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Abstract: Boreal summer precipitation over the Tibetan Plateau (TP) is difficult to predict in current
climate models and has become a challenging issue. To address this issue, a new analog-based
correction method has been developed. Our analysis reveals a substantial correlation between the
prediction errors of TP summer precipitation (TPSP) and previous February anomalies of sea surface
temperature (SST) in the key regions of tropical oceans. Consequently, these SST anomalies can
be selected as effective predictors for correcting prediction errors. With remote-sensing-based and
observational datasets employed as benchmarks, the new method was validated using the rolling-
independent validation method for the period 1992–2018. The results clearly demonstrate that the
new SST analog-based correction method of dynamical models can evidently improve prediction
skills of summer precipitation in most TP regions. In comparison to the original model predictions,
the method exhibits higher skills in terms of temporal and spatial skill scores. This study offers a
valuable tool for effectively improving the TPSP prediction in dynamical models.

Keywords: Tibetan Plateau; summer precipitation prediction; analog-based correction; prediction
errors; multi-model ensemble

1. Introduction

The Tibetan Plateau (TP), often referred to as the “Third Pole” and the “Roof of
the World” [1,2], is characterized by its high altitude, diverse topography, and unique
climatic conditions. As one of the least affected areas by human activities, the TP possesses
fragile vegetation displaying a high sensitivity to global warming [3], where precipitation
is of greater significance than temperature throughout its diverse ecosystems [4]. The
TP is also known as the “Asian Water Tower”, as it serves as the source of major river
systems, including the Yellow River, Yangtze, Indus, and Ganges. It plays an indispensable
role in providing water resources and ensuring ecosystem security for the surrounding
regions [5]. As a substantial heat source, it also has an effect on the formation of summer
circulation [6–8]. The variations in TP precipitation, coupled with the release of substantial
latent heat, have significant effects not only on river discharge, glacier mass balance, and
human water supply [9–11] but also exert further influence on our climate regionally and
even globally [12–14]. Therefore, enhancing the predictive capability of climate models in
predicting TPSP is crucial for research and operation.
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Seasonal precipitation prediction in the TP is influenced by various factors. Substantial
advancement has been achieved in understanding the variability of TPSP and the potential
impact factors underlying its influence. Via exciting atmospheric teleconnection, tropical
sea surface temperature anomalies (SSTAs) have the potential to exert an effect on the
TPSP [15–19]. El Niño–Southern Oscillation (ENSO), as the main driver of inter-annual
climate variability, typically has indirect and modulated impacts on TPSP under different
phases and types of ENSO [16,18–20]. In the positive phase of the Indian Ocean basin mode
(IOBM), characterized by uniform warming of SST over the basin, the land–sea thermal
contrast between the Eurasian continent and the Indian Ocean weakens. As a result of this
weakening impact, precipitation over the TP decreases in early summer [21,22]. Some other
climate modes, like the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO), also
provide certain predictability sources for the TPSP [23–25].

Although climate models have emerged as powerful tools for operational prediction,
their useful predictions with accepted skills are mainly located in the tropics. In contrast,
the climate prediction skill for extratropics is relatively limited, except for places with
predictability originating from the tropics [26,27]. Among meteorological variables, pre-
cipitation usually has limited applicability of prediction. The TP region, with its unique
geographical characteristics, presents quite large challenges for climate prediction. En-
couragingly, significant advancements in model resolution, physics parameterizations,
and dynamic core studies [28–32] have greatly reduced model biases associated with TP
precipitation. Nevertheless, the current operational prediction skill for the TP precipitation
still falls far from the expected level. For example, Wang et al. (2022) demonstrated that
climate models still exhibit limited skill in seasonal to inter-annual prediction for the TPSP,
especially across the central–eastern TP [33]. Thus, improvements are urgently needed.

