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Abstract: Crop growth stages are integral components of plant phenology and are of significant
ecological and agricultural importance. While the use of remote sensing methods for phenology
identification in cropland ecosystems has been extensively explored in previous studies, the focus has
often been on land surface phenology, primarily related to the start and end of the growing season. In
contrast, the monitoring of crop growth within an agronomic framework has been limited, particularly
in the context of recently developed solar-induced chlorophyll fluorescence (SIF) data. Additionally,
some critical growth stages have not received adequate attention or evaluation. This study aims to
assess the utility of SIF data, collected from both ground and satellite measurements, for identifying
critical crop growth stages within the realm of remote sensing phenological estimation. A comparative
analysis was conducted using enhanced vegetation index (EVI) data at the Shangqiu site in the North
China Plain from 2018 to 2022. Both SIF and EVI time-series data, obtained from ground and
satellite sources, undergo a comprehensive phenological estimation framework encompassing pre-
processing, modeling, and transition characterization. This approach involves reconciling time-series
phenological patterns with crop growth stages, revealing the necessity of redefining the mapping
relationship between these two fundamental concepts. After preprocessing the time-series data, the
framework incorporates the phenological modeling process employing two double logistic models
and a spline model for comparison. Additionally, it includes phenological transition characterization
using four different methods. Consequently, each input dataset undergoes an assessment, resulting in
12 sets of estimations, which are compared to select the ideal estimation portfolio for identifying the
growth stages of maize and winter wheat. Our findings highlight the efficacy of SIF data in accurately
identifying the growth stages of maize and winter wheat, achieving remarkable results with an
R-square exceeding 0.9 and an RMSE of less than 1 week for key growth stages (KGSs). Notably,
SIF data demonstrate superior accuracy, robustness, and sensitivity to phenological events when
compared to EVI data. This study establishes an estimation portfolio utilizing SIF data, involving the
Gu model, a double logistic model, as the preferred phenological modelling method together with
various compositing methods and transition characterization methods, suitable for most KGSs. These
findings create opportunities for future research aimed at enhancing and standardizing crop growth
stage identification using remote sensing data for a wide range of KGSs.
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1. Introduction

The dynamics of periodic events in plants, known as plant phenology, reflect the
responses of the terrestrial biosphere to climate change [1–4]. As the specific part of plant
phenology, the agricultural crop growth stages function as more sensitive and integrated
indicators of the agricultural ecosystem to environmental conditions [5,6]. In addition,
as the physiological signals responding to the growing conditions, crop growth stages
could determine the biophysical structure of the crop and its photosynthesis intensity,
evapotranspiration rate and light use efficiency [7,8]. For example, drought stress during
the silking stage of maize could cause a 3–8% loss to its yield, while, for soybeans during
the setting pods stage, the reduced number of pods may be 20% [9,10]. That explains the
reason why the yield loss of maize and soybean are particularly sensitive to the water
condition during the silking stage and the setting pods stage, respectively [11,12]. For
the same reason, these two growing stages have been also seen as the critical irrigation
window of these two crops [12,13]. Hence, the agricultural crop growth stages could build
a critical link between environmental conditions and the physiological growth of crops,
and contribute to crop yield estimation, precise crop management and decision making.

The solar-induced chlorophyll fluorescence (SIF) is the signal emitted by the chlorophyll-a
molecules in vegetation when they absorb photosynthetically active radiation during photo-
synthesis. This signal, which falls within the spectrum of 650 nm to 800 nm, is a valuable
indicator of various plant phenophases [14]. As a by-product of photosynthesis, SIF has
been proven to be strongly related with the gross primary production (GPP) of vegetation
for different ecosystems [15–18]. In addition to its role in monitoring photosynthesis, SIF
also provides valuable insights into the biophysical structure of plants [19–21]. Due to
its advantages over traditional vegetation indices (VIs), SIF data has become increasingly
popular for monitoring plant growth conditions [15,22,23]. Over the past decade, SIF data
has been retrieved globally from various satellite missions, including GOSAT (Greenhouse
gases Observing SATellite) [15,16,22], GOME-2 (The Global Ozone Monitoring Experiment-
2) [24,25], SCIAMACHY [25,26], OCO-2 (Orbiting Carbon Observatory-2) [27], TROPOMI
(TROPOspheric Monitoring Instrument) [28] and Tansat [29,30]. These missions have paved
the way for regional-scale crop growth condition monitoring using SIF data.

Advancements in remote sensing technology have opened new avenues for under-
standing plant phenology, offering valuable insights into crop growth and its response
to environmental factors [31–35]. Phenological estimation utilizing remote sensing time
series data typically involves several key steps. Initially, the data undergo compositing
and filtering to mitigate cloud contamination, viewing geometry issues, and atmospheric
interference [36,37]. Subsequently, phenological models such as smoothing spline functions,
double logistic functions, and asymmetric Gaussian functions are employed to fit the signal
curve throughout the growing season [31,38,39]. Finally, phenological transition dates are
extracted from the fitted phenological curve with various methods [40–42]. Despite the
progress made in utilizing remote sensing data for the crop phenology estimation, several
challenges persist. Firstly, there is a discrepancy between phenological transition dates,
such as the start of the season, and crop growth stages like the silking stage of maize and
heading stage of winter wheat, creating a temporal gap [5,42]. Secondly, many studies
on crop phenology estimation are constrained within the broader framework of plant
phenology, focusing primarily on the start, peak, and end of the growing season [43–45].
This limitation hinders the alignment of phenological estimations with actual crop growth
stage observations in agronomy. Thirdly, while SIF data has been widely proven effective
in tracking GPP and crop growth observation, its potential for identifying specific crop
growth stages remains unexplored [45,46].

This study focuses on a specific agronomic observation site situated in the North
China Plain, aiming to harness the potential of SIF data obtained from both ground-based
measurements and satellite retrievals. With a specific emphasis on two key crops, sum-
mer maize and winter wheat, this research endeavors to achieve the following objectives:
(1) Alignment of phenological characteristics: To establish a clear correspondence between
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the time-series phenological characteristics derived from the remote sensing data and the
actual growth stages observed on the ground; (2) SIF data for growth stage estimation:
Assessing the capability of SIF data to effectively estimate critical crop growth stages within
the framework of agronomy; (3) Comparison with vegetation indices: A comparative
analysis to determine whether SIF data exhibits superior performance when compared
to traditional VIs (EVIs) in accurately identifying and characterizing crop growth stages;
(4) Exploration of acceptable portfolios: Exploring and identifying acceptable combina-
tions of remote sensing time-series phenological estimation processes encompassing pre-
processing, modeling, and transition characterization that prove effective in the precise
identification of crop growth stages.

2. Materials and Methods
2.1. Study Site

The study site, located in Shangqiu, Henan Province, China (Figure 1), is a part of the
ChinaSpec network (https://chinaspec.nju.edu.cn/(accessed on 6 December 2022)) man-
aged by Nanjing University and Institute of Farmland Irrigation of the Chinese Academy
of Agricultural Sciences (CN-SQ, National Agro-Ecological Observation and Research
Station of Shangqiu: 34.5203◦N, 115.5894◦E) [46–48]. This region in the North China Plain
is renowned for its annual crop rotation, mainly involving winter wheat (Triticum aestivum)
and summer maize (Zea mays). The climate is characterized by a warm and semi-humid
continental monsoon, with an average annual precipitation of 706 mm and a mean temper-
ature of 13.9 ◦C. Winter wheat is planted in mid-October, followed by a winter season with
snowfall. The regreening stage of winter wheat typically begins in early March, followed by
the harvest of winter wheat in June. Subsequently, summer maize is planted and harvested
in late September to early October, starting a new crop rotation cycle.
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Figure 1. The map of the study site (CN-SQ), marked with the green diamond in this figure. Shangqiu
has been marked red in the map of Henan Province, with other cites painted royal blue. The reference
map is at the up-right corner, indicating the location of the Henan Province is at the heart of North
China Plain as the center of one main grain-producing area in China.

2.2. Observed Crop Growth Stages

As detailed in Section 2.1, the observation of crop growth stages at the CN-SQ site is
conducted in collaboration with the National Agro-Ecological Observation and Research
Station of Shangqiu, Institute of Farmland Irrigation of the Chinese Academy of Agricul-

https://chinaspec.nju.edu.cn/(accessed
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tural Sciences. The dedicated team from this institute undertakes comprehensive crop
growth stage observations, encompassing not only the experimental farmland within the
study site but also the broader agricultural landscape in the vicinity. Ground-based spec-
trum measurements, or in situ measurements, were conducted within the experimental
farmland of the study site. These observed growth stages within the station served as
reference data for estimating crop growth stages at the site level (site-OBs). Additionally,
considering the broader coverage of satellite data over a larger agricultural landscape
surrounding the study site, the average of the observed growth stages from both within the
site and the broader agricultural area in proximity (area-OBs) were utilized as reference
data for satellite-based estimations. The observations are meticulously recorded to doc-
ument various agronomic growth transitions and milestones. The recorded crop growth
stages and their respective definitions are presented in Table 1, sourced from ground ob-
servers’ expertise and aligned with the Integrated Crop Management Handbook and Best
Management Practices for Wheat Production [49,50].

