0703, 0711, 0719 C4
0711, 0719, 0727 C5
0719, 0727, 0804 C6
0727, 0804, 0812 C7
0804, 0812, 0820 C8
0812, 0820, 0828 C9

NDVI

0609, 0625 C1
0625, 0711 C2
0711, 0727 C3
0727, 0812 C4
0812, 0828 C5

LST

0711, 0719, 0727 C1
0719, 0727, 0804 C2
0727, 0804, 0812 C3
0804, 0812, 0820 C4
0812, 0820, 0828 C5

Note: all of the remote sensing products are MODIS products.

2.3.2. Extraction of Rice-Planting Area

Prior to the modeling process, it is necessary to extract the planting area of the host
crop to serve as a mask layer in the subsequent analysis. In this study, given that the
study area was characterized by cloudy and rainy weather conditions, we employed a rice
classification method that was previously proposed by our research group. This method
features the integration of optical and microwave remote sensing data that are specifically
optimized for cloudy and rainy regions [31]. The rice classification results over 2018–2020
were obtained using the Sentinel-1 and Sentinel-2 images. In this process, the accurate
field parcel boundary information is obtained according to a single-phase clear-sky optical
image and a multiscale image segmentation parameter optimization algorithm, providing
basic units for the object-based classification using the synthetic-aperture radar (SAR)
images. The SAR image time-series data were applied to capture the growing dynamics
of paddy rice, thus enabling the stable and accurate extraction of the rice-planting area
in a cloudy and rainy region. The detailed procedure of the method can be found in the
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work of Shen et al. [31]. The obtained rice classification map can be used as a mask layer
for subsequent habitat analysis.

2.3.3. RSB Habitat Suitability Modeling

In this study, the Maxent and logistic regression models were used to construct the
habitat suitability assessment model for RSB disease based on the optimal remote sensing
and meteorological habitat features. The logistic regression model is a classic statistical
model, which has the merits of simple structure and high interpretability. As a multivariate
quantitative analysis method, the logistic model has been extensively applied in disease
epidemiology for regression analysis of binary dependent variables. This method was
used in this study to assess the relationships between habitat variables and the occurrence
probability of RSB, thereby predicting the disease risk distribution in the region. In this
process, the pixel values of the seven environmental variables (Table 1) were used as
independent variables, whereas the presence or absence of RSB (corresponding to values of
1 or 0, respectively) in each pixel was used as a dependent variable.

The logistic regression model can be expressed by the following equation:

P =
exp(α+ β1X1 + β2X2 + ... + βmXm)

1 + exp(α+ β1X1 + β2X2 + ... + βmXm)
(1)

where P denotes the potential distribution probability, Xi denotes the habitat variable, α is
a constant, and βm denotes the logistic regression coefficients. Based on the combination
of the habitat variables, the spatial distribution probability map of rice sheath blight
can be obtained. This nonlinear model can consider the combined influence of multiple
habitat variables and generate the distribution probability of the disease under different
environmental conditions.

Meanwhile, as a physical-based model, the Maxent model has a clear ecological
principle and is founded on solid probability theory. The Maxent model seeks to establish
a linkage between the disease occurrence and the habitat feature maps, and to generate
a forecasting result of the potential disease distribution area based on the maximum
entropy rule [32]. The Maxent model outputs the occurrence probability (0–100%) value.
To convert this result to a binary result, the average of the minimum and maximum
probability values was applied as a threshold. In this study, both methods were used and
compared in modeling the habitat suitability of RSB disease. In the Maxent modeling, the
“Replicates” parameter was set to 5, indicating the utilization of a fivefold cross-validation
approach, with the highest receiver operating characteristic (ROC) value selected for our
final predictions; the random seed was set, allocating 25% as the testing dataset while using
75% for training. Regarding the model output format, we retained the default setting as
“logistic”. This output was chosen for its ease of interpretation, as it provides probability
estimates between 0 and 1 for presence. Finally, the “regularization multiplier” was set to
its default value of 1. The abovementioned parameters were determined by referring to
some empirical settings [33,34] and were adjusted by preliminary tests.

2.3.4. Validation of the Disease Habitat Suitability Assessment Models

Based on the masked layers of optimized disease habitat features, the disease habitat
suitability assessment models were established according to the logistic regression and
Maxent methods, respectively. By comparing the model-forecasted results and the surveyed
disease occurrence data, the performance of the models was evaluated and compared. The
area under the curve (AUC), overall accuracy (OA) coefficient, and true skill statistics
(TSS) value were used as validation indices. We selected 75% of the disease survey data as
training data, and the remaining 25% were used as validation data.