A generally effective approach to enhancing the low prediction skill is a Multi-Model
Ensemble (MME). It has been extensively employed in some international projects such
as the “DEMETER” [34] and “ENSEMBLES” [35] for seasonal to inter-annual prediction.
Notably, some famous institutions like the National Center for Environmental Prediction
(NCEP), APEC Climate Center (APCC), International Research Institute for Climate and
Society (IRI), and the European Centre for Medium-Range Weather Forecasts (ECMWF)
currently provide seasonal prediction products on the basis of the MME approach. For
instance, the North American MME (NMME) was developed to provide abundant informa-
tion to improve intra-seasonal to inter-annual prediction around the world [36–39]. The
China MME (CMME) project has been built to supply multi-element predictions since
2018 [40].

On the other hand, various statistical or empirical correction methods have been developed
in the past decades, aiming to improve model predictions [41–51]. Model prediction errors are
flow-dependent, which can vary with changing climate states, and they have been found to be
correlated to physical predictors [52]. In the case of linear systems, the development of statistical
models that utilize historical data to correct model errors has proven effective in improving
predictions. Commonly used correction methods include mean bias correction [47,53], regression
analysis [54,55], coupled field techniques [46,56], and the inter-annual increment method [57–59].
For nonlinear systems, however, simply having a large amount of data is not sufficient, as more
data relevance is required. As an alternative, analog states from historical data with properties
identical to the current state can be considered. These analog states are available for estimation
and subsequent correction of state-dependent errors. Ren and Chou hypothesized that there is a
certain degree of similarity between flow-dependent errors arising from similar initial climate
states [60]. Based on this hypothesis, the analog-based correction (ABC) of errors dynamical-
statistical prediction method was developed and applied using dynamical models and historical
data [59–62]. Ren et al. [63] and Liu and Ren [64] successfully employed the ABC method for
significantly improving the ENSO prediction. These have provided a valuable perspective to
deal with the issues of predicting TPSP by employing the framework of ABC.

In this study, to utilize the advantages of the ABC method, we aim to develop a novel
scheme focused on improving the prediction of the TPSP. Section 2 describes the methods
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and data employed in this investigation. Section 3 gives the results. A brief discussion is
provided in Section 4. Section 5 summarizes the major findings.

2. Data and Method
2.1. Model Datasets

The NMME comprises climate models from multiple institutions. Table 1 provides a
concise description of each model selected for this research. The first column of the table
indicates the institution responsible for each model and its name. Since its establishment in
2011, the NMME has been offering monthly real-time forecasts. It also offers retrospective
forecasts dating back to 1982 [36,65,66]. The comprehensive information and long-term
coverage offered by the NMME dataset are well suited for our research. This research
encompasses a time span from 1982 to 2018. The models included in the NMME have
numerous ensemble members. All members of each model were utilized to calculate the
ensemble mean. The NMME mean was obtained by performing ensemble averaging on
the selected models. The spatial resolutions of the hindcasts for the NMME models are
1.0◦ × 1.0◦ latitude/longitude, with the distance range within the TP estimated to be
approximately 78–99 km (latitude) and 111 km (longitude). Please refer to the references
mentioned in Table 1 for more details about each individual model. In this study, we
define summer as the average of the months from June to August, indicated as (JJA). Thus,
predictions initialized in May are defined as having a 1-month lead. The other lead times
follow in a similar manner.

Table 1. Description of models.

Model Time Members Lead Reference

CMC1-CanCM3 1982–2018 10 0–11 [67]
CMC2-CanCM4 1982–2018 10 0–11 [67]

COLA-RSMAS-CCSM3 1982–2018 6 0–11 [68]
COLA-RSMAS-CCSM4 1982–2018 10 0–11 [69]

GFDL_CM2p1_aer04 1982–2018 10 0–11 [70]
GFDL_CM2p5_FLOR_A06 1982–2018 12 0–11 [70]
GFDL_CM2p5_FLOR_B01 1982–2018 12 0–11 [70]

NCEP-CFSv2 1982–2018 24 0–9 [71]