Table 1. Ground-observed crop growing stages.

Crop Growth Stages Definition

Winter
wheat

Regreen (RG) The plant turns green again after the winter.
Jointing (JT) From 1st node detectable to last leaf visible.

Heading (HD) Head is fully exposed to frost, hail and pests. Plant attains final height.
Milk (MK) Starch and protein content determination starts, or namely ‘grain filling’.

Ripening (RP) Kernel hard, difficult to divide by thumbnail. The plant is
completely yellow.

Harvest (HV) The plant has been harvested.

Summer
maize

Sowing (SOW) Seeds have been planted in the soil.
Emergence (VE) Shoot (coleoptile) has emerged from the soil.

5th leaf (V5) The 5th leaf collars present.

Jointing (JT) Between V6 and V9, the first stem of maize grows to the height
approximately 2 cm.

Tasseling Lowest branch of the tassel is visible.
Silking One or more silks extends outside of husk leaves.

Milk (MK) Kernels filled with ‘milky’ fluid, or namely ‘grain filling’.

Maturity (MT) Kernels at maximum dry matter accumulation; a ‘black layer’ will form
at kernel base (2–3 days after physiological maturity).

Harvest (HV) The plant has been harvested.

Note: The bolded growth stages in this table are key growth stages (KGSs).

For summer maize, the tasseling and silking growth stages occur in close succession,
typically within a 1- to 3-day window. Given the potential margin of error in observation,
this study simplifies this by treating these stages as one, referred to as tasseling and
silking (T&S). Similarly, the maturity and harvest stages, often temporally intertwined, are
combined into a single stage named maturity and harvest (M&H).

Moreover, not all growth stages have an equal impact on crop yield. For instance,
in maize cultivation, the silking stage is highly sensitive to water stress, necessitating
meticulous irrigation management [51,52]. Additionally, the V5 and jointing stages, when
the stem of maize grows fast described in Table 1, demand increased attention due to
maize’s heightened need for nitrogen fertilizer and water during these phases [53–57].
Similarly, both wheat and maize assign critical importance to the milk stage [49,58]. During
this phase, kernels undergo crucial filling, exerting a substantial influence on the overall
yield potential. Recognizing the pivotal nature of these growth stages, this study designates
them as key growth stages (KGSs), which have been bolded in Table 1.

2.3. Ground-Based Spectrum Measurements

Seasonal canopy reflectance and SIF observations were conducted using an automated
ground-based continuous observation system known as AS-SpecFOM, (Agri-SIF Envi-
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ronmental Technology Co., Ltd., in Nanjing, China). This system bears a resemblance to
FluoSpec2 and comprises two essential components [59]. The core of the system features a
QEPRO spectrometer (Ocean Optics, Dunedin, FL, USA) with a spectral range spanning
from 730 to 785 nm, a full-width half-maximum (FWHM) of 0.17 nm, and an impressive
signal-to-noise ratio (SNR) of approximately 1000. This QEPRO spectrometer is primarily
utilized for the retrieval of SIF data. In conjunction with the QEPRO, the system incorpo-
rates an HR2000+ spectrometer (Ocean Optics, Orlando, FL, USA) with a broader spectral
range, covering wavelengths from 350 to 1000 nm, an FWHM of 1.1 nm. The HR2000+
is dedicated to capturing canopy reflectance measurements and vegetation indices (VIs).
Specifically, the enhanced vegetation index (EVI) was computed using Equation (1) [60].
In Equation (1), ρNIR, ρred and ρblue are reflectance at near-infrared, red and blue bands
after the atmospheric correction. The entire system boasts a 25◦ field of view (FOV) and is
positioned at an approximate height of 10 m above the canopy.

EVI = 2.5 × ρNIR − ρred
ρNIR + 6 × ρred − 7.5×ρblue + 1

(1)

Table 2 provides an overview of the in situ SIF and EVI data collected for winter wheat
and maize during specific years. In the case of winter wheat, data were systematically
gathered in 2019, 2021 and 2022. The absence of data for winter wheat in 2018 and 2020 was
attributed to the construction and the relocation of the observation system, respectively.
For maize, in situ SIF measurements were consistently acquired from 2018 to 2022, while in
situ EVI data were obtained from 2019 to 2022. The lack of in situ EVI data in 2018 resulted
from data loss. To mitigate the impact of cloud cover on in situ SIF measurements and the
photosynthetic activity of crops, measurements conducted during periods with a clearness
index (defined as actual shortwave radiation divided by top-of-atmosphere shortwave
radiation) lower than 0.5 were identified as observations made under cloudy conditions
and were consequently excluded from the dataset [61]. To identify the best observation
time period for each data, the in situ measurements were categorized into three groups:
‘Morning’, ‘Afternoon’ and ‘Whole-day’, each representing a 1-day resolution with the mean
values recorded within the respective time periods. Specifically, ‘Morning’ corresponds to
the time frame between 7:00 AM and 12:00 PM, while ‘Afternoon’ encompasses the period
from 12:00 PM to 5:30 PM.

Table 2. Data collection in this study.

Data Time Cover Temporal Resolution Spatial Resolution

Ground-based data

Ground-measured
SIF

(In situ SIF)

Maize: 2018–2022
Wheat: 2019, 2021, 2022 0.5 h -

Ground-measured
EVI

(In situ EVI)

Maize: 2019–2022
Wheat: 2019, 2021, 2022 0.5 h -

Satellite data
TROPOMI SIF 2018–2022 1 day 0.05◦

MODIS EVI 2018–2022 8/16 days 0.05◦

2.4. Satellite Data
2.4.1. TROPOMI SIF

TROPOMI, carried aboard the Sentinel-5 Precursor satellite, commenced its mission
on 13 October 2017, with co-funding from the European Space Agency (ESA) and the
Netherlands. This advanced instrument provides a wide swath of approximately 2600 km,
delivering high-resolution spatial measurements. Prior to 6 August 2019, TROPOMI
boasted a spatial resolution of 3.5 km × 7 km, which transitioned to 5.6 km × 3.5 km after
the specified date. TROPOMI enables the retrieval of SIF data within spectral ranges of
735–758 nm and 743–758 nm. Then, all of its products are normalized to 740 nm using a
reference fluorescence spectrum [62].
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As detailed in Table 2, the ungridded TROPOMI SIF740 product from 2018 to 2022
was sourced from ftp://fluo.gps.caltech.edu/data/tropomi/ungridded/ (accessed on
5 September 2023) (for additional details, refer to: https://doi.org/10.22002/D1.1347
(accessed on 5 September 2023)) for utilization in this study. To enhance data quality,
measurements with viewing zenith angles (VZAs) exceeding 60◦ were excluded due to the
substantial uncertainties at the swath edges. Additionally, data influenced by dark/bright
scenes and cloud cover were systematically removed [28]. This study utilizes daily average
SIF data, adjusting the instantaneous SIF records within a 20 km radius from Shangqiu
Station using a daily-length correction factor (denoted as ‘dcsif’ in the product). Further-
more, instantaneous SIF records featuring a cloud fraction (denoted as ‘cf’ in the product)
exceeding 0.2, identified as cloud-contaminated records, were omitted from the dataset.

2.4.2. MODIS EVI

The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra (orig-
inally known as EOS AM-1) and Aqua (originally known as EOS PM-1) satellites have
been widely employed in plant growth observation across extensive geographical re-
gions [45,63–67]. MODIS provides spatial resolutions of 250 or 500 m and a temporal
cadence of 1–2 days, facilitating global-scale dynamic plant growth monitoring.

As presented in Table 2, this study obtained MODIS-derived EVI from the MOD13C1
(Terra) and the MYD13C1 (Aqua) Version 6 product spanning from 2018 to 2022. Combining
these two daily 16-day composite datasets, a corresponding EVI time series was generated
at an 8-day resolution. The spatial resolution of the EVI data are set at 0.05◦, aligning with
the spatial resolution of TROPOMI SIF data for a consistent resolution-level comparison.

2.5. Methods

This study’s primary objective is to assess the performance of SIF data within the con-
text of remote sensing phenological monitoring, aligning it with ground-based crop growth
observations. The methodology encompasses three core components: time-series phenolog-
ical pre-processing (Section 2.5.1), time-series phenological modeling (Section 2.5.2), and
physiological transaction characterization (Section 2.5.3) [6,66]. These latter two sections
leverage the R module Phenopix to enhance efficiency [68].

The phenological framework employed here features a meticulously designed set of
methodologies tailored for agricultural phenological monitoring. These methodologies
include seasonality filtering to mitigate the impact of weeds and cover crops, double logistic-
based phenological models to capture rapid changes in crop growth and development, and
a range of phenological characterization methods to ascertain a comprehensive spectrum
of crop growth stages.