The OA is used to evaluate the overall accuracy of a classification model, calculated by
comparing the predicted results of the model with the actual observations and dividing the
number of correctly classified samples by the total number of samples to obtain the accuracy
rate. The true skill statistic (TSS), derived from sensitivity and specificity computed using
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species presence and absence data, stands out as the most pragmatic metric in model
assessment [35]. The AUC is the area under the ROC curve, which is used to evaluate the
performance of a model at different thresholds. The ROC curve is discretized into a series
of points (TPR, FPR), where TPR represents the true positive rate and FPR represents the
false positive rate [36]. The calculation formula for AUC can be written as follows:

AUC =
∫ +∞

−∞
TPR(FPR−1(t))dt (2)

where FPR represents the proportion of actual negative samples that are incorrectly classi-
fied as positive. A higher AUC value indicates that the model achieves a better balance
between different TPR and FPR values, demonstrating superior classification capability.

In this study, the Maxent model was analyzed using the Maxent (v.3.4.1) software,
and the logistic regression model was analyzed in Minitab18. The occurrence probability
(0–100%) of RSB at each pixel and spatial scale was calculated using raster calculations. To
convert the outputs of the Maxent and logistic regression models to the binary prediction
(i.e., 0 indicates that the habitat is not suitable, while 1 indicates that the habitat is suitable),
a threshold of 0.5 was set. This threshold is often used as the default threshold for binary
classification [37,38]. Given that both algorithms are probability-based methods, to assign
samples to the class with relatively higher probability, the threshold was set at the middle
point between 0% and 100%. In this case, if the model output exceeded 0.5, the sample
would be classified as “1” (i.e., suitable habitat) given that the positive class holds higher
probability, and vice versa. The occurrence probability maps were generated using ArcGIS
(v.10.7) software. Then, the OA and AUC were computed using R software (v. 4.2.1).

3. Results
3.1. Optimization of RSB Habitat Features

When analyzing the relationships between the habitat features (i.e., NDVI, FPAR,
LST and LAI; for details, please see Section 2.3) and the RSB occurrence via the Relief-F
algorithm, the mean monthly precipitation, LST, and LAI attained higher weights com-
pared to the other habitat variables. In addition to the selection of habitat features, further
analysis was conducted on the determination of the sensitive time windows of the fea-
tures. According to the Relief-F analysis, the weights of the habitat features at multiple
consecutive phases were first summed. These summed weights, corresponding to different
time windows, are demonstrated in Figure 3. Eventually, for each remote sensing habitat
feature, the time window with the highest value was adopted as an input variable in the
subsequent modeling process, and the combination of habitat factors was selected along
temporal phases in a sliding manner (Figure 4), including 4–20 August for LAI, 9–25 June
for Fpar, 12–20 August for NDVI, and 11–27 July for LST.

The spatial distribution of rice fields in the region is crucial in conducting the habitat
suitability assessment for RSB. Considering the data availability in the cloudy and rainy
regions, in this study, the rice mapping method that we used was established based on
“single-phase optical image + multiphases SAR images”, which could be stably acquired in
the study area. By taking advantage of the optical and microwave remote sensing data, this
method achieved overall accuracy (OA) and kappa coefficient values of 94.64% and 0.92,
respectively, suggesting the planting area of the host crop can be accurately extracted in the
region (Figure 5). Such a map of rice fields was then used as a background mask layer to
extract all disease habitat feature layers, thereby limiting the modeling analysis to these
areas and avoiding possible confusion in this process.
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3.2. Evaluation of the Habitat Suitability Model for RSB

Based on the optimized habitat features (Figure 6), the habitat suitability models for
RSB were established using the logistic regression and Maxent methods (Figure 7). The
results showed that both types of models yielded relatively high accuracy. By observing
the interannual variations in the model output parameters (Table 3), we found that the
Maxent model yielded an average AUC of 0.879, significantly higher than that of the
logistic model (AUC = 0.776). For the results of TSS, the average TSS for the Maxent
model (0.66) was also higher than that of the logistic model (0.62). In terms of overall
accuracy (OA), both models produced OA ranging between 0.7 and 0.9 over the three years.
However, both models exhibited higher output accuracy in 2020. This could be attributed
to the higher number of survey points and richer dataset in 2020 (n = 98, 81, and 137 for
2018, 2019, and 2020, respectively), resulting in better forecasting capacity of the models.
Further analysis revealed that the inconsistency between AUC and OA might be due to
the imbalance in the numbers of diseased and healthy samples in the survey data, with a
higher proportion of diseased samples and a relatively small proportion of healthy samples
(24%). For example, although the Maxent method had a high AUC value of 0.94 in 2019,
its OA was relatively low (0.70). Therefore, in the evaluation results, there is a certain
portion of incorrectly classified RSB area, indicating a likelihood of false negative error.
This issue may pose a risk of inaccurate disease forecasting and may further affect proper
control practices. Comparatively, the AUC is more reasonable, especially for the situation of
imbalanced samples between classes, as it considers both false negatives and false positives
in evaluating the model’s performance. Hence, in this study, the Maxent model, with its
relatively high AUC value, is recommended for assessing the habitat suitability of RSB.

