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Abstract: Deep neural network (DNN) was applied in sonar image target recognition tasks, but it is
very difficult to obtain enough sonar images that contain a target; as a result, the direct use of a small
amount of data to train a DNN will cause overfitting and other problems. Transfer learning is the most
effective way to address such scenarios. However, there is a large domain gap between optical images
and sonar images, and common transfer learning methods may not be able to effectively handle
it. In this paper, we propose a transfer learning method for sonar image classification and object
detection called the texture feature removal network. We regard the texture features of an image as
domain-specific features, and we narrow the domain gap by discarding the domain-specific features,
and hence, make it easier to complete knowledge transfer. Our method can be easily embedded into
other transfer learning methods, which makes it easier to apply to different application scenarios.
Experimental results show that our method is effective in side-scan sonar image classification tasks
and forward-looking sonar image detection tasks. For side-scan sonar image classification tasks, the
classification accuracy of our method is enhanced by 4.5% in a supervised learning experiment, and
for forward-looking sonar detection tasks, the average precision (AP) is also significantly improved.

Keywords: side-scan sonar image classification; forward-looking sonar image detection; transfer
learning; deep learning; domain specific feature

1. Introduction

Autonomous detection and recognition of underwater targets were always the focuses
of research. Side-scan sonar and forward looking sonar sensors became the most widely
used sensors in underwater detection because they have long detection distances, are not
affected by water quality, and can provide high-definition two-dimensional images [1–4].
Traditional sonar image target detection and recognition methods are mostly based on
manual feature extraction combined with classifier [5,6]. These methods are sensitive to
parameter settings, and when the underwater sediment changes and sonar sensors change,
their applicability deteriorates [1].

In recent years, deep learning technology made great achievements in the field of
image recognition, and in many aspects, the recognition ability of deep learning exceeded
that of human beings. However, at present, deep learning technology is still based on the
support of large labeled datasets and achieves high classification and recognition ability
after long-term training.

The acquisition of sonar images requires considerable manpower and material re-
sources, and for a water area, it is unknown whether the underwater environment contains
targets; that is, when scanning the water area, it is unknown whether the obtained sonar
images contain targets, which further leads to the scarcity of sonar image samples contain-
ing specific targets. Due to the scarcity of samples, training a deep neural network from
scratch on such a small dataset is challenging, which may cause severe overfitting, making
it difficult to realize universal applicability to sonar target recognition tasks.

The same problem is also encountered in medical image recognition, remote sensing
image recognition, and many other fields. Among many solutions, transfer learning is

Remote Sens. 2023, 15, 616. https://doi.org/10.3390/rs15030616 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15030616
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-9812-2679
https://doi.org/10.3390/rs15030616
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15030616?type=check_update&version=1


Remote Sens. 2023, 15, 616 2 of 21

a very effective method [7]. For example, in [8–14], researchers used transfer learning
methods for medical image classification or detection tasks, and in [15], Lumini et al.
adopted a transfer learning method to identify underwater organisms. New material
discoveries were even been made based on transfer learning methods. An approach using
transfer learning with feature extraction for building an identification system of mildew
disease in pearl millet was proposed by [16], and Chen et al. [17] used a convolutional
neural network and transfer learning method to identify and diagnose plant diseases
automatically, which is highly important in the field of agricultural information.

In practice, a person who learned to play tennis can learn badminton faster than others
since both tennis and badminton share some common knowledge, which is the basic key to
transfer learning. Inspired by human capabilities to transfer knowledge across domains,
transfer learning aims to leverage knowledge from a related domain (called the source
domain) to improve the learning performance or minimize the number of labeled examples
required in a target domain [7]. Transfer learning is widely used in areas that lack data.
Many papers [18,19] reported the use of transfer learning technology to identify COVID-19.

Pires de Lima et al. [19] systematically reviewed transfer learning applications for scene
classification using various datasets and deep-learning models, and the results show that
transfer learning provides a powerful tool for remote-sensing scene classification. Different
from common transfer learning methods, You et al. [20] studied the task adaptive pretrained
model selection-based transfer learning method, which selects the best models from a model
zoo without fine-tuning, and the logarithm of maximum evidence (LogME) was proposed,
in which a pretrained model with a high LogME value is likely to have good transfer
performance. You et al. [21] found that in transfer learning, task-specific layers are usually
not fully fine-tuned; hence, they are unable to maximize the transfer of knowledge. They
proposed a two-step framework named ”cotuning”. Cotuning collaboratively supervises
the fine-tuning process by providing a detailed relationship analysis of samples and labels
between the source domain and target domain. The experimental results show that cotuning
can result in a relative improvement of up to 20%. Guo et al. [22] proposed an adaptive fine-
tuning approach called ”SpotTune”. The key strategy of SpotTune is finding the optimal
fine-tuning strategy per instance for the target data. Given an image that corresponds to
the target task, a policy network is used to make routing decisions on whether to pass the
image through the fine-tuned layers or the pretrained layers. SpotsTune outperformed
the traditional fine-tuning approach on 12 out of 14 standard datasets. Shafahi et al. [23]
improved the LwF loss to make it suitable for use in transfer learning. The loss function
was designed to make the feature representations of the source and target network similar,
thereby preserving the robust feature representations.