2.5.1. Time-Series Phenological Pre-Processing

The time-series data collected for this study are susceptible to various sources of
disturbance, including diverse radiance conditions, background interference, instrumen-
tal noise, and atmospheric factors. Such abnormalities or implausible observations can
obfuscate or even disrupt the underlying phenological patterns of the target crops. Conse-
quently, the primary objective of the pre-processing phase is to mitigate the impact of the
atmospheric, background and systematic noise while smoothing the time-series data, thus
preparing it for subsequent phenological modeling. This pre-processing stage comprises
two key components:

1. Abnormal measurements elimination: To address abnormal measurements, a moving
window abnormal elimination method was employed. This approach identifies
measurements deviating by more than three times the standard deviation from the
average value within an 11-day moving window (slightly longer than the interval
of adjacent observed crop growth stages) and subsequently excludes them from the
dataset [69].

ftp://fluo.gps.caltech.edu/data/tropomi/ungridded/
https://doi.org/10.22002/D1.1347
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2. Time series smoothing: SIF and EVI time series underwent smoothing using a
three-time Savitzky–Golay algorithm with an 11-day moving window [70]. This
algorithm serves to attenuate off-season phenological signals while fitting a smooth-
ing curve to the time-series observations.

As illustrated in Figure 2, this pre-processing phase effectively transforms the raw
data points into the smoothed dashed lines.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 41 
 

 

 

Figure 2. The variations observed in four distinct phenological characterization methods employed 

in this study. The dots represent the original crop measurements, while the dashed lines illustrate 

the fitted lines following the pre-processing step. Solid lines represent the phenological modeled 

curves, with winter wheat in yellow and maize in red. Vertical dashed lines in light blue indicate 

the auto-recognized rotation points between winter wheat and maize. (a) Displays transitions ex-

tracted using the threshold-based (TR) method for winter wheat (yellow) and the derivative-based 

(DB) method for maize (red). (b) Showcases transitions extracted using the curvature-based (CU) 

method for winter wheat (yellow) and the Gu (GU) method for maize (red). 

The second aspect of this pre-processing section involves categorizing and composit-

ing the datasets into intervals with different temporal resolutions, facilitating subsequent 

processing and evaluation. Initially, based on empirical knowledge of crop rotation de-

tailed in Section 2.1, the minimum value between the day of the year (DOY) 100 and 200 

serves as the rotation point. This division enables the segmentation of the smoothed time-

series curve into two distinct growing seasons: winter wheat and maize. Notably, this step 

is exclusively applied to satellite data, because the in situ measurements were already 

classified. As depicted in Figure 2, the dashed lines in light blue indicate the rotation 

points derived through this procedure. Subsequently, the smoothed time-series curve is 

composited into data intervals spanning 3 days, 5 days, 7 days and 15 days, employing 

both maximum value composite (MVC) and average value composite (AVC) techniques 

at the midpoint of each interval [71]. Applying this step to MODIS EVI data is worth noth-

ing, as the temporal resolution of the MODIS EVI product used in this study was 16 days 

and 8 days (when combined), and it had already undergone compositing. 

2.5.2. Time-Series Phenological Modelling 

Following the phenological pre-processing of the time-series curve, the next step in-

volves modeling the seasonal smoothed phenological curve to elucidate its developmental 

trajectory and capture rapid changes during the growing season. This modeling phase is 

depicted in Figure 2, transitioning from the smoothed dashed lines to the solid yellow or 

red lines. For this modeling task, the study opted for double logistic functions, a type of 

curve-fitting-based phenological model, owing to their widespread utilization in pheno-

logical monitoring and superior performance compared to other smoothing algorithms 

[31]. Furthermore, double logistic functions exhibit better modeling performance for rela-

tively short and rapid-growing seasons, which are common in agricultural crops, when 

contrasted with alternative algorithms like Fourier analysis and asymmetric Gaussian 

functions [72]. In this study, two variants of double logistic functions, namely the Beck 

and Gu models, were employed, alongside the smoothing spline function as a simpler 

alternative for comparison. 

Figure 2. The variations observed in four distinct phenological characterization methods employed
in this study. The dots represent the original crop measurements, while the dashed lines illustrate
the fitted lines following the pre-processing step. Solid lines represent the phenological modeled
curves, with winter wheat in yellow and maize in red. Vertical dashed lines in light blue indicate the
auto-recognized rotation points between winter wheat and maize. (a) Displays transitions extracted
using the threshold-based (TR) method for winter wheat (yellow) and the derivative-based (DB)
method for maize (red). (b) Showcases transitions extracted using the curvature-based (CU) method
for winter wheat (yellow) and the Gu (GU) method for maize (red).

The second aspect of this pre-processing section involves categorizing and compositing
the datasets into intervals with different temporal resolutions, facilitating subsequent
processing and evaluation. Initially, based on empirical knowledge of crop rotation detailed
in Section 2.1, the minimum value between the day of the year (DOY) 100 and 200 serves as
the rotation point. This division enables the segmentation of the smoothed time-series curve
into two distinct growing seasons: winter wheat and maize. Notably, this step is exclusively
applied to satellite data, because the in situ measurements were already classified. As
depicted in Figure 2, the dashed lines in light blue indicate the rotation points derived
through this procedure. Subsequently, the smoothed time-series curve is composited into
data intervals spanning 3 days, 5 days, 7 days and 15 days, employing both maximum
value composite (MVC) and average value composite (AVC) techniques at the midpoint of
each interval [71]. Applying this step to MODIS EVI data is worth nothing, as the temporal
resolution of the MODIS EVI product used in this study was 16 days and 8 days (when
combined), and it had already undergone compositing.

2.5.2. Time-Series Phenological Modelling

Following the phenological pre-processing of the time-series curve, the next step
involves modeling the seasonal smoothed phenological curve to elucidate its develop-
mental trajectory and capture rapid changes during the growing season. This modeling
phase is depicted in Figure 2, transitioning from the smoothed dashed lines to the solid
yellow or red lines. For this modeling task, the study opted for double logistic functions,
a type of curve-fitting-based phenological model, owing to their widespread utilization



Remote Sens. 2023, 15, 5689 8 of 40

in phenological monitoring and superior performance compared to other smoothing algo-
rithms [31]. Furthermore, double logistic functions exhibit better modeling performance
for relatively short and rapid-growing seasons, which are common in agricultural crops,
when contrasted with alternative algorithms like Fourier analysis and asymmetric Gaussian
functions [72]. In this study, two variants of double logistic functions, namely the Beck
and Gu models, were employed, alongside the smoothing spline function as a simpler
alternative for comparison.

The Beck model, which establishes a minimal baseline for the growing-season curve,
has been shown to mitigate the influence of spurious measurements during the fitting
process [72]. Beck model characterizes the temporal variations of the growing season using
six parameters:

f (t) = abase + (amax − abase)×
(

1
1 + e(−m1×(t−m2))

+
1

1 + e(n1×(t−n2))
− 1

)
(2)

In the equation, t represents DOY, and f (t) represents the fitted value at t. Addi-
tionally, abase signifies the minimum baseline or off-season value, while amax represents
the maximum value during the growing season. Double logistic functions posit that
two piecewise logistic functions of time, one for the upward and the other for the down-
ward trend, can effectively depict the phenological development of the monitored plant [31].
Here, m2 and n2 denote the inflection points corresponding to the onset and conclusion of
the ascending and descending portions of the pre-processed curve, while m1 and n1 denote
the rates of increase and decrease at m2 and n2, respectively.

The Gu model, in contrast, offers greater generality compared to the Beck model,
encompassing additional parameters for accommodating diverse phenological curve fitting
requirements [73]. These supplementary parameters enhance the model’s robustness and
adaptability in tracking phenological trajectories. However, the broader set of parameters
may pose challenges in phenological modeling when working with lower-quality original
data. The function for the Gu model is as follows:

f (t) = a0 +
a1(

1 + e−
t−m2

m1

)m4
− a2(

1 + e−
t−n2

n1

)n4
(3)

In the provided equation, t represents the DOY, and f (t) signifies the fitted value
at t. The parameters a0, a1, a2, m1, m2, m4, n1, n2 and n4 are the empirical parameters
specific to the Gu model. These parameters are going to be literately set to fit the smoothed
time-series data. This procedure was conducted using the R model Phenopix mentioned in
Section 2.5 [68].

The spline model employed In this study is the smoothing spline function. This func-
tion is capable of fitting the seasonal phenological curve while also effectively removing
outliers and off-season signals. It achieves this by fitting piecewise polynomials to tem-
poral segments of the pre-processed phenological curve and subsequently joining these
polynomials into one continuous curve. The spline model not only models the seasonal
trajectories but also demands the continuity of both the modeled curve and its deriva-
tive [38]. As a data-driven function, the spline model does not impose constraints on the
shape of the modeled curve, unlike double logistic functions. This characteristic makes it
an ideal alternative to the two double logistic functions previously introduced, especially
when dealing with data of lower quality, as it can effectively capture the complex patterns
exhibited by crops.