Table 3. Accuracy evaluation results of the habitat suitability assessment models using AUC, OA,
and TSS during the 2018–2020 period.

Years 2018 2019 2020
AUC OA TSS AUC OA TSS AUC OA TSS

Maxent 0.80 0.81 0.60 0.94 0.70 0.62 0.89 0.75 0.76
Logistic 0.70 0.77 0.64 0.78 0.71 0.59 0.85 0.81 0.63
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3.3. Distribution Pattern of the RSB Habitat Suitability Results

In this study, given that the disease habitat suitability assessment models are driven
by spatial continuous data, the outputs of the models can reflect the spatial variation
information of the habitat suitability degrees. In comparing the spatial distributions of the
habitat suitability yielded from the logistic model and the Maxent model (Figure 8), the
overall spatial patterns were generally consistent, showing that the habitat in the northern
part is more suitable for RSB than the habitat in the southern part of the study area. Based
on the model prediction, the most suitable area for RSB is located in the northwestern
part of Hanjiang District, Yangzhou, along the Beijing–Hangzhou Grand Canal. Moreover,
the results of the two models indicated moderate-to-high habitat suitability for RSB in
areas around Pingshan Township in Yangzhou, consistent with the surveys conducted
by the plant protection departments in Yangzhou over the years. By looking through the
habitat variables in these areas that suffered frequent disease infection, we found that the
FPAR, LAI, and LST values were relatively higher in these areas than in other areas. Such a
pattern implies relatively high planting density and temperature, i.e., suitable conditions
for the occurrence of RSB. Despite the fact that the meteorological conditions may be
relatively similar in different parts of the region, the integration of multisource satellite
remote sensing data and meteorological data can significantly enhance the ability to exhibit
spatially heterogeneous information about disease habitat, achieving parcel-level disease
habitat suitability assessment. Such detailed spatial information could play an important
role in effective disease forecasting and control in the study area. By applying the Maxent
model to the entire region in each year from 2018 to 2020, the interannual changes in habitat
suitability were determined, as shown in Figure 9. According to the results, there was an
increasing trend of suitable habitat areas for RSB in the southwestern part of the study area
over the 2018–2020 period, particularly along the Grand Canal River in Hanjiang District.
It is worth noting that the suitability for RSB substantially increased in 2020 compared to
the previous two years. In this study, reasonable habitat assessment distribution results
were obtained for small-scale scenarios. As shown in Figure 9, the remote sensing habitat
features can exhibit the spatial differences in habitat conditions for RSB, thereby enabling
the assessment of habitat suitability at the parcel level within the region.
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4. Discussion

The purpose of this study was to explore the potential of combining meteorological
data and multisource remote sensing data for modeling the habitat suitability of RSB. The
Relief-F algorithm employed in this study is better suited to the optimization of feature
sets from various candidate features that have complicated interrelations [39]. In particular,
the temporal phases of the habitat features were determined according to this algorithm.
In this result, a relatively high level of sensitivity was observed in mid-to-late August for
LAI. Indeed, rice in the middle and lower reaches of the Yangtze River during this period
is often in the jointing to heading stages. A high LAI indicates dense vegetation cover and
sufficient plant nutrition, forming a favorable host condition for the occurrence of RSB.
Meanwhile, for the NDVI, a trend of gradual increase in sensitivity was clearly observed
from June to August. As the vegetation index mainly reflects the general biomass and vigor
of rice plants, this result may be due to the NDVI product containing weak vegetation
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signals in the early stages yet carrying strong vegetation signals in the late stages. In
addition, the FPAR showed great sensitivity during the early stages of the rice, particularly
in the transplanting stage. The high emergence rates of rice and the cumulative effect of air
temperature during the early growth stages can contribute to the formation of relatively
large canopy populations of rice, which are associated with suitable microclimate conditions
for infection with RSB. It is worth noting that the combination of multisource remote
sensing and meteorological information can provide a multidimensional perspective on the
habitat conditions of diseases and, thus, effectively characterize the habitat requirements of
RSB [40].