Transfer learning methods are also widely used in sonar image target detection and
recognition tasks. For example, for submarine pipeline maintenance, Chen et al. [24] used
forward-looking sonar to detect submarine pipelines, and inspired by saliency segmenta-
tion, they developed a forward-looking sonar image segmentation method and improved
the efficiency of AUVs. Yulin et al. [25] proposed an improved Faster-RCNN model for
detecting wreckage targets in side-scan sonar images. They improved the object classifica-
tion part of Faster-RCNN by equalizing the number of anchor boxes in the region proposal
network that either contain or do not contain wreckage targets and employing a balanced
sampling of the image database for model training. Experiments show that the improve-
ment leads to 4.3% higher detection accuracy on the dataset they built. Zhou et al. [26]
studied a lightweight neural network in sonar image classification tasks and found that the
lightweight CNN achieves better results at a smaller cost, which renders it more suitable
for actual engineering applications. Yu et al. [27] integrated a transformer module and
YOLOv5, and an attention mechanism was also introduced into the method to meet the re-
quirements of accuracy and efficiency for underwater target recognition. The experimental
results show that their method achieves better results in terms of both accuracy and time
consumption. Chandrashekar et al. [28] studied the classification of several objects, such as
sand, mud, clay, graves, ridges, and sediments, in the underwater sea using side-scan sonar
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images. They utilized a deep learning-based transfer learning approach, and experiments
showed that after fine-tuning the parameters in object recognition, the accuracy was greatly
improved. Huo et al. [1] used a transfer learning method to transfer the knowledge from
the ImageNet dataset to a side-scan sonar image dataset that they built, and during transfer,
they proposed a semisynthetic data generation method for producing sonar images, which
can greatly compensate for insufficient data. Ochal et al. [29] evaluated and compared
several supervised and semisupervised few-shot learning (FSL) methods using underwater
optical and side-scan sonar imagery, and the results show that FSL methods offer significant
advantages over simple transfer learning methods, such as fine-tuning a pretrained model.

In transfer learning methods, the differences between source and target domains are
called domain gaps, and the fundamental purpose of transfer learning is to narrow them.
Many transfer learning methods were proposed and achieved very good results, such as
DANN [30], JAN [31], and TLDA [32]. However, common transfer learning methods are
usually ineffective in sonar image classification and detection tasks. The main reason is
that there are no datasets of images similar enough to sonar images that can be used as the
source domain.

In conventional transfer learning tasks, the samples in the source domain and the
target domain are generally similar; for example, the source domain consists of motorcycle
images, and the target domain consists of bicycle images. In this case, the source domain
and the target domain have high similarity in terms of pixel color distribution, structural
features, and many other aspects; hence, the domain gap is relatively small, and the transfer
effect is usually good.

Due to the working principle of sonar sensors, sonar images have the characteristics
of high noise, blur, and insufficient details [26]. If we use optical images as the source
domain, the conventional transfer learning method usually does not perform well on the
sonar image detection task due to the large domain gap.

In many unsupervised domain adaptation methods and domain generalization meth-
ods, it was proven that the deep features of instances in different domains have domain-
specific features and domain-invariant features [33]. Finding domain-invariant features to
transfer can effectively improve the efficiency of knowledge transfer.

In our task, we assume that the contour features of optical images and sonar images
are domain-invariant features, while other texture features are domain-specific features. In
the process of feature extraction, we discard domain-specific features and retain domain-
invariant features, and the domain gap between source and target domain can be narrowed.

Based on this assumption, we propose a texture feature removal network, which can
efficiently and quickly separate and keep domain invariant features of images in source
and target domain. Our network is based on an autoencoder network combined with
a whitening transformation, and we further propose two improvements, we realize the
suppression of domain-specific features through adding noise pollution to deep features,
and the alternating use of different up-sampling strategies in the decoder, so that after
our network processing, the images of the source and the target domain can be more
similar, therefore, it is more conducive to knowledge transfer from the source domain to
the target domain.

2. Materials and Methods
2.1. Problem Definition

We first define the symbols used in our article. As we discussed, transfer learning
utilizes the knowledge implied in the source domain to improve the performance of the
learned decision functions that could be used on the target domain.