2.5.3. Phenological Transition Characterization

With the phenological time-series curve smoothed and modelled as described in the
previous sections, the focus now shifts to extracting critical transition points from the
phenological curve for estimating crop physiological growth stages such as the jointing,
tasseling, and silking stages. This study employs four widely recognized phenological
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characterization methods: threshold-based (TR), derivative-based (DB), curvature-based
(CU) and Gu-based (GU), to identify these transition points. The transition points and
corresponding lines for these methods are illustrated in Figure 2.

The threshold-based (TR) method estimates three transition points in the phenological
development curve by defining specific thresholds [41]. The thresholds can be defined as
absolute values or relative values of the growing-season maximum value (amplitude of
the curve) [74]. Relative studies have examined the performance of different thresholds
settings in phenological monitoring [5,74–76]. Because the SIF and EVI data adopted in this
study range differently in growing-season phenological observation, with EVI data ranges
from 0 to approximately 1 and the value of SIF data could exceed 1 or even 1.2, an absolute
value as the threshold for both SIF and EVI data is not appropriate for further comparation.
So, this study chose the 50% of the amplitude of the growing-season phenological curve as
the threshold. Start of season (SOS) and end of season (EOS) are defined as the time when
the threshold being reached at the upward and downward direction of the phenological
curve, respectively, while peak of season (POS) is at the peak of the curve.

The derivative-based (DB) method identifies the SOS, POS and EOS by examining
local extremes in the first derivative of the phenological time-series curve. Specifically, as
it is shown in Figure 2, the SOS and EOS of the DB method correspond to the absolute
maximum and minimum points, respectively, of the first derivative curve of the model-
fitted curve. And POS of DB method is defined as the zero point of the first derivative
curve between the SOS and EOS. From the definition, it is obvious that the POS in the DB
method aligns with the POS in the TR method.

The curvature-based (CU) method characterizes crop phenophases based on local
extremes in the rate of change (the second derivative) of the curvature of the phenological
curve [31,33]. As it is presented in Figure 2, this method extracts four transition points:
greenup (GU), maturity (MT), senescence (SN) and dormancy (DM). GU and MT cor-
respond to the two local maxima points in the second derivative curve of the first-half
growing season, while SN and DM are defined as the two local minima points in the
second derivative curve of the second-half growing season. If the maxima or minima
cannot be reached, the CU method will keep on tracking the extreme points until reaching
the boundary of the time range. In this study, the rotation points were recognized to divide
the phenological observation of the whole year into two growing seasons of winter wheat
and maize, which could cause a rapid change at the rotation points as it is illustrated in
Figure 2. For winter wheat, some mis-recognitions of DM may occur due to the rapid
change at the rotation points dividing the phenological observation of the entire year into
two growing seasons.

The Gu-based (GU) method is the most complex of the four, capturing four transition
points: upturn (UD), stabilization (SD), downturn (DD), and recession (RD). It achieves
this through a combination of local extremes in the first derivative curve and the boundary
lines [73]. The boundary lines consist of a baseline and a plateau line, marking the minimum
and maximum of the phenological curve, respectively. Additionally, this method models
the trajectory of the growing-season phenological curve with a recovery line in the first-half
growing season and a senescence line in the second-half. The recovery line is defined as
the line going through the maximum point of the 1st derivative curve with the maximum
value of the first derivative curve as the slope. Correspondingly, the senescence line is the
line going through the minimum point of the first derivative curve with the minimum
value of the first derivative curve as the slope. As it is shown in Figure 2, UD and SD are
determined when the recovery line intersects the baseline and plateau line, respectively,
while DD and RD are estimated when the senescence line intersects the plateau line
and baseline.

In summary, the TR method uses a threshold at 50% of the amplitude, while both the
DB and GU methods rely on the first derivative curve. The CU method, on the other hand,
is based on the second derivative curve. These methods are independent of the absolute
values of the observed data and focus on the trend of the phenological curve. Variations in
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the SIF and EVI values do not affect the results, making this approach applicable to other
datasets. It is important to note that transition points obtained by these four phenological
transition characterization methods differ due to variations in empirical thresholds and
properties. As the relationship between these transition points in the phenological curve
and crop growth stages remains unrevealed at this time, the diversity of these points allows
for the selection of the most suitable method or a combination of methods for different
growth stage identifications.

2.6. Accuracy Assessment

To assess the performance of estimations employing various data and phenological
identification portfolios, several common statistical measures of agreement were adopted
in this study. These measures include the coefficient of determination (R2), root-mean-
square-error (RMSE), correlation, and standard deviation. R2, RMSE and correlation
assess the agreement between the estimated growth stages and the observed or referenced
growth stages, while standard deviation provides information about the precision of
the estimations.

For the comparison between different data sources, data-measured time periods, phe-
nological modeling methods and transition characterization methods, the estimations from
specific categories were sequentially evaluated using the aforementioned indices. As out-
lined in Section 2.2, estimations with in situ data were assessed based on site observations
within CN-SQ station, while those with satellite data were evaluated using area observa-
tions, encompassing the adjacent agricultural landscape. The accuracy of estimation for
each crop growth stage, especially for key growth stages (KGS), was evaluated based on
the reconciled time-series phenological characteristics with the appropriate method.

The accuracy assessment results were used to identify the better dataset, data-measured
time period, phenological modeling method or transition characterization method with
superior accuracy. Ideally, these components could contribute to forming a phenological
estimation portfolio suitable for various scenarios. Finally, the estimations made by the
portfolio were evaluated through the R2 and RMSE of linear regression with the correspond-
ing observations, depending on the data utilized in the portfolio. It is important to note
that the R2 and RMSE for the portfolio are based on the total accuracy of several growth
stages, while the accuracy assessment for specific components is based on individual
growth stages.

3. Results
3.1. Reconciliation of Time-Series Phenological Characteristics with Crop Growth Stages

As discussed earlier, there exists a gap between the transitions identified in the
smoothed and model-fitted phenological curve and the actual crop physiological growth
stages [66]. To bridge this gap, a reconciliation step is imperative to establish the map-
ping relationship between these two datasets before proceeding with accuracy assessment
and further comparisons. In this study, the range of each estimated transition dataset
was visualized and compared with the distribution of ground-based observations of crop
growth stages (refer to Figures 3 and 4). If the majority of ground-based observations
fall in the range of a specific transition date (e.g., the SOS in the TR method), it is highly
likely that this crop growth stage aligns with the identified transition date and vice versa.
This comparative analysis allows us to establish potential mapping relationships between
transition dates and crop growth stages, which will be subject to further assessment.
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Figure 3. Comparation between ground observation of maize growth stages from 2018 to 2022
and transition dates estimated by the phenological identification framework (spline model) with
TROPOMI SIF. Each dot on the graph corresponds to observations from a different year. The distri-
bution of transition dates derived through various methods—threshold-based (TR), derivative-
based (DB), curvature-based (CU), and Gu-based (GU)—is visualized using distinct colors in
panels (a–d).
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Figure 4. Comparation between ground-observation of winter wheat growth stages from 2018 to
2022 and transition dates estimated by the phenological identification framework (spline model) with
MODIS EVI. Each dot on the graph corresponds to observations from a different year. The distribution
of transition dates derived through various methods—threshold-based (TR), derivative-based (DB),
curvature-based (CU), and Gu-based (GU)—is visualized using distinct colors in panels (a–d).

In Figures 3 and 4, the distinction between precision and accuracy in estimation is
illustrated. Taking Figure 3a as an example, the SOS, POS and EOS extracted by the TR
method span from approximately DOY 185 to 200, 205 to 225 and 245 to 255, respectively.
Each set of these transition dates exhibits a high degree of precision, indicating a very
narrow time span. However, notably, the first three growth stages (SOW, VE and V5) are
not included in the range of any of these transition dates, suggesting that none of these
three transition dates are suitable for identifying these initial growth stages. In contrast,
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the JT and T&S stages are entirely encompassed within the value range of SOS and POS,
respectively, indicating that the SOS of the TR method may accurately correspond to JT, and
the POS of the TR method could be used to accurately identify T&S. For the MK, MT and
HV stages, which are more commonly distributed around the time span of EOS, suggesting
that the EOS of the TR method may not correspond accurately to any of these three crop
stages. Nevertheless, EOS remains the most suitable transition for estimating MK, MT
and HV among the SOS, POS and EOS of the TR method, as these three growth stages are
closest to its time span. Notably, the milk (MK) stage in 2022 occurred much earlier than in
other years, possibly due to waterlogging in that particular year.

The transition dates extracted by various phenological characterization methods may
exhibit differences in precision and variation, as depicted in Figure 3a. In Figure 4a, the
transition dates of the TR method, Figure 4b for DB method and Figures 3d and 4d for the
GU method demonstrate good precisions, with distinct and narrow time spans. However,
the estimations from the DB method in Figure 3b and CU method in Figures 3c and 4c
exhibit some overlapping sets of transition dates. For instance, in Figure 3b, POS and SOS
of DB method overlap to the extent that they nearly exclude the JT stage from the SOS
range and include the T&S stage in the POS range. Nevertheless, due to the empirical and
physiological order between these two phenophases, where T&S must occur after JT, it is
reasonable to consider SOS and POS as better suited for JT and T&S, respectively. While this
distribution of disorder does not necessarily imply low precision in the estimated results, it
can introduce uncertainty when reconciling time-series phenological characteristics with
crop growth stages.