2.2. Observational Datasets

We utilized three sets of observed precipitation data: CN05.1 [72], CRU v4.05 [73], and
GPCP v2.3 [74]. These datasets were selected due to their widespread use and reliability in
capturing precipitation patterns. CN05.1 is a dataset produced by the National Meteoro-
logical Information Center of China, which combines rain gauge observations with spatial
interpolation techniques using an “anomaly approach” based on over 2400 stations [72]. The
dataset provides monthly precipitation at a resolution of 0.25◦ × 0.25◦ latitude/longitude,
with an estimated distance range within the TP of approximately 19.5–24.75 km (latitude)
and 27.75 km (longitude). The gridded data obtained via interpolation from meteorological
station observations may inevitably contain errors during the interpolation process. Despite
the potential errors, the CN05.1 dataset is widely recognized and extensively employed
in meteorological and climate research. It provides high-quality ground observation data
that are valuable for analyzing climate change, studying extreme weather events, and
validating climate models. CRU v4.05, developed by the Climatic Research Unit, is an-
other widely used dataset. It incorporates various sources of observed data, including
rain gauges, weather stations, and satellite observations. CRU v4.05 provides monthly
precipitation at a resolution of 0.5◦ × 0.5◦ latitude/longitude, with an estimated distance
range within the TP of approximately 39–45.5 km (latitude) and 55.5 km (longitude). The
GPCP v2.3 dataset is a collaborative effort among several organizations, including NASA,
NOAA, and the University of Maryland. It combines rain gauge measurements, satellite
observations, and other data sources to generate global precipitation estimates. GPCP v2.3
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provides monthly precipitation data at a resolution of 2.5◦ × 2.5◦ latitude/longitude, with
an estimated distance range within the TP of approximately 195–247.5 km (latitude) and
277.5 km (longitude). To address the comparability between the observational datasets and
the model datasets, we employed an interpolation technique to interpolate all observed
datasets to a consistent spatial resolution of 1.0◦ × 1.0◦, which matches the resolution
of the model data. Specifically, we used bilinear interpolation to estimate the values at
the grid points in the interpolated dataset. To ensure robustness and representativeness,
we performed ensemble averaging by combining the three observed datasets. Ensemble
averaging involved calculating the mean value across the three datasets at each grid point,
resulting in a composite precipitation dataset. In this research, the average of observations
is used to evaluate the model results and calculate the historical prediction errors. The SST
data were sourced from the National Oceanic and Atmospheric Administration (NOAA)
Optimum Interpolation (OI) SST version 2. Climatology is subtracted across the entire
period (1982–2018) to calculate anomalies. At different calendar months and lead times, the
predicted anomalies are derived by subtracting their own corresponding climatology.

2.3. Analog-Based Correction Method

A brief overview of the ABC method [60,63] is given here:

P̂red(ψ0) = Pred(ψ0) +
n

∑
i=1

wi

[
Obs

(∼
ψi

)
− Pred

(∼
ψi

)]
(1)

where Pred and Obs refer to model predictions and observations, respectively. In the
equation, wi is the weight function. “∼” represents the historical analog time. ψ0 indicates

the current initial state and
∼
ψi is the analogy initial state (i = 1, 2 . . . n, where n denotes the

overall number of analogs chosen). For different ψ0, one can target the historical analog
∼
ψi that is well suited for an estimation of current errors. P̂red(ψ0) represents the corrected
model prediction. To the right, the first term corresponds to the original model prediction,
while the second term represents the prediction correction. The prediction correction
term is determined by utilizing historical analog prediction errors from the same model.
Furthermore, it should be noted that prediction objectives are expressed in the equation
as functions Pred(ψ) rather than prediction variables ψ, indicating that the method can be
used to correct either prediction variables (such as geopotential height) or their functions

(such as precipitation). Particularly, in this study, the variable ψ denotes SST and Obs
(∼

ψi

)
denotes the observed precipitation corresponding to the predicted precipitation Pred

(∼
ψi

)
for the initial value

∼
ψi.