Let D denote the domain, and the source domain is DS = {
(
xs

i , ys
i
)
|xs

i ∈ Xs, ys
i ∈ Ys|

i = 1, 2, 3, · · · , N}, where Xs denotes an instance set of the source domain, Ys denotes the
label space, xs

i is the i-th labeled instance and ys
i is the corresponding label. The target

domain is Dt =
{(

xt
i , yt

i
)∣∣xt

i ∈ Xt, yt
i ∈ Yt

∣∣i = 1, 2, 3, · · · , M
}

, where Xt denotes an instance
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set of the target domain, Yt denotes the label space, xt
i is the i-th labeled instance, and yt

i is
the corresponding label.

DS usually contains large number of labeled instances. However, the number of
labeled instances in the target area Dt is very small; even in the unsupervised domain
adaptation (UDA) problem, there is no annotation available for the target domain. The
sparse labeled samples are insufficient to train the DNN because there is a high probability
of overfitting, which makes the DNN not practical. In the UDA problem, the label spaces
of the source and target domains must be the same, namely, Yt = Ys, whereas in the
supervised transfer learning problem, there is no such restriction. However, in our paper,
we set Yt = Ys. Our goal is to jointly learn a classification function f through DS and Dt that
can accurately predict the instances of Dt.

2.2. Texture Feature Removal Network

As we know, the core of the transfer learning method is to find a unified feature extrac-
tion method for the two domains. After feature extraction, there is no difference between
the characteristics of the source domain and the target domain, so the knowledge learned
from the source domain can be used in the target domain. Recently proposed methods with
remarkable achievements all resort to learning the domain-invariant feature [34]. These
methods assume that features consist of domain-specific features and domain-invariant
features, where features that appear only in either the source or target domain are domain-
specific features and features that appear in both domains are domain-invariant features. If
they can learn a feature extraction network that only extracts domain-invariant features,
knowledge transfer is completed.

Based on this theory, if domain-invariant features constitute a larger proportion of all
features, then the feature extraction network will be more similar on both the source and
target domains, leading to a DNN trained from the source domain that can more easily
adapt to the target domain. This corresponds to a small domain gap, which makes the
transfer of knowledge easier, whereas a larger domain gap may make knowledge harder
to transfer.

Many domain adaptation (DA) researchers’ [33,35,36] results prove this theory, i.e.,
for most UDA methods that were tested on an office–home dataset [37], if we set the
Real-world as the source domain dataset, then the transfer effect of using Product as the
target domain is better than that of using Clipart as the target domain. We can see from the
image example in Figure 1 that images that belong to “Real-world” and Product appear
to be closer than Clipart. The closer two images are, the smaller the domain distance is,
which is more conducive to the transfer of knowledge from source to target domain. In
supervised transfer learning, [38,39] also showed the same phenomenon, namely, that the
transfer improvements are higher when source and target domain datasets are more similar
to each other.
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However, as shown in Figure 2, there are great differences between side-scan sonar
images and conventional optical images in terms of pixel distribution, texture characteristics
and other features; that is, the domain gap is larger than that in the common scenario,
which could be why the conventional transfer learning method is usually not particularly
effective when it is directly applied to side-scan sonar image classification.
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By analyzing the characteristics and the differences between optical image and side-
scan sonar image in detail, we find that although the target produces shape deformations
in side-scan sonar images, the contour features of the target remain basically unchanged, as
in conventional optical images. We can select the contour feature as the domain-invariant
feature and take texture features, such as color and pixel value distribution information,
as domain-specific features, and by keeping the domain invariant feature, we can make
the domain gap narrowed when we take optical image as source domain and side-scan
sonar image as target domain. Therefore, we can improve the effectiveness of transfer
learning methods.

We formulate our approach as follows: Equation (1) is the classification function, and
Equation (2) is the loss function.

yp = f (s(e(xi))), xi ∈ Xs, Xt (1)

Ls(ω) =
1
m ∑m

i=1 d
(
yi, yp

)
+ λ‖ω‖2 (2)

where xi is the input image, which can come from the source or target domain; e(∗) is the
feature extraction network; s(∗) denotes the feature separation function, which can make
the distributions of the source domain features and target domain features closer after
feature separation, namely, d[s(e(xt)), s(e(xs))] < d[e(xt), e(xs)]; and f (∗) is the classifier
that can complete the mapping between deep features and predictions.

The core element of our method is the feature separation function s(∗); instead of
setting up a deep neural network that can learn from data, we use a simpler and more
effective method. In our method, s(∗) is a fixed transformation function, and there are no
parameters that need to be learned during the transfer learning stage, which makes it easier
to implement. The fixed transformation avoids many problems of the learnable layer, such
as the gradient backpropagation problem of the nonlinear transformation layer.

Regarding the feature separation function s(∗), our method is inspired by style transfer
methods. These methods aim to get an image by imitating another artistic style. Figure 3
shows the effect of image style transfer.
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Li et al. [40] proposed a fast and effective style transfer method called PhotoWCT.
During the training stage, the PhotoWCT method first trains an autoencoder, and the pixel
reconstruction loss [41] and feature loss [42] are used to reconstruct input images during
encoder/decoder training.