Moreover, the lack of specificity in transition dates and crop growth stages under-
scores the necessity of establishing a mapping relationship between these two sets of data.
Although Figures 3 and 4 exclusively illustrate the spline-modeled phenological curve
of TROPOMI SIF and MODIS EVI, this study conducted similar comparisons between
the observed crop growth stages and phenologically extracted transition dates using the
same methods. After reviewing four subfigures in Figures 3 and 4 and other instances,
and matching each growth stage of maize and winter wheat with the phenologically char-
acterized transition date that falls within the closest range, potential reconciliations of
phenologically characterized transition dates with crop growth stages of maize and winter
wheat are, respectively, presented in Tables 3 and 4. The term ‘potential best’ accounts for
the uncertainty in the estimated accuracy of each crop growth stage in relation to the corre-
sponding transition dates. The results show that different growth stages can map to one
or none of the transition dates extracted by each phenological transition characterization
method. Some transition dates are associated with several crop growth stages. Notably,
when characterized with the GU method, the transition dates for different data exhibit
varying mapping relationships with crop growth stages. In other words, the GU method
may offer customized phenological characterizations for different datasets. The accuracy of
these mapping estimations will be assessed in the following section.

Table 3. Potential best conciliations of phenological characterized transition dates with crop growing
stages of maize.

Threshold Derivative Curvature Gu (ST) Gu (In Situ)

Sowing - - - - Upturn
Emerged - - Greenup Upturn -
5th leaf - - Greenup Upturn Stabilization
Jointing SOS SOS Greenup Stabilization Stabilization

Tasseling and silking POS POS Maturity Stabilization Downturn
Milk EOS EOS Senescence Downturn Recession

Maturity and
harvest EOS EOS Dormancy Recession -

Note: “-” refers to no suited phenological characterized transition dates; ‘ST’ refers to satellite data.
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Table 4. Potential best conciliations of phenological characterized transition dates with crop growing
stages of winter wheat.

TR DB CU GU
(TROPOMI SIF)

GU
(In Situ SIF) GU (EVI)

Regreen - - GU UD - UD

Jointing SOS SOS GU - UD SD
Heading POS POS MT SD SD -

Milk EOS EOS SN DD DD RD
Ripening EOS EOS DM - RD RD
Harvest - - DM RD RD -

Note: “-” refers to no suited phenological characterized transition dates.

3.2. Comparison between Time-Series Phenological Estimation Portfolios for Crop Growth Stages

The phenological estimation portfolio comprises various data sources, compositing
methods and phenological transition characterization methods. To determine the optimal
estimation portfolio within the phenological estimation framework, this section assesses
the accuracy of each component. The raw results of accuracy assessments for all portfolios
are included in the Appendix A. For this section, data have been selected based on the
best accuracy within each portfolio category (e.g., R2 of estimations using in situ SIF for
maize growth stages in Figure 5a are derived from the best-performing in situ SIF data
with various compositing methods and measurement times in the Appendix A).
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Figure 5. Accuracy assessment of estimations with different datasets. Panel (a) focuses on maize,
while panel (b) pertains to winter wheat. The circular arcs in both radar charts represent R2 for each
estimation, ranging from 0 to 1. All the growth stages have been estimated with the listed datasets,
with dots in the origin of both radar charts referring to R2 of 0.

3.2.1. SIF vs. EVI

As one of the main objectives of this study is to evaluate the suitability of SIF data
for estimating crop growth stages within the agronomic framework, the initial step in this
analysis compares the accuracy of estimations using SIF and EVI data. Figure 5 presents the
accuracy of the estimation results for each crop growth stages with in situ SIF, TROPOMI
SIF, in situ EVI and MODIS EVI.

For summer maize, as depicted in Figure 5a, EVI data exhibited superior accuracy
in estimating tasseling and silking (T&S) as well as maturity and harvest (M&H) growth
stages, especially for M&H, where SIF data cannot predict the date accurately. For these
two growth stages, MODIS EVI exhibits lower R2 than in situ EVI. Emerged growth
stage is a special case where estimations with ground-based observations (in situ data)
performed better than those with satellite data. Conversely, SIF data excelled in the
estimation of the fifth leaf, jointing and milk, three of the four key growth stages, surpassing
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the EVI data. Notably, TROPOMI SIF demonstrates favorable performance for fifth leaf and
jointing stages, achieving accuracies approximately 0.6 and 0.8, respectively, and provided
acceptable estimations for the milk stage with an accuracy exceeding 0.5. In summary, SIF
data outperformed EVI data in identifying the key growth stages (three out of four) of
maize, with the exception of T&S. TROPOMI SIF also proved useful for estimating most
key growth stages of maize with acceptable accuracy.

Turning to winter wheat, Figure 5b indicates that SIF data could be effectively em-
ployed to estimate most growth stages of winter wheat, except for heading (similar to
tasseling in maize, see above), while EVI data performed poorly. The absence of an in
situ EVI dataset for winter wheat was attributed to its inadequate performance in growth
stage identification. In the winter wheat growing season post-regreen, the crop’s greenness
remains stable. This leads to an unvarying EVI curve before the peak, posing challenges for
phenological modeling and growth stage identification during this phase. Regarding the
SIF data, in situ SIF performed slightly better than TROPOMI SIF for all of the KGSs (from
jointing to maturity). But TROPOMI SIF, at the same time, can offer decent accuracy for the
estimation of jointing, milk and maturity of winter wheat, which could also be adopted for
the identification of regreen and harvest.

In summary, according to Figure 5, SIF datasets demonstrated superior performance
compared to EVI datasets in identifying crop growth stages for both maize and winter
wheat, especially for the KGSs and winter wheat. EVI data had limited utility in estimating
winter wheat growth stages, while SIF data proved inadequate for T&S (in maize) and
heading (in winter wheat) estimation. Additionally, TROPOMI SIF was found to offer
accuracy with R2 at approximately or over 0.6 for estimating most crop growth stages of
maize and winter wheat.

3.2.2. Effect of Data-Measured Time Period on Estimation Accuracy

The impact of data-measured time periods (‘Morning’, ‘Afternoon’ or ‘Whole-Day’)
on estimation accuracy was assessed in this section. The definition of these time periods is
detailed in Section 2.3. Figure 6 illustrates the accuracy of estimation results for various
crop growth stages using ground-based datasets.
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Figure 6. Accuracy assessment for crop growth stage estimations using different datasets. Subfigure
(a) refers to maize, while subfigure (b) is focused on winter wheat. The circular arcs in both radar
charts represent R2 for each estimation, ranging from 0 to 1. The labels ‘morning’, ‘afternoon’ and
‘day’ in this figure correspond to the data-measured time periods of ‘Morning’, ‘Afternoon’ and
‘Whole-Day’, respectively.

For summer maize, the results shown in Figure 6a indicate a complex pattern when
considering different data-measured time periods. In terms of in situ SIF data, ‘Morning’
measurements generally perform better than data from other time periods. However, there
are exceptions, notably for T&S, where only the ‘Morning’ dataset provides an accuracy
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of approximately 0.37, which is still considered unacceptable. The estimation accuracy
of SIF measured during ‘Afternoon’ is slightly higher than that of SIF during ‘Morning’
for jointing, while the opposite is true for T&S and milk. Regarding in situ EVI data, the
results in Figure 6a suggest that ‘Afternoon’ measurements are generally the most suitable
for maize growth stage estimation. EVI data from ‘Afternoon’ significantly outperform
data from other time periods for estimating T&S, while offering similar accuracy for the
estimation of other growth stages.

As for winter wheat, Figure 6b demonstrates that in situ SIF data measured during
‘Afternoon’ consistently provide outstanding performance in the estimation of almost all
winter wheat growth stages, except for maturity. For Maturity, SIF data from ‘Whole-
Day’ offer slightly better accuracy, while SIF data from the ‘Afternoon’ still yield a decent
accuracy of approximately 0.53.

In summary, for maize, the choice of data-measured time period has a mixed impact
on estimation accuracy, with ‘Morning’ being generally better for in situ SIF data, and
‘Afternoon’ being more suitable for in situ EVI data. For winter wheat, ‘Afternoon’ mea-
surements of in situ SIF data consistently offer the most accurate estimation results for most
growth stages. To be noticed, Figure 6b does not include regreen growth stage because in
situ SIF could not be utilized for estimation if it (Figure 5b). The absence of in situ EVI data
was due to its extremely low accuracy elaborated in the previous section.