2.4. Evaluation Methods

The Temporal Correlation Coefficient (TCC) and the Pattern Correlation Coefficient
(PCC) are used to quantify model predictability. We define xl, k and fl, k as the anomalies
for observation and prediction in space (l) and time (k); P is the number of space samples;
and Q is the number of time samples. They are calculated as follows:

TCCl =
∑Q

k=1 (xl, k − xl)
(

fl, k − fl

)
√

∑Q
k=1(xl, k − xl)2 ×

√
∑Q

k=1

(
fl, k − fl)2

, (2)

PCCk =
∑P

l=1 (xl, k − xk)
(

fl, k − fk

)
√

∑P
l=1(xl, k − xk)2 ×

√
∑P

l=1

(
fl, k − fk)2

(3)
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The range of the TCC and PCC are from −1.0 to 1.0, and a large positive (negative)
value indicates a highly similar (opposite) correlation between prediction and observation.

3. Results
3.1. Evaluation of Model Direct Predictions

Figure 1 shows the TCC skills directly from the individual NMME models, as well as
their mean for predicting the TPSP. The individual models exhibit low prediction skills,
characterized by significant correlation coefficients limited to small areas in the southwest-
ern TP. The NMME-mean shows higher positive TCC skills, although this improvement
is mainly observed in the southwestern TP. The central–eastern TP is characterized by
high population density and extensive economic and agricultural activities, indicating the
urgent need for improvements in predicting precipitation over this region. The subsequent
analysis focuses on identifying effective predictors of TPSP. Next, a new analog-based
correction method of dynamical models is developed, utilizing potential predictors.
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Figure 1. TCC skills between the observed and predicted TPSP, derived from the original NMME
models and NMME-mean at four-month lead during 1992–2018.

3.2. The Establishment of the SST Analog-Based Correction Method

Oceanic basin-wide tropical SSTAs have been recognized as critical climate-forcing
factors that significantly contribute to climate prediction due to their long-term sustain-
ability with respect to atmospheric processes. Existing studies have extensively examined
the oceanic factors that contribute to the inter-annual variability of TPSP, such as ENSO,
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NAO/AO, and IOBM (e.g., [15–19,21,23]). Specifically, positive anomalies in SST lead to
positive anomalies in the upper tropospheric height field and result in anomalous anticy-
clonic circulation. The SSTAs are modulated by the influence of winter ENSO and Indian
Ocean dipole events. Collectively, these oceanic processes regulate the transport of water
vapor, subsequently influencing the TPSP [24].

Figure 2 provides the 5-year-out running correlation between the previous February
global SSTAs and the TP area-averaged summer precipitation. The delayed influence of
the SST was investigated first, with an analysis of the correlation from the TP-averaged
precipitation to global SSTAs in February from 1982 to 2018 (shown in Figure 2a). The
previous February SSTAs in the Indian Ocean (IO) and North Atlantic Ocean (ATL) were
found to be significantly related to the TPSP. The maximum correlation coefficients with the
TP-averaged precipitation index are 0.53 and 0.55, respectively. It is essential to recognize
that the relationship between two climate systems can exhibit temporal instability, limiting
climate predictability (e.g., [75–79]). Taking these considerations into account, further anal-
ysis of running correlation coefficients was conducted to determine the optimal predictor
domains. These coefficients were evaluated by consecutively excluding 5 years at a time
from the time series and calculating correlations between the predictor and precipitation
for each omission; a series of correlation values was obtained. The minimal running corre-
lations refer to the reliability of the predictor–precipitation relationship, as illustrated in
Figure 2b. Accordingly, the SSTAs identified by the red boxes in Figure 2b were chosen as
predictors and labeled as the ATL-SST and IO-SST.
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Figure 2. (a) The correlation map and (b) the 5-year-out running correlation map between the
previous February global SSTAs and the TP area-averaged summer precipitation during the whole
period of 1982–2018. The dotted areas denote the statistical significance of Student’s t-test at the 99%
confidence level.