L = ‖xr − xi‖2
2 + λ‖e(xr)− e(xi)‖2

2 (3)

where xi and xr are the input image and reconstructed output, respectively; e(x) is an
encoder that extracts the deep features; and λ is a weight parameter.

The style transfer task starts after the autoencoder network training is completed: First,
we send the contents image to the encoder of the autoencoder to get content features fc.
Then, we transform the fc based on Equation (4), which is called the whitening transform.

f̂c = EcD−
1
2

c ET
c fc (4)

where f̂c is the whitened deep feature, Dc is a diagonal matrix with the eigenvalues of the
covariance matrix fc f T

c , and Ec is the corresponding orthogonal matrix of eigenvectors,
which satisfies fc f T

c = EcDcET
c . Then, the style feature extracted from the style image by

encoder is combined with the whitened content feature by the coloring transform, which is
defined as Equation (5)

f̂cs = EsD
1
2
s ET

s f̂c (5)

where f̂cs is the colorized feature, Ds is a diagonal matrix with the eigenvalues of the
covariance matrix fs f T

s , fs is the deep feature of style image, and Es is the corresponding
orthogonal matrix of eigenvectors.

Finally, the synthesized image xr is obtained by feeding the combined deep features
f̂cs into the decoder. Figure 4 shows the network structure of PhotoWCT.

The key strategy behind PhotoWCT is to directly match the feature correlations of the
content image to those of the style image via the two projections. In the PhotoWCT method,
the whitening step helps peel off the style from an input image while preserving the global
content structure, as shown in Figure 5.

In our scenario, we can apply the whitening transform on both the source domain
and target domain. The texture features of these two domains are removed, and only the
contour features are preserved. Because the reserved features only contain the features of
contour information, the domain gap between the source domain and the target domain
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can be narrowed, and the knowledge transfer efficiency can be improved. The principle of
our method is summarized in Formula (6).

fc = e(x)

s(e(x)) = Decoder
(

EcD−
1
2

c ET
c fc

)
(6)

However, the whitening transformation cannot remove all style features, and some
color features are also retained. When two images have similar styles, there is no obvious
difference in style information in the whitened features, so it can effectively narrow the
domain gap when the source and target domains are both optical images.
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If we directly use the whitening transform as the texture feature removal network
to remove texture features of conventional optical images and side-scan sonar images,
the effect is not good enough. We visualize the decoded result of the whitened features
in Figure 6. We can see that there are still differences in color distribution between the
two domains.

To solve this problem, we first analyze the deep feature, and we use the Haar wavelet
to decompose the whitened deep feature to observe the frequency band where the color
and texture feature appears. If the color and texture features are concentrated in the high
frequency band, we can remove the texture features by low-pass filtering the deep features.
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Figure 6. Results of directly decoding the whitened features on our own datasets. The upper images
are the original inputs, and the bottom images are the corresponding outputs.

After the deep feature is decomposed, the low-frequency component and high-
frequency component are obtained. Since their length is half of the deep feature, we
use nearest neighbor interpolation to restore them to the same length as the depth feature.
After that, we use the decoder to reconstruct the two decomposed features. Finally, the
decode results are shown in Figure 7.
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Figure 7. Results of decoding the low-frequency and high-frequency of deep feature: (a) is the
original input image, (b) is the reconstruction image of whitening transform, (c) is reconstruction
image of the low-frequency feature, and (d) is reconstruction image of the high-frequency feature.

From Figure 7, we can see that, in the reconstruction result of the low frequency
component of the whitened deep feature, the color and texture features become clearer,
and it can be regarded as the result of low-pass filtering of the whitened depth feature, and
after filtering, the domain gap becomes larger; therefore, we do the opposite, which means
we add noise to the whitened deep feature, so that the texture features of the output results
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of the decoder are greatly weakened, which reduces the difference between the source and
target domains; that is, the gap between the two domains decreases. Finally, the objective
of improving the knowledge transfer efficiency can be achieved.

s(e(x)) = Decoder
(

EcD−
1
2

c ET
c ( fc + fnoise)

)
(7)

The effect of the first improvement is shown in Figure 8.
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The addition of noise pollution can reduce the domain gap, but the experimental
results show that the removal effect of texture features is still insufficient. We find that
the main reason is the full use of the un-pooling layer in the decoder of PhotoWCT. There-
fore, we propose a second improvement; namely, we alternately use un-pooling and
up-sampling layers to enlarge the feature map in the decoder. The basis for improvement
is described below.

Different from the traditional commonly used up-sampling layer, the un-pooling
layer takes the saved locations of maximum activations during the pooling operation as
indicators and uses them to place each activation back in its original pooled location. This
un-pooling strategy could help preserve information in the reconstruction task [43]. As a
result, the texture information is retained through the maximum activation value position
indicator of max-pooling.