3.2.3. Compositing Methods

The concept of compositing methods pertains to the manner in which data are
combined—whether by taking the maximum or average value—and the duration of time
intervals between each pair of compositing dates during the observation period. This
section aims to assess how different compositing methods influence estimation results and
identify, where possible, the most effective compositing method. Notably, the MODIS EVI
product used in this study was already composited into 16-day intervals using the MVC
method. Consequently, satellite EVI data are not considered in this section. Furthermore,
in situ EVI data were excluded for winter wheat due to its documented performance issues,
as previously discussed.

This section begins by investigating the impact of different time interval lengths be-
tween compositing dates on estimation accuracy. In Figure 7, it presents the distribution of
estimations for maize and winter wheat KGSs using SIF datasets with varying composited
intervals, categorized accordingly. Each observation (OB) point, represented by a red dot,
on the chart illustrates the distribution of observed KGSs for each target crop, and this
pattern applies to the other points as well. The distance between each point and the origin
indicates the precision (standard deviation) of estimations using the corresponding time
interval, while the distance between each point and the observation point signifies the accu-
racy (the root-mean-square-error, RMSE), represented by the point’s color. Additionally, the
‘Correlation’ value on the arc also reflects the accuracy (R) of each estimation. As discussed
in Section 3.2.1, EVI datasets show limited capability in estimating all KGSs accurately
when treated as a complete dataset, although they may perform well for specific KGSs
(e.g., T&S of maize, as seen in Figure 6). Consequently, EVI datasets have been excluded
from this analysis. In general, the standard deviations (STDs) of most ground-based ob-
servations are approximately 25 (except for the area observation of winter wheat), which
corresponds to the average lengths of the key growth periods for both crops. Likewise,
the STDs of most estimations fall within the same scale, except for maize with TROPOMI
SIF, where the STD is approximately 20. The RMSEs for most estimations are lower than
20, and RMSEs for estimations of winter wheat and maize with in situ SIF are even below
10. This suggests that most SIF datasets are capable of providing estimations with good
accuracy and precision, with estimations for winter wheat generally exhibiting slightly
higher accuracy than those for maize. Comparing estimations with TROPOMI SIF, most
of which provide correlations (R) higher than 0.7, indicating a decent level of accuracy.
Estimations with in situ SIF consistently offer correlations approximate 0.9 or even higher,
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highlighting their remarkable accuracy. Regarding the ideal compositing intervals, it is
important to choose not only the ones with lowest RMSEs, but also considering the STDs
and correlations. It is advisable to choose 15 days and 7 days when estimating KGSs for
maize and winter wheat, respectively, using in situ SIF. For TROPOMI SIF, the optimal
compositing intervals are 7 days for maize KGSs, while no compositing (1d) is recom-
mended for winter wheat KGSs. Notably, the divergence in ideal compositing intervals for
the two crops across varying compositing methods underscores the challenge of finding a
single compositing method suitable for accurately estimating KGSs for each dataset.
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Figure 7. Taylor diagrams for estimations of key growth stages (KGSs) estimations using varying
lengths of composited intervals. From subplot (a–d), it illustrates the distribution of estimations of
maize KGSs using in situ data (SIF and EVI) and TROPOMI SIF and winter wheat KGSs using in situ
SIF and TROPOMI SIF, respectively. ‘OBs’ in the legend represent the ground-based observations,
the reserved dataset, of each category. In this figure, each dot corresponds to a specific data source
with the corresponding length of composited intervals, while the distance between each dot and the
origin represents the standard deviation of each data source. The angle of each dot in this angular
coordinate system refers to the ‘Correlation’ (R), while the distance between each dot and the reserved
point (observation) is the RMSE of the estimation with each data source, which is also visualized by
the color of each dot according to the color bar.

The choice of composited value is another crucial aspect of the compositing method.
In the case of maize growth stage estimation using in situ SIF, as depicted in Figure 8a,
it is evident that MVC outperforms AVC, as indicated by consistently higher R2 for each
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crop stage. In the case of in situ EVI, MVC also performs better than AVC, although the
advantage is somewhat less pronounced, with AVC being notably better for the emerged
stage. However, the assessment result for TROPOMI SIF is less clear-cut. AVC performs
better for the emerged, milk and, especially, jointing stages, while MVC is more suitable for
the V5 and T&S stages. Turning to winter wheat, as shown in Figure 8b, MVC consistently
outperforms AVC for all stages. However, when considering TROPOMI SIF, the situation
becomes somewhat nuanced. AVC yields slightly more accurate estimations than MVC for
most stages, except maturity stage. In summary, it appears that MVC is generally more
suitable for ground-based datasets, while AVC might be marginally more appropriate for
TROPOMI SIF datasets in the context of crop growth stage estimation.
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Figure 8. Accuracy assessment of estimations with different composited values (MVC and AVC).
(a) focuses on maize, while (b) pertains to winter wheat. The circular arcs in two radar charts are R2

of each estimation, ranging from 0 to 1. In this figure, the lines with square nodes indicate the use of
AVC, while the lines with diamond nodes represent MVC.

3.2.4. Phenological Modeling and Transition Characterization

In this critical section, the impact of phenological modeling and transition charac-
terization methods on the accuracy of our crop growth stage identification framework is
thoroughly examined. Notably, these choices can significantly influence the precision of our
entire approach. Additionally, EVI datasets were excluded from comparisons concerning
winter wheat due to their previously established performance limitations.

Figure 9b,d clearly illustrate that, for both EVI and TROPOMI SIF datasets, the models
perform best when ranked as follows: the Gu model, Spline model and Beck model.
However, when applied to in situ SIF data (Figure 9a), the situation differs between maize
and winter wheat. For maize, the model ranking aligns with the general trend, but for
winter wheat, the Beck model yields the highest accuracy, followed by the Gu model
and the Spline model. Moving to the realm of phenological transition characterization
methods, in situ EVI and TROPOMI SIF tend to favor the CU (curvature-based) method,
whereas the MODIS EVI dataset leans towards the TR (threshold-based) or DB (derivative-
based) methods. Notably, regarding in situ SIF in Figure 9a, none of the four phenological
transition characterization methods exhibit significant superiority. As for the absolute
average value of R2, in situ SIF dataset exhibits superiority over the other three datasets.
This superiority can be attributed to the more adequate measurements compared with
TROPOMI SIF and advantage of SIF data over EVI data in terms of estimation accuracy as
discussed in previous sections.
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Figure 9. Average of R2 for key growth stage identification accuracy using different phenological
modeling and transition characterization datasets. Each subfigure uses distinct colors to represent
specific phenological modeling methods, with solid lines for maize and dotted lines for winter wheat
results. The x-axis lists the four phenological transition characterization methods.

The average R2 values presented in Figure 8 are relatively lower compared to other
figures. This is because the average R2 here represents the mean of R2 values for each
individual key growth stage (KGS) using different phenological modeling and transition
characterization datasets. As illustrated in Figures 5, 6 and 8, estimations with a specific
dataset may exhibit decent accuracy for certain crop growth stages while showing lower
accuracy for others. Consequently, this variability contributes to a relatively lower average
R2. Furthermore, the relatively low average R2 in Figure 9 underscores the complexity
of selecting an optimal approach suitable for all situations. The challenge lies in the fact
that different phenological modeling and transition characterization methods may perform
differently across various crop growth stages, making it difficult to identify a one-size-fits-
all solution.

In summary, the Gu model appears to be the most suitable choice for most crop key
growth stage (KGS) estimations, with the notable exception of the in situ SIF curve of
winter wheat, where the Beck model could yield superior results. However, there is not a
one-size-fits-all solution when it comes to phenological transition characterization methods.
The choice of optimal approach is complex, which often involves a tailored combination of
models, methods and even source data for each specific KGS. This complexity may, in part,
explain the relatively low mean R2 values observed in both this section and the previous
sections, as the average R2 alone may not fully capture the nuanced performance of our
phenological metrics in estimating KGSs.

3.3. Evaluation of Best Time-Series Phenological Estimation

This section delves into the comprehensive evaluation of our time-series phenolog-
ical estimation portfolio, encompassing preprocessing steps, modeling techniques, and
transition characterization methods. The aim is to gauge the accuracy of the best phe-
nological estimation portfolio. Given the objective of evaluating the efficacy of SIF data
in crop growth stage estimation within the agronomic framework, and the observations
made in Section 3.2.1, highlighting the advantages of SIF data over EVI data, this section
concentrates solely on SIF data in this evaluation.

The best portfolio comprises a harmonious amalgamation of several components,
including the data-measured time period (if necessary), compositing methods, phenologi-
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cal curve-fitting models and transition characterization methods, all chosen to optimize
accuracy for each (KGS). However, selecting a universal compositing or transition charac-
terization method suitable for all KGSs is fraught with difficulty. Therefore, this study only
chose the appropriate data-measured time period (e.g., ‘Morning’ for maize and ‘Afternoon’
for winter wheat, according to the results elaborated in Section 3.2.2 and Figure 5) and the
Gu model as the better-picked scheme (named after ‘bp’), together adopted with different
compositing methods and transition characterization methods. These methods adopted by
the ‘bp’ scheme have been listed in Table 5. Notably, the measured times and compositing
methods of in situ SIF for maize and winter wheat are consistent with the results elaborated
in Sections 3.2.2 and 3.2.3.