Figure 3 further provides the correlation between the observational region-averaged
SST indices in the two key regions (hereafter referred to as IO-index and ATL-index) and the
precipitation prediction errors in each individual model [55]. Positive correlations can be
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found throughout the TP, with the ATL-index demonstrating relatively higher correlation
coefficients compared to the IO-index. Moreover, the spatial distributions of correlation
coefficients generally exhibit a high degree of similarity among these model results, with
the majority of PCCs between SST-TP precipitation correlations for the NMME-mean and
individual models exceeding 0.8 (Figure 4). These findings imply that SSTAs within the key
regions influence the formation and development of prediction errors, providing insights
into prediction error spatial distribution and variability.
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In some cases, there may not be available historical years that are directly comparable
or considered the “most analogous” to the current year. To address this issue, a flexible
approach has been adopted for the final predictions, which involves selecting analog states
by evaluating the PCCs that capture the similarity between present and historical SSTAs
within the predictor domain, with a threshold set at 0.7. When the correlation between the
SSTAs within the predictor domain exceeds 0.7, the corrected precipitation is utilized as
the ultimate prediction result. Conversely, when the correlation is less than 0.7, the original
model-predicted precipitation is used as the ultimate prediction for that year. This allows
for adaptability in capturing the influence of both high and low correlations between the
SSTAs in the predictor domain and prediction errors, resulting in more reliable predictions.
Based on the aforementioned analysis, two predictors were selected. Consequently, the
final predictions are determined by averaging the results of these two selected predictors,
referred to as ensemble–mean (EM) predictions.

3.3. Validation of the New Method

To validate the new method, rolling-independent reforecast experiments were adopted
in this study. This approach involves using only historical observational data from previous
years to be utilized for training. For example, for the year 1992 (1993), only observational
data from 1982 to 1991 (1982–1992) are utilized to train the model, and so on. Subsequently, a
combined dataset spanning from 1992 to 2018, incorporating both hindcasts and operational
predictions, is employed for evaluating how well the correction method performs.

Figures 5 and 6 depict the TCC skills of the individual models for JJA mean precipita-
tion after applying the new method, using the predictors of the IO-SST and the ATL-SST,
during the rolling-independent period from 1992 to 2018. In comparison to the original
predictions, which demonstrate low prediction skill over the central–eastern TP (Figure 1),
the new method predictions exhibit significantly improved skill in predicting JJA precipita-
tion. Figures 5b and 6b show the TCC differences between the corrected and the original
predictions, highlighting the substantial improvements achieved by the new method in
predicting the TPSP. For the corrected predictions of the IO-SST as a predictor, positive
values are found throughout the central–eastern TP regions in most models with the highest
TCC improvement (over 0.5). When the ATL-SST is used as a predictor, the COLA-RSMAS-
CCSM4 model demonstrates the most significant improvement in TCC with a maximum
value of 0.81, while the majority of other models also exhibit improvements exceeding 0.5.
Using ATL-SST as a predictor leads to a skill improvement, notably in the southwestern TP
region in Figure 6, even if the original models already show remarkable skill in this area.
This finding is further supported by the skills of area-averaged TCC for both the original
and corrected NMME-mean, as shown in Figure S1. Additionally, it can be observed from
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Figure S1 that the EM predictions combining the two predictors are generally superior to
those of each individual predictor alone.
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Figure 7 illustrates the spatial patterns of the TCCs of the corrected NMME-mean, as
well as the differences between the corrected NMME-mean and the original NMME-mean,
for each lead month ranging from 1 to 4. In contrast to the limited improvement observed
in the southwestern TP of the original NMME-mean, the corrected NMME-mean exhibits
widespread positive TCCs across almost the whole TP region, except for some northern
peripheral areas. As seen in Figure 7b, TCCs have significantly improved, with values
exceeding 0.6.
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Figure 8 presents the PCCs from the observed anomalous precipitation with respect to
the predictions generated by both the original NMME-mean and the new method. In most
years, the NMME-mean based on the new method exhibits larger or very similar PCCs
compared to the original NMME-mean. The long-term averaged PCCs over 1992–2018
increased from approximately 0.16 (0.17, 0.20, and 0.16) of the uncorrected NMME-mean
to approximately 0.25 (0.23, 0.27, and 0.28) of the original NMME-mean at lead time of
one month (two months, three months, and four months). Figure S2 shows substantial
improvements in the long-term averaged PCCs for the individual models derived from the
new method. The results obtained from this study indicate that the new method has the
ability to significantly improve the prediction of the TPSP.
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Figure 8. PCCs for the predictions of the original NMME-mean, as well as the corrected NMME-mean
from the new method of combining two selected predictors, during the period of 1992–2018. The first
to fourth rows reflect one- to four-month leads, respectively. The long-term averaged PCC skills are
given in the top-right for each panel.