To prove this, we use pure noise as a deep feature to feed into the decoder. Since
the noise is generated randomly, it does not contain any image information; therefore, if
the reconstruction result still contains information of the original input image, it must be
carried by the maximum activation value position indicator. The test results are shown in
Figure 9.

From Figure 9 we can see that when using the unpooling layer, even if we use pure
noise as a deep feature, the reconstructed output still contains much information from the
original input. Additionally, we further find that during the unpooling operation, if we
enlarge the feature activation value, which fed into the unpooling layer, the reconstructed
output image of the decoder will be closer to the original input image, even if the input of
the decoder is still pure noise.

Because of the use of the un-pooling layer, too much information is preserved, which
deviates from our original intention; thus, we use a traditional up-sampling layer in the
appropriate position, and the up-sampling layer enlarges the feature map in a way that
ignores the active position, which could damage the feature information transmission,
which is what we need. The operating processes of the up-sampling and un-pooling layers
are illustrated in Figure 10.
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Figure 10. Operating processes of the up-sampling and un-pooling layers.

Generally, for an encoder, the shallow layer of the neural network usually extracts
local detailed texture and color features, while the deeper layer extracts more abstract
information, such as contour and size. Then, for the decoder, which is designed to be
symmetrical to the encoder, the shallow layer usually reconstructs abstract global contour
features, and the deeper layer reconstructs detailed texture and color features. Therefore,
we place the up-sampling layer at the deeper layer, and the un-pooling layer is still used on
the shallow layer to preserve the contour information and remove the texture information
at the same time.

Finally, after two improvements, the removal effect of texture features is shown in
Figure 11.
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Finally, our network structure is illustrated in Figure 12. In the next section, we carry
out many comparative experiments to verify our proposed method.
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3. Results

We verify our proposed method by conducting experiments on the side-scan sonar
image classification task and the forward-looking sonar image target detection task. For the
experiments on the side-scan sonar image classification task, we also use the supervised
transfer learning method and unsupervised transfer learning method to evaluate the
effectiveness.

3.1. Supervised Transfer Learning Experiments of the Side-Scan Sonar Image Classification Task
3.1.1. Source Domain Dataset

Because the visual angles of remote sensing images and side-scan sonar images are
similar, the domain gap will be smaller after removing texture features, which is more con-
ducive to the transfer of knowledge; thus, we select several remote sensing image datasets
as the source domain datasets, namely DOTA [44] UCAS-AOD [45], NWPU VHR-10 [46],
RSOD-Dataset [47], and NWPU RESISC45 [48].

As four of them are designed for detection tasks, we cut their images into image
pieces based on the provided bounding boxes. Then, we filter out small image pieces and
randomly delete some pieces to ensure the approximate balance of the dataset. Finally,
the constructed source domain dataset contains three categories: aircraft (1313 samples),
ship (601 samples), and others (2080 samples). The ‘others’ category consists of samples
from the five datasets that do not correspond to aircrafts or ships, including trucks, cars,
overpasses, beaches, etc.

The reason for this construction is that the source domain and the target domain could
share the same label space, that is, Yt = Ys; in this way, we can use the dataset to measure
the effectiveness of our method on different problems, such as supervised transfer learning
and unsupervised transfer learning tasks. Examples from the source domain dataset are
shown in Figure 13.
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3.1.2. Side-Scan Sonar Image Dataset

For the side-scan sonar image dataset, we collect 33 images of aircrafts, 179 images
of shipwrecks, and 265 other images that belong to 12 categories, such as rocks, buckers
and fishing boxes. We merge them because the numbers of samples in those categories are
too small, especially for the supervised transfer learning task. We also select some samples
as the test set. For example, there are only eight samples in the fishing box category, and
only two samples are taken as the test samples. It is difficult to effectively measure the
effectiveness of the algorithm on such a small test sample. Therefore, we combine them
as negative samples, namely, samples that do not correspond to aircrafts or shipwrecks.
Examples from the target domain dataset are shown in Figure 14.
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3.1.3. Supervised Transfer Learning Experiments

Among the many supervised transfer learning methods, the simplest and most ef-
fective is fine-tune [49], which was also widely used in many areas. The core principle of
fine-tuning is that if we have a neural network that was well trained using a source domain
dataset for the source task, we can freeze (or share) most of its layers and only train the last
few layers using a target domain dataset to produce a target network, namely, a fine-tuned
network. Because of its simplicity and easy implementation, we use the fine-tuning method
in the supervised transfer learning experiment. We first train an encoder and a decoder
using the ImageNet dataset. Then, we embed the trained encoder and decoder into our
proposed method and freeze the weights of the encoder and decoder. Next, we use the
source domain dataset to train the classification network and, finally, use the target domain
dataset to fine-tune this classification network. The effectiveness of this method is measured
by evaluating the classification accuracy.