In the process of habitat suitability assessment, two model methods were compared.
The AUC accuracy indicator demonstrated that the Maxent model yielded higher predictive
accuracy compared to the logistic model. The superiority of the Maxent model may be
attributed to its ability to explore and fully utilize the information from multisource remote
sensing and meteorological data. The differences in the model performance can be reflected
from the assigned weights of the habitat variables. For the logistic regression model, the
weights of the monthly precipitation and monthly temperature in June (i.e., the jointing
stage of rice) were higher than those of the other habitat variables. In contrast, the Maxent
model showed higher weights for monthly precipitation and LST in August (i.e., the
heading stage of rice) than the other habitat variables. From the perspective of plant disease
epidemiology, the occurrence and spread of RSB is likely to be influenced by relatively high
temperature and humidity conditions in the heading stage (around August in the study
area). Therefore, the selection of the habitat variables in the Maxent model is reasonable in
reflecting the actual rice sheath blight onset conditions, which is beneficial for constructing
a comprehensive habitat suitability assessment model.

The potential distribution of RSB predicted by the Maxent model indicated high
performance of the model, as it included the current actual distribution areas for this
species. For example, potential areas were found in the northwestern part of Hanjiang
District, Yangzhou, along the Beijing–Hangzhou Grand Canal; this area is historically a
high-risk area for RSB. The water system of the Grand Canal provides convenient irrigation
conditions for the neighboring rice fields, prompting the reproduction of the RSB pathogens
and providing ideal conditions for infection and disease spread in the waterlogged rice
fields. The severity of RSB disease exhibited an escalating trend over the three years, with
a notable upsurge in 2020 compared to the preceding two years. This surge in disease
incidence is possibly linked to the gradual increase in temperature over the recent years.
Data from meteorological stations in Yangzhou revealed that, in 2019, during the summer
period (June to August), the average temperature reached 27.4 ◦C, marking an increase
of 0.6 ◦C compared with the same period in 2018. The average temperature continued to
rise in 2020, reaching 0.3 ◦C higher than the long-term average, and was recorded as the
highest annual average temperature in nearly a decade. This change provided more ideal
circumstances for the propagation and infection of the pathogen in this region.

In this study, we preliminarily validated the feasibility of integrating multisource data
(i.e., satellite remote sensing and meteorological data) and models (e.g., Maxent etc.) for
assessing the habitat suitability of RSB at a regional scale. However, there are still some
limitations in this work. Given the complexity of the disease’s influencing factors, the
features category that we used to delineate the habitat of RSB is still limited, and the spatial
resolution of remote sensing data is expected to be improved. Moreover, the robustness of
the model needs to be further assessed. Moreover, there is still a gap between the model
output and the disease prevention decision-making process. Therefore, to deal with these
limitations, further investigations are expected: (1) To expand the types of data products to
achieve comprehensive disease habitat suitability assessment. For instance, some remote
sensing or geographical data that reflect soil moisture and crop phenological information
could be included for delineating the disease habitat characteristics. (2) In addition, some
data fusion and model optimization approaches need to be explored and introduced in
the modeling process to improve the reliability of the habitat suitability assessment at
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the regional scale. (3) The detailed spatial information of disease habitat suitability can
provide an important reference that is expected to be coupled with the disease forecasting
model. The disease forecasting results can be further used in the decision-making process
for disease control. Therefore, some efforts are needed to further explore methods of model
integration and achieve effective plant protection practices at the regional scale.

5. Conclusions

In constructing a habitat suitability assessment model for the RSB disease, the present
study demonstrated the feasibility of combining multisource data such as remote sensing
and meteorological data for assessing disease habitat suitability at the regional scale. The
main conclusions of this study are as follows:

(1) The habitat features of RSB can be characterized by multisource remote sensing and
meteorological data. The optimal habitat features with appropriate time windows
were obtained according to the Relief-F algorithm.

(2) The best habitat suitability assessment model for RSB was established using the Maxent
algorithm, with an AUC value of 0.879 and a TSS value of 0.73. The heterogeneity of
habitat suitability within a region can be reflected from the output of the model, which
indicates the potential distribution of RSB in the region.

(3) The established disease habitat suitability assessment model is able to generate rea-
sonable predictions that are highly consistent with the actual spatial and temporal
variation trends of RSB disease according to the field investigation records of the
disease. Such information is essential for the forecasting, control, and management of
RSB disease.
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