Remote Sens. 2023, 15, 5669 13 of 18

4. Discussion

The TP poses considerable challenges for accurately predicting summer precipitation
due to its unique geographical features, complex topography, and atmospheric circula-
tion patterns. Current dynamical models have limitations in accurately capturing TPSP.
This study introduces a new analog-based correction method that has been developed to
address this challenge and improve the prediction of the TPSP. The method is motivated
by the hypothesis that the flow-dependent model prediction errors exhibit some degree
of similarity when the prior climate states of the models are analogous to one another.
When the new method is applied to the NMME model hindcasts dataset, the verification
against independent observations shows that the new SST analog-based correction method
of dynamical models can evidently improve prediction skills of summer precipitation in
most TP regions.

Over the past few years, dynamic models have become the most powerful tool in
climate predictions. However, it is inevitable that these models will have inherent errors
in their predictions. Specifically, prediction errors refer to the disparities between the
predicted values and the corresponding observed values. The errors are known to vary
with the climate state, which can be estimated statistically using related physical variables
as predictors. In other words, the variability of the climate system directly or indirectly
influences the configuration and evolution of prediction errors, and such influences will
further be reflected in the distribution and change in prediction errors. This serves as the
fundamental premise of the present study. Our study examined the correlation between
preceding February SSTAs and prediction errors of TPSP. The analysis reveals a significant
relationship between prediction errors and preceding February SSTAs in key regions of
the Indian Ocean and North Atlantic Ocean. Additionally, a high degree of similarity
in the prediction errors is observed among different dynamical models utilized in this
study. In simpler terms, when the SSTAs in February exhibit similarities, it is possible
for the model prediction errors to exhibit similar patterns as well. This formed the basis
of our method, and we utilized this relationship to estimate error weights by combining
them. Building on these findings, the analog-based correction method has been applied to
predict summer precipitation using the identified SST predictors. The rolling-independent
validation technique has been used from 1992 to 2018 to verify the new method. The
findings of this study demonstrate promising results for the proposed correction method in
predicting summer precipitation over the TP. Both the IO-SST and ATL-SST exhibit superior
performance with positive TCCs over most areas of the TP, albeit with regional differences.
The EM predictions using both the IO-SST and ATL-SST predictors demonstrate superior
performance compared to each predictor individually. This approach provided a novel
perspective and practical application for error correction in climate prediction, ultimately
contributing to the advancement of the field.