In TFRN, as for PhotoWCT, we use the feature extraction part of VGG-19 [50] as the
encoder, and we use the inverse of the encoder as the decoder. During the training stage,
we use the ImageNet dataset as input data. The training goal is to restore the features
extracted by the encoder to the input image as much as possible. The pixel reconstruction
loss [41] and feature loss [42] are adopted as described before. After the encoder is well
trained, we extract it and embed it into our proposed method. At the same time, we freeze
the weights of the encoder and decoder, making the texture feature removal network a
fixed transformation process without dynamic adjustment.

The output of the TFRN is input into a classification network. For this classification
network, we use ResNet-50 [51] as a backbone network. When training the data classi-
fication network in the source domain, we train the classification network from scratch,
while in fine-tuning, we test and fine-tune all parameters and the last two layers to better
evaluate the effectiveness of the improved method.

In the process of fine-tuning the source domain data classification network for the
target domain, we randomly select 70% of the dataset of the target domain as the train-
ing set and the remaining 30% of the samples as the validation set. The validation set
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does not participate in the training process and is only used to evaluate the network
classification ability.

To better verify the method proposed in this paper, we conduct two comparative
experiments. In the first experiment, the target domain dataset is used directly to train the
classification network without the transfer learning method. We denote this classification
network Cdirect−train. In the second experiment, we simply use the basic fine-tuning method
without adding the texture feature removal network. We use the optical remote sensing
image dataset as the source domain to train the classification network and then directly
use the side-scan sonar image dataset as the target domain to fine-tune the source domain
classification network. This classification network is denoted as Cbasic− f inetune. Finally,
due to the large deviation in the number of samples among the three categories, to better
measure the classification ability of the classification network, we measure the global
accuracy and mean accuracy at the same time.

The mean accuracy and global accuracy are measured using Equations (8) and
(9), respectively.

accmean =
1
‖k‖∑‖k‖

c=1
correct predictions in c

total samples in c
(8)

accglobal =
correct predictions

total samples
(9)

The experimental results are presented in Table 1.

Table 1. Accuracy and total correct classifications (the number of test samples is also shown. We
regard only true positives as correct, and the best results are marked in bold).

Airplane
13 Samples

Shipwreck
71 Samples

Other
106 Samples

Global
Accuracy

Mean
Accuracy

Cdirect−train 6 45 100 0.7947 0.6796
Cbasic− f inetune 9 67 100 0.9316 0.8645
Our method 11 66 101 0.9368 0.9095

The classification results of Cdirect−train (without the transfer learning method) are very
poor, and there is a great difference between the average accuracy and the global accuracy.
Only 6 aircraft samples and 45 shipwreck samples are correctly classified, while most of
the samples in the other categories are correctly classified, which indicates that the network
has a substantial classification bias. We statistically analyze the predicted results of all test
samples and find that the network classifies almost all samples into the other category, that
is, the network does not have satisfactory classification ability.

Cbasic− f inetune performs better, 9 aircraft samples and 67 wreck category samples are
correctly classified, and the global accuracy is close to the mean accuracy, which also
confirms the effectiveness of the fine-tuning method.

Our method achieves excellent results. With the TFRN, 11 of 13 real aircraft SSS images
are correctly recognized, and 66 of 71 real shipwreck SSS images are recognized. The mean
and global accuracies are closer than those of Cbasic− f inetune, and the classification ability is
well balanced for all test categories.

We also plot some classification results on the validation set in Figure 15, and we
observe that, in the classification samples that are incorrectly classified as belonging to the
ship category, only the general outline of the ship is visible, while other parts are messy and
have no shadow. These samples are quite different from most samples of the ship category,
so they are easily misclassified into other categories. The samples of the other category
that are incorrectly classified have contour shapes that are close to those of the samples of
the ship or aircraft category. These results reveal that the classification network does use
appropriate features as the classification basis.
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3.2. Unsupervised Transfer Learning Experiment on the Side-Scan Sonar Image Classification Task

As a special case of transfer learning, the unsupervised domain adaptation (UDA)
method usually learns a classifier, which can address the situation where there are labeled
source data and the target domain has accessible samples but no labels [52]. Because of
its ability to learn from labeled data and apply the learning results to a similar domain,
UDA can reduce the need for costly labeled data in the target domain; therefore, it was
widely used in natural language processing, machine translation, computer vision, and
other application scenarios [53].

Among many UDA methods, DaNN [54] is a very ingenious and deep neural network-
based UDA method. DaNN was the first to introduce adversarial training into the field of
UDA, and a domain classifier was added to the traditional classification network. In the
training stage, the source domain training samples and the target domain training samples
are mixed as the input of the network. The conventional classification network is trained
by using the source domain dataset, and the domain classifier is designed to distinguish
whether the training samples come from the source domain or the target domain.