Table 5. Methods, apart from Gu model for curve-modeling, adopted by the ‘bp’ scheme for KGS
estimation in this study.

Crop Data Growth Stage Measured-Time Compositing
Method

Characterization
Method

Maize

In situ SIF

V5 Morning 5d-MVC GU
JT Morning 5d-MVC CU

T&S Morning 5d-MVC TB
MK Morning 5d-MVC CU

TROPOMI SIF

V5 - 7d-MVC GU
JT - 15d-AVC TB

T&S - 7d-MVC GU
MK - 15d-AVC CU

Winter wheat

In situ SIF
JT Afternoon 7d-MVC TB

HD Afternoon 7d-MVC TB
MK Afternoon 7d-MVC CU

TROPOMI SIF
JT - 1d DB

HD - 1d TB
MK - 1d CU

Figures 10 and 11 offer insights into the accuracy of our estimations for maize and
winter wheat, respectively, utilizing SIF data processed by both the best possible portfolios
and the ‘bp’ schemes. Notably, there are only three data points for each growth stage in
Figure 11a,b, as explained in Section 2, due to the limited observations available. The
distribution of dots along the horizontal axis reflects the precision of the ground-observed
data, while their distribution along the vertical axis indicates the precision of the estimation
results. Moreover, the distance of these dots from the fitting line serves as an indicator of the
accuracy of the estimation. Notably, the R2 presented in these figures quantify the accuracy
of the estimation relative to the fitting line, rather than the ground observations. However,
the observations can be integrated with the estimations using the provided formulas in the
figures. Thus, the R2 still serve as a comprehensive measure of the overall accuracy of our
KGS estimation framework.

In general, all estimation results exhibit remarkable distinctions in both precision and
accuracy, underscoring the robust capabilities of SIF data in KGS estimation. Additionally,
the accuracy of estimations involving TROPOMI SIF data slightly surpasses that of estima-
tions utilizing in situ SIF data. With regard to the ‘bp’ schemes, the accuracy gap between
estimations processed by best portfolios and ‘bp’ schemes is very narrow. Even the lowest
‘bp’ accuracy, standing at 0.81 in R2 (in situ SIF—‘bp’ for maize in Figure 10b), underscores
the substantial similarity between the ‘bp’ schemes and the best portfolios. Consequently,
our estimation framework can be streamlined with the ‘bp’ schemes, preserving accuracy
and reducing complexity.
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Figure 10. Accuracy assessment of maize growth stage estimations with in situ SIF, TROPOMI SIF and
the better-picked (‘bp’) schemes for each dataset. Each dot represents one growth stage from one year.
The dot line and solid line correspond to the 1:1 line and fitting line of the estimation, respectively.
Subfigures (a,c) depict the estimations processed by the best possible estimation portfolios, while
subfigures (b,d) illustrate the estimations processed by the ‘bp’ schemes.
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Figure 11. Accuracy assessment of winter wheat growth stage estimations using in situ SIF, TROPOMI
SIF and the better-picked (‘bp’) schemes for each dataset. Each dot within the figure represents
one growth stage from a given year. The dot line and solid line correspond to the 1:1 line and fitting
line of the estimation, respectively. (a,c) present estimations processed by the best possible estimation
portfolios, while (b,d) illustrate the estimations processed by the ‘bp’ schemes. Please note that the
x-axis range has been adjusted to accommodate the winter wheat growing season.
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4. Discussion
4.1. Capability of SIF Data in the Crop Growth Stage Estimation Framework

The objective of this study was to assess the capability of SIF data within a crop growth
stage estimation framework, particularly under the context of agronomic practices. A site
on the North China Plain served as a case study to examine ground and satellite-based SIF
data, comparing their performance with traditional vegetation indices.

While prior research has explored the relationship between SIF and gross primary
production, it predominantly focused on land surface phenology, typically limited to
the start or end of the growing season [18,45,46]. In contrast, cropland systems involve
complexities, demanding more precise and detailed information for crop growth monitor-
ing. Some studies emphasized crop growth monitoring and the importance of aligning
remote sensing transition dates with specific crop growth stages within an agronomic
framework. [6,7,42,66,68,77]. Notably, SIF data has not been rigorously evaluated within
this framework. Additionally, previous works often treated distinct crop growth stages
as equal events without considering their varying importance based on crop physiology
and economic factors [6,66]. However, the importance of different crop growth stages is
not the same based on the physiological characters of crops and the economic factors of
agricultural activities. Therefore, this study evaluates the potential of SIF data in estimating
KGSs within this comprehensive framework.

The findings reveal that, in the context of maize, SIF data outperforms EVI data for
the identification of most KGSs, except for T&S (Figure 5). Conversely, EVI data excels
in detecting T&S, suggesting the possibility of combining SIF and EVI data for more
accurate maize growth stage estimation. In contrast, winter wheat exhibits different growth
dynamics, with the ability to sustain greenness from regreen to maturity, minimizing EVI
data fluctuations. SIF data, which reflects photosynthetic activity, remains unaffected and
performs well in winter wheat growth stage estimation as Figure 5 illustrates [27,78,79].
Moreover, the comparison between ground-based and satellite data demonstrates that
TROPOMI SIF provides superior or, at the very least, reasonably accurate estimations.

In summary, considering both the alignment between remote sensing transition dates
and specific crop growth stages and the importance of different crop growth stages, this
study evaluated SIF data integrated into a remote sensing crop growth stage estima-
tion framework. Compared with EVI data, which reflects the greenness of monitoring
crops, SIF data have superior performance on winter wheat growth stages estimation with
the ability to reflect photosynthetic activity. SIF data also offers more accurate estima-
tions for maize. Thus, SIF data are capable for crop growth stage estimation. Notably,
TROPOMI SIF data exhibits the potential to perform crop growth stage identification at
a regional scale without compromising accuracy, highlighting its utility in agricultural
monitoring applications.

4.2. Evaluation of Elements in The Estimation Portfolio

In the assessment of elements within the crop growth stage estimation portfolio,
this study delves into the combination of factors, including data-measured time periods,
compositing methods, phenological curve-fitting models and transition characterization
methods. While previous research has acknowledged these elements as potential solu-
tions for specific situations, there remains a dearth of comprehensive comparisons among
them [66,68].

Commencing with the selection of data-measured time periods, the findings reveal
divergent results for maize and winter wheat growth stage estimation using SIF data
(Figure 6). ‘Afternoon’ emerges as the optimal measurement time for winter wheat, while
‘Morning’ proves superior for maize. This discrepancy can be attributed to the midday
depression in photosynthesis that the intensity of photosynthesis have been found reduced
during the heat wave at mid of the day [80]. At the same time, this depression in photosyn-
thesis was tracked by SIF observation for its sensitivity with the gross primary production
loss [21,46]. This sensitivity of SIF underscores the influence of the midday depression
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on constructing phenological time-series curves. The difference between winter wheat
and maize is linked to variations in midday temperatures during their respective growing
seasons in Shangqiu. Additionally, ‘Afternoon’ emerges as the preferred measurement time
for EVI, indicating EVI’s insensitivity to midday photosynthetic depression.

The impact of compositing methods on phenological monitoring has been discussed in
prior studies, with appropriate methods shown to reduce systematic errors in estimations
by mitigating sensitivities to factors such as canopy structure, chlorophyll content and
biomass [71,81,82]. Compositing methods encompass composited values and lengths of
composited intervals. In terms of the length of composited intervals, this study suggests
that for datasets utilized in maize KGS estimation, an interval of approximately 7 days is
most suitable (Figure 7). Conversely, for datasets employed in winter wheat KGS estimation,
the ideal composited interval ranges from 1 day to 3 days. However, regarding composited
values, it remains challenging to draw a definitive conclusion, with a vague trend indicating
that MVC and AVC are preferable for EVI and SIF datasets, respectively (Figure 8). The
findings concerning the impact of compositing methods on crop growth stage estimation
lack the robustness required for general applicability.

Furthermore, this study explores the combinations of phenological curve-fitting mod-
els and transition characterization methods as potential sources of diversity in phenological
event detection [6,42,68]. Yet, it is essential to streamline the phenological estimation
framework, avoiding redundancy. As shown in Figure 9, the study attempts to identify an
acceptable combination of models and methods to simplify the process, with Gu-based mod-
els demonstrating superior performance in most cases, if supplied with enough data [73].
However, the advantages of different phenological transition characterization methods
remain unclear, as accuracy assessment results are distributed randomly. As a result, a
robust combination suitable for general scenarios could not be ascertained in this case study.
The combination of land surface model and agronomy crop model has been proved capable
for improving maize growth processes simulation [83]. Remote sensing observations cover-
ing heat, water and photosynthesis assimilated into crop models could also improve crop
phenological transition characterization. Thus, future research conducted on a larger scale
with more extensive datasets assimilated into crop models may shed light on this issue.