Our findings provided insights that, despite the overall positive performance exhibited
by the IO-SST and ATL-SST, there are regional differences indicating that individual predic-
tors may exert specific influences on particular areas of the TP. The regional variations could
be attributed to the complex interactions between atmospheric and oceanic processes, as
well as the specific geographical features and atmospheric circulation patterns in different
sub-regions of the TP. Therefore, future prediction research will consider dividing the entire
TP into several sub-regions. In addition to our focus on SST predictors, previous studies, as
mentioned in our introduction, have extensively investigated the influence of ENSO on TP
precipitation. We also explored the application of an ENSO-based ABC method to predict
TP summer precipitation. However, despite our efforts, this approach has not yielded a
significant improvement in prediction skills. Notably, Liu and Ren (2023) found that EP El
Niño and CP La Niña have contrasting effects on summer precipitation in the southwestern
TP, resulting in a trans-type inversion characterized by significant decreases and increases,
respectively [19]. These findings highlight the complexity of the relationship between
ENSO and TP precipitation, which is may also reflected in model errors. Considering the
intricate nature of this relationship, our future investigations aim to delve deeper into the
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characteristics of TP precipitation under different ENSO event types and apply the findings
to improve the TPSP prediction in dynamical models. Beyond that, it is possible to consider
that nonlinear prediction errors can be objectively isolated and addressed via alternative
nonlinear methodologies, including deep learning techniques [80].

Although the new method for TP precipitation shows significant improvement, it is
important to acknowledge that its performance may vary across different time periods. The
variation can arise from uncertainties between the predictor and predictand at interdecadal
or decadal scales [81]. Therefore, achieving stable and highly skilled TP precipitation
prediction remains a major challenge. In this study, the analog-based correction mechanism
is exclusively established using the preceding SST signals. Nevertheless, it is imperative to
acknowledge the intricate and extensive drivers of TPSP variability. Other boundary signals,
including snow cover and soil moisture [82–85], may also influence TPSP. In addition, we
used bilinear interpolation to estimate the values at the grid points in the interpolated
dataset. It is also important to acknowledge the limitations and potential biases associated
with interpolation techniques. Bilinear interpolation assumes a uniform distribution of data
in space and equal distances between grid points. In reality, there may be discrepancies in
spatial resolution or grid layout between the observed datasets and the model data, which
could introduce interpolation bias. Although it is not possible to eliminate this type of bias
entirely, in order to improve the reliability of the observational data, we employed multiple
datasets. This ensemble averaging approach involved calculating the mean value across the
three datasets at each grid point, resulting in a composite precipitation dataset. This helped
to reduce the impact of individual dataset biases and improve the representativeness of
the interpolated dataset. In addition, in our study, we also compared the skills verified
by directly using each set of observational data, respectively. It is evident that the overall
distribution of TCC skills remains relatively consistent. These findings align with the
results obtained from multiple observational ensembles. Despite the inherent variability
in the observation data, we made diligent efforts to account for its influence, and via
comprehensive analysis, we demonstrated the robustness of our error correction method
from multiple perspectives.

5. Conclusions

This study introduced an analog-based correction method aimed at improving summer
precipitation prediction over the TP. The new method has been successfully applied to
predict precipitation for the models included in the NMME dataset. The performance of
the new method is validated by utilizing remote-sensing-based and observational datasets
as benchmarks. Three main conclusions were obtained as follows:

(1) The prediction skill for summer precipitation over the TP in current climate models
is constrained, with notable limitations observed in the central–eastern TP region.
Additionally, the prediction errors demonstrate a pronounced level of consistency
across various dynamical models.

(2) The prediction errors of TPSP exhibit a significant correlation with the previous
February anomalies of SST in the key regions of the tropical Ocean. Both the ATL-SST
and IO-SST can be considered effective predictors for correcting the prediction errors
while noting the presence of regional differences.

(3) The prediction skill for summer precipitation over the TP exhibits notable improve-
ments via the application of the new SST analog-based correction method, as demon-
strated by higher temporal and spatial skill scores obtained from the rolling-independent
verification. This study provides a valuable tool for enhancing the prediction of TPSP
within dynamical models.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/rs15245669/s1. Figure S1: The area-averaged TCCs for the
original and corrected NMME-mean during the period of 1992–2018; Figure S2: Long-term averaged
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PCCs between the observation and the original predictions, as well as the corrected predictions from
the new method of two selected predictors during the period of 1992–2018.
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