The common idea is that with the training of the network, the prediction of the source
domain becomes increasingly accurate, and at the same time, the domain classifier can
accurately distinguish the source of each sample. Based on this conventional idea, DaNN
uses a gradient inversion layer at the beginning of the domain classifier. By inverting the
gradient calculated by the domain classifier, the DNN is optimized toward the positive
gradient direction, which means the loss of the domain classifier increases, leading to the
domain classifier becoming increasingly inaccurate, which also means the DNN becomes
unable to distinguish the source of input data.

When the deep network cannot distinguish whether the sample comes from the source
domain or the target domain, for the classifier, the source domain and target domain are the
same; namely, there is no domain gap between the source domain and the target domain.
Because there is no domain gap, the classifier trained by the source domain can be applied
to classify samples from the target domain. This is the key idea of DaNN. For the UDA
experiment, we use DaNN as the basic network and combine our TFRN with DaNN.
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The datasets used in the UDA transfer learning experiment are the same as those used
in the supervised transfer learning experiment. The texture feature removal network part is
also the same as that in supervised transfer learning, which was described in Section 3.1.3.
We connect the DaNN network with our TFRN.

We reproduce the code for DaNN in PyTorch, and the backbone network is ResNet-
101 [51]. We use two liner layers as domain classifiers. At the top of the classifier, we
add a gradient inversion layer, which does not perform any calculation during forward
propagation, and multiply the gradient by -1 during error backpropagation to realize
gradient inversion.

For the source domain classifier, we use cross entropy as the loss function, and for
the domain classifier, we use the L2 norm as the domain loss. The final loss function is
presented as Equation (10), where λ is the weight parameter.

L = Lsource + λLdomain (10)

In the setting of the UDA problem, the samples of the target domain are accessible but
have no labels; therefore, we use all the samples of side-scan sonar images in the training,
and after the network is fully trained, we use all the side-scan sonar images to evaluate
the classification ability of the network. As in Section 3.1.3, we still evaluate the global
accuracy and mean accuracy.

We compare these values with those of the original DaNN to verify the improvement
in classification ability after adding TFRN. The UDA experimental results are presented in
Table 2.

Table 2. Accuracy and total correct classifications (the number of test samples is also shown. We
regard only true positives as correct, and the best results are marked in bold).

Airplane
33 Samples

Shipwreck
179 Samples

Other
265 Samples

Global
Accuracy

Mean
Accuracy

DaNN 19 103 251 0.782 0.6995
Our method 22 122 244 0.8134 0.7563

According to Table 2, after adding the TFRN, the classification mean accuracy is greatly
improved, and the global accuracy and mean accuracy are closer, which proves that the
method proposed in this paper can effectively address the situation of large differences
between the distributions of the target domain and source domain.

3.3. Imaging Sonar Object Detection Experiments and Results
3.3.1. Dataset

We also evaluate the proposed method in the target detection task of forward-looking
sonar (FLS) images, which are widely used in underwater vehicles [3].

A total of 42 forward-looking sonar images were collected, of which 10 are randomly
selected as test samples and the remaining 32 as training samples. Our FLS datasets only
include one category, namely, diver. Examples of FLS datasets are shown in Figure 16.

We also construct a corresponding source domain dataset for forward-looking sonar
images and collect a total of 372 images. All images are captured by surveillance cam-
eras, and the images only contain one category, which is consistent with the FLS dataset.
Examples are shown in Figure 17.
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3.3.2. Forward-Looking Sonar Image Detection Experiments

For the experiments, we use a setting similar with that in Section 3.1. Two comparative
experiments are conducted. In the first experiment, the detection network is trained
directly using the FLS dataset without using the transfer learning method, and we denote
the detection network Ddirect−train. In the second experiment, the fine-tune method is used.
We first train a source domain detection DNN using the source domain dataset. After that,
we use the FLS dataset to fine-tune the source domain detection DNN, and we denote
the detection network Ddirect−train. In our method, we put the proposed TFRN before the
detection network, and the other settings are the same as those of Dbasic− f inetune. We use
CenterNet [55] as the detection DNN, which is an excellent anchor-free object detection
framework, and we use ResNet-18 [51] as the backbone feature extractor in CenterNet. The
input resolution is 640× 480, the initial learning rate is set to 1e-4, and we train the network
for 200 epochs, with the learning rate dropping by 10× at 120 epochs. The hyperparameters
are all the same in every experimental step.

We use the average precision (AP) [56] over all IOU thresholds (APall) and the AP at
an IOU threshold of 0.5 (AP0.5) to measure the object detection ability of the network. Since
there are only 10 test samples, we can easily count the number of incorrect and missed
detections. The results are reported in Table 3, and Figure 18 shows some detection results
from the three experiments.