In summary, this study scrutinizes individual components of the crop growth stage
estimation framework, aiming to identify a unified portfolio for simplification. While some
aspects of the portfolio, such as data-measured time periods, composited values and curve-
fitting models, are discernible, others remain open to recommendation. Encouragingly, the
results indicate significant precision and accuracy in the estimation of the best time-series
phenological estimation portfolio and ‘bp’ schemes (Figures 10 and 11). Future studies,
utilizing higher-resolution data and expanding the scope to encompass larger research
regions, hold the potential to enhance the framework further.

5. Conclusions

This study delved into the capacity of SIF data, obtained from both ground-based
and satellite measurements, to delineate crop growth stages, juxtaposed against EVI data,
within the confines of our study site. It pioneered the harmonization of time-series phe-
nological attributes with crop growth stages, thus underscoring the imperative need for
aligning these two domains to effectively reconstruct their mapping relationship. The
investigation unequivocally affirmed the effectiveness of SIF data within the phenological
estimation framework for discerning the growth stages of both maize and winter wheat.
SIF data emerged as the superior choice over EVI data, displaying marked advantages
in terms of accuracy, robustness and sensitivity to phenological events. The remarkable
precision achieved through the processing of SIF data, employing the best portfolio and
‘bp’ schemes, opens up promising avenues for further applications of SIF data in the do-
main of crop growth stage identification. Nevertheless, while this study offers valuable
insights, it remains evident that an all-encompassing portfolio with fixed processing meth-
ods has yet to be fully unveiled. The pursuit of such a portfolio beckons further research
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endeavors, propelling the field closer to a unified and optimized approach for crop growth
stage identification.
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Figure A1. 𝑅2 for each maize growth stage estimations, from 2018 to 2022, using in situ SIF measured from ‘morning’ with varying estimation portfolios. For each 

growth stage estimation, the greyer sector presents the lower 𝑅2 for the estimation, while the redder sector presents the higher 𝑅2. 
Figure A1. R2 for each maize growth stage estimations, from 2018 to 2022, using in situ SIF measured from ‘morning’ with varying estimation portfolios. For each
growth stage estimation, the greyer sector presents the lower R2 for the estimation, while the redder sector presents the higher R2.
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Figure A2. 𝑅2 for each maize growth stage estimations, from 2018 to 2022, using in situ SIF measured from ‘afternoon’ with varying estimation portfolios. For 

each growth stage estimation, the greyer sector presents the lower 𝑅2 for the estimation, while the redder sector presents the higher 𝑅2. 
Figure A2. R2 for each maize growth stage estimations, from 2018 to 2022, using in situ SIF measured from ‘afternoon’ with varying estimation portfolios. For each
growth stage estimation, the greyer sector presents the lower R2 for the estimation, while the redder sector presents the higher R2.
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Figure A3. 𝑅2 for each maize growth stage estimations, from 2018 to 2022, using in situ SIF measured from ‘whole-day’ with varying estimation portfolios. For 

each growth stage estimation, the greyer sector presents the lower 𝑅2 for the estimation, while the redder sector presents the higher 𝑅2. 
Figure A3. R2 for each maize growth stage estimations, from 2018 to 2022, using in situ SIF measured from ‘whole-day’ with varying estimation portfolios. For each
growth stage estimation, the greyer sector presents the lower R2 for the estimation, while the redder sector presents the higher R2.
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Figure A4. 𝑅2 for each maize growth stage estimations, from 2019 to 2022, using in situ EVI measured from ‘morning’ with varying estimation portfolios. For 

each growth stage estimation, the greyer sector presents the lower 𝑅2 for the estimation, while the redder sector presents the higher 𝑅2. 
Figure A4. R2 for each maize growth stage estimations, from 2019 to 2022, using in situ EVI measured from ‘morning’ with varying estimation portfolios. For each
growth stage estimation, the greyer sector presents the lower R2 for the estimation, while the redder sector presents the higher R2.
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Figure A5. 𝑅2 for each maize growth stage estimations, from 2019 to 2022, using in situ EVI measured from ‘afternoon’ with varying estimation portfolios. For 

each growth stage estimation, the greyer sector presents the lower 𝑅2 for the estimation, while the redder sector presents the higher 𝑅2. 
Figure A5. R2 for each maize growth stage estimations, from 2019 to 2022, using in situ EVI measured from ‘afternoon’ with varying estimation portfolios. For each
growth stage estimation, the greyer sector presents the lower R2 for the estimation, while the redder sector presents the higher R2.
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Figure A6. 𝑅2 for each maize growth stage estimations, from 2019 to 2022, using in situ EVI measured from ‘whole-day’ with varying estimation portfolios. For 

each growth stage estimation, the greyer sector presents the lower 𝑅2 for the estimation, while the redder sector presents the higher 𝑅2. 
Figure A6. R2 for each maize growth stage estimations, from 2019 to 2022, using in situ EVI measured from ‘whole-day’ with varying estimation portfolios. For each
growth stage estimation, the greyer sector presents the lower R2 for the estimation, while the redder sector presents the higher R2.
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Figure A7. 𝑅2 for each maize growth stage estimations, from 2018 to 2022, using TROPOMI SIF with varying estimation portfolios. For each growth stage esti-

mation, the greyer sector presents the lower 𝑅2 for the estimation, while the redder sector presents the higher 𝑅2. 

Figure A7. R2 for each maize growth stage estimations, from 2018 to 2022, using TROPOMI SIF with varying estimation portfolios. For each growth stage estimation,
the greyer sector presents the lower R2 for the estimation, while the redder sector presents the higher R2.
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Figure A8. 𝑅2 for each maize growth stage estimations, from 2018 to 2022, using MODIS EVI with varying estimation portfolios. For each growth stage estimation, 

the greyer sector presents the lower 𝑅2 for the estimation, while the redder sector presents the higher 𝑅2. 
Figure A8. R2 for each maize growth stage estimations, from 2018 to 2022, using MODIS EVI with varying estimation portfolios. For each growth stage estimation,
the greyer sector presents the lower R2 for the estimation, while the redder sector presents the higher R2.
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Figure A9. 𝑅2 for each winter wheat growth stage estimations, in 2019, 2021 and 2022, using in situ SIF measured from ‘morning’ with varying estimation port-

folios. For each growth stage estimation, the greyer sector presents the lower 𝑅2 for the estimation, while the redder sector presents the higher 𝑅2. 
Figure A9. R2 for each winter wheat growth stage estimations, in 2019, 2021 and 2022, using in situ SIF measured from ‘morning’ with varying estimation portfolios.
For each growth stage estimation, the greyer sector presents the lower R2 for the estimation, while the redder sector presents the higher R2.
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Figure A10. 𝑅2 for each winter wheat growth stage estimations, in 2019, 2021 and 2022, using in situ SIF measured from ‘afternoon’ with varying estimation 

portfolios. For each growth stage estimation, the greyer sector presents the lower 𝑅2 for the estimation, while the redder sector presents the higher 𝑅2. 
Figure A10. R2 for each winter wheat growth stage estimations, in 2019, 2021 and 2022, using in situ SIF measured from ‘afternoon’ with varying estimation
portfolios. For each growth stage estimation, the greyer sector presents the lower R2 for the estimation, while the redder sector presents the higher R2.
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Figure A11. 𝑅2 for each winter wheat growth stage estimations, in 2019, 2021 and 2022, using in situ SIF measured from ‘afternoon’ with varying estimation 

portfolios. For each growth stage estimation, the greyer sector presents the lower 𝑅2 for the estimation, while the redder sector presents the higher 𝑅2. 
Figure A11. R2 for each winter wheat growth stage estimations, in 2019, 2021 and 2022, using in situ SIF measured from ‘afternoon’ with varying estimation
portfolios. For each growth stage estimation, the greyer sector presents the lower R2 for the estimation, while the redder sector presents the higher R2.
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Figure A12. 𝑅2 for each winter wheat growth stage estimations, from 2018 to 2022, using TROPOMI SIF measured from ‘morning’ with varying estimation 

portfolios. For each growth stage estimation, the greyer sector presents the lower 𝑅2 for the estimation, while the redder sector presents the higher 𝑅2. 
Figure A12. R2 for each winter wheat growth stage estimations, from 2018 to 2022, using TROPOMI SIF measured from ‘morning’ with varying estimation portfolios.
For each growth stage estimation, the greyer sector presents the lower R2 for the estimation, while the redder sector presents the higher R2.
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Figure A13. 𝑅2 for each winter wheat growth stage estimations, from 2018 to 2022, using MODIS EVI measured from ‘afternoon’ with varying estimation portfo-

lios. For each growth stage estimation, the greyer sector presents the lower 𝑅2 for the estimation, while the redder sector presents the higher 𝑅2. 
Figure A13. R2 for each winter wheat growth stage estimations, from 2018 to 2022, using MODIS EVI measured from ‘afternoon’ with varying estimation portfolios.
For each growth stage estimation, the greyer sector presents the lower R2 for the estimation, while the redder sector presents the higher R2.
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