Table 3. Average precision and number of wrong detections (the best results are marked in bold).

APall AP0.5
Missing

Detections
Incorrect

Detections

Ddirect−train 0.039 0.231 9 1
Dbasic− f inetune 0.246 0.632 2 1
Our method 0.356 0.711 0 0
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Figure 18. Detection results for typical forward-looking sonar images: (a) were detection results of
Ddirect−train, (b) were detection results of Dbasic− f inetune, and (c) were detection results of our method.

We can see that, if we directly use a small number of target domain data sets to train the
detection network, the bounding box of the detection results is very inaccurate, and there
are many wrong detections and missing detections. With the use of the transfer learning
method, APall and AP0.5 were significantly improved, and the number of error detections
and missing detections was reduced, leading to the fact that the similarity between the
source domain and the target domain is positively correlated with the transfer effect.

However, after using our TFRN, the domain gap between source domain and target
domain is further reduced by the removal of texture features, AP is further improved, and
the bounding box regression is more accurate. There is only one wrong detection in 10 test
samples, these results prove that out method is not only effective in side-scan-sonar images,
but also in forward-looking-sonar image target detection tasks.

We further use the t-distributed stochastic neighbor embedding [57] method to reduce
the dimensions of features and display them; t-SNE is a technique for dimensionality
reduction that is particularly well suited for the visualization of high-dimensional features.
If two domain features are in close proximity to each other, then the features after reducing
the dimensions are also close, and we can evaluate the effectiveness of our proposed method
by analyzing the distributions of low-dimensional features between the two domains.

We first visualize the deep features in side-scan sonar-supervised transfer learning
experiments. The deep features are extracted from the last residual block of the classification
network. We only present the feature distribution of the target domain, and the training
set and test set are represented by different marks to intuitively reflect the generalization
ability of the network. We also compare the feature distribution results of Cdirect−train and
Cbasic− f inetune. The results are plotted in Figure 19.
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Figure 19. The t-SNE visualizations of deep features of the side-scan sonar image dataset: the
T_aircraft, T_shipwreck, and T_other tags denote the features of training samples, and the V_aircraft,
V_shipwreck, and V_other tags indicate the features of test samples. (a) Features extracted from
Cdirect−train; (b) features extracted from Cbasic− f inetune; and (c) features extracted from the classification
network trained by our method.

As shown in Figure 18a, the distribution of the test set is very different from that of
the training set, which shows that the network suffers from overfitting. Due to training on
too few samples, the network learns the wrong characteristics; hence, the test set cannot be
classified correctly. In Figure 18b, the network shows no overfitting, the distributions of the
training set and test set are basically the same, and the network demonstrates classification
ability. The results in Figure 18c are better than those in Figure 18b. The distribution range
of the test set is smaller, and the inter class distance of the features is larger, which shows
that after the texture feature removal network is applied, the main network can effectively
extract the most critical features for classification.

4. Discussion

In this article, we focused on the problem that the conventional transfer learning
method may not be suitable for the situation where the source domain is quite different
from the target domain, such as when the source domain consists of conventional optical
images and the target domain consists of sonar images. Conventional transfer learning
methods would fail because of the huge domain gap.

We assumed that the image features are composed of domain-invariant features and
domain-specific features, and that the domain-specific features are the texture features of
the images. Domain-invariant features are the features contained in both domains. If we
only use domain-invariant features as the classification basis, then in DNN’s view, there is
no domain gap. Therefore, the DNN trained using the source domain data can also be used
in the target domain.

The core of our method is to narrow the domain gap between the two domains at the
sample level, while the whitening transformation is the closest technique to achieve texture
feature removal.

Since the effect of directly applying the whitening transform is not ideal, we analyze
the depth features after whitening, and look forward to further removing texture features
by filtering; however, the Haar wavelet decomposition results show that after filtering
out high-frequency components, texture features are enhanced. This leads to the first
improvement, adding noise pollution to the whitened deep features.

In order to further reduce the difference between the two domains, we propose a
second improvement. By using the noise without any information as the deep feature,
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we successfully found that the pooling indicator carries the texture feature, so we used a
nearest neighbor up-sampling layer in the decoder to cut off this feature transfer channel.

After two improvements, the pixel value distribution and noise level of the source
and target images processed by the texture feature removal network are relatively close,
and they look more similar; therefore, the domain gap between the source domain and the
target domain can be greatly narrowed, which leads to better performance improvements
in transfer learning.

After carefully designing the texture feature removal network, we compared our
method to conventional transfer learning methods using datasets that we built, and the
results of both side-scan sonar image classification transfer learning experiments and
forward-looking sonar object detection experiments show that our method can effectively
improve the accuracy of classification. The research that was reported in this paper pro-
motes the practical application value of transfer learning in the field of special small-sample
image classification tasks.
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