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Abstract: Remote sensing object detection based on the combination of infrared and visible images
can effectively adapt to the around-the-clock and changeable illumination conditions. However,
most of the existing infrared and visible object detection networks need two backbone networks to
extract the features of two modalities, respectively. Compared with the single modality detection
network, this greatly increases the amount of calculation, which limits its real-time processing on
the vehicle and unmanned aerial vehicle (UAV) platforms. Therefore, this paper proposes a local
adaptive illumination-driven input-level fusion module (LAIIFusion). The previous methods for
illumination perception only focus on the global illumination, ignoring the local differences. In
this regard, we design a new illumination perception submodule, and newly define the value of
illumination. With more accurate area selection and label design, the module can more effectively
perceive the scene illumination condition. In addition, aiming at the problem of incomplete alignment
between infrared and visible images, a submodule is designed for the rapid estimation of slight shifts.
The experimental results show that the single modality detection algorithm based on LAIIFusion can
ensure a large improvement in accuracy with a small loss of speed. On the DroneVehicle dataset, our
module combined with YOLOv5L could achieve the best performance.

Keywords: visible–infrared images; object detection; multimodal fusion; illumination perception;
offset estimation

1. Introduction

Object detection in remote sensing images is an important step in many applications,
such as traffic condition monitoring, road planning, and mountain rescue [1–5]. With
the continuous advancement of technology and the continuous expansion of demand,
the types of detection scenarios are gradually becoming more complex and diversified.
One of the most representative and challenging tasks is to achieve effective detection in
scenes with complex illumination conditions. Meanwhile, near-ground remote sensing and
unmanned aerial vehicle remote sensing are also developing, but the computing resources
of embedded platforms such as vehicles and airborne processors are limited. Ensuring the
real-time detection of models mounted on these platforms is also an important issue.

In recent years, the general object detection models have been mainly based on deep
learning methods. This includes one-stage methods that directly predict object locations
and categories through end-to-end networks, such as SSD series [6,7], YOLO series [8–11],
DETR [12], etc., and two-stage methods that first extract the region of interest, and then
determine the object location and category, such as Faster R-CNN [13], mask R-CNN [14],
DetectoRS [15], etc. These general object detection methods have achieved impressive
results on public datasets such as VOC [16] and COCO [17]. The development of object
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detection based on UAV remote sensing is driven by the breakthroughs of these algorithms.
Zhang et al. pruned YOLOv3 to achieve real-time detection in the ViDrone 2018 dataset [18]
and showed good balance accuracy and inference speed [19]. Liu et al. built image pyramids
and extracted features from the backbone networks of different depths to improve the
small-target recognition ability [20]. Li et al. designed a multi-scale fusion channel attention
model based on YOLOv3 to achieve information complementarity between channels [21].
Yu et al. designed the Class-Biased Sampler and Bilateral Box Head components, which use
bias against the head class and tail class in order to solve the long-tail distribution problem
in UAV images [22]. However, these models take visible images that are obtained during
the day or in bright scenes as the training sets. The nighttime and extreme lighting scenes
were not considered.

Since infrared imaging reflects the infrared radiation information of the target, it has
the advantage of not being limited by the illumination conditions. As shown in Figure 1,
under poor illumination conditions, it is difficult for the visible light sensor to capture the
scene information, but the infrared sensor can still normally capture the thermal radiation
emitted by the targets. Therefore, the reasonable fusion of infrared and visible images
helps to improve the around-the-clock detection capability of the model. At present,
object detection based on the multimodal fusion of infrared and visible has been widely
studied [23–30]. In the task of multimodal object detection, according to the different fusion
stages, the multimodal fusions are mainly divided into four categories, i.e, input-level
fusion, feature-level fusion, decision-level fusion, and multi-stage fusion.
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Figure 1. UAV images are acquired by visible light camera and infrared camera, respectively. (a) Visi-
ble image. (b) Infrared image.

Input-level fusion means that infrared and visible images are firstly fused into an image
with two modalities’ information, and then the fused image is input into the object detection
network for feature extraction and bounding box regression. The advantage of input-level
fusion is that it can generate an image that highlights targets and contains more abundant
semantic information. To our knowledge, there is currently no object detection method
with input-level fusion for remote sensing or assisted driving. Infrared and visible image
fusion methods can be regarded as a part of input-level fusion research, but these methods
focus on how to obtain better visual quality in images. In particular, image fusion methods
based on deep learning have developed rapidly in recent years. Li et al. first designed
a fusion model of an encode–decode structure based on deep learning [31]. Zhao et al.
decomposed the image into background and details through the encoder, and fused the
background and detail information of the two modalities and then input it to the encoder
for image reconstruction [32]. Ma et al. first used a GAN network to fuse images, and
adaptively learned fusion rules through direct confrontation between the generator and the
discriminator in the model [33]. Although these image fusion studies achieved remarkable
results, more suitable images for subsequent visual tasks were rarely considered. Moreover,
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these image fusion technologies use image pairs under the full alignment assumption.
However, in the real scene, the physical characteristics, such as the field of view and
parallax between sensors, are different. In the process of data acquisition, there are also
problems such as external interference and component aging [29]. These problems cause
the inconsistent positions of objects in the same frames of infrared and visible images. The
object forms a ghost in the fused image, which affects subsequent detection.

Current research on visible–infrared object detection mainly focuses on feature-level
fusion and decision-level fusion. Li et al. designed a dual-input object detection model
based on the Faster RCNN framework. They realized multimodal information comple-
mentation by jointly using an RPN module and confidence score fusion [25]. Zhang et al.
utilized the deep feature stitching results of two modalities to provide attention weights
for shallow features [26]. Guan et al. proposed two-stream deep convolutional neural
networks and sensed the illumination through FCN to allocate the weight of a two-stream
feature map [27]. Zhou et al. proposed a difference module to balance the two modalities
of information and a miniature sub-network to perceive the illumination, and then em-
ployed the lighting information to weight the confidence scores of the infrared and visible
predictions [28]. These methods require two backbone networks to extract features for
infrared and visible images separately, which results in more computation and is difficult
to deploy in UAV remote sensing. Furthermore, the illumination is usually labeled as day
or night in the fusion architecture based on an illumination perception module, and this
means that module cannot correctly characterize the illumination of some complex scenes.
For instance, when the camera faces the light source, the visible image is overexposed,
which leads to partial loss of the light source and its surrounding information. In some
specific daytime scenes, the targets on the shaded side are also difficult to distinguish
from the background due to insufficient lighting. Furthermore, the current methods often
extract the lighting information of the whole image and ignore the differences in lighting in
different regions [25,27,28]. This may bring an issue in which the regions that need infrared
information cannot be enhanced but some regions are blurred by infrared.

In order to solve the above problems, this paper designs a miniature input-level fu-
sion module for infrared and visible detection. The module achieves the fusion of the
multimodal images through limited calculation. Since the perception of lighting informa-
tion in previous methods is not reasonable, a new labeling method is designed for the
estimation of the illumination. Instead of obtaining the lighting information of the whole
image, the image is divided into several blocks and the lighting information of each block
is perceived. At the same time, considering that multimodal data acquisition is unable
to achieve complete alignment, we develop an offset estimation module to assist infrared
visible image alignment.

In summary, the main contributions of this paper are as follows:

(1) A local illumination perception module supervised by pixel information statistics is
proposed to fully perceive the illumination difference of each area in the image, which
provides a more suitable reference for fusion.

(2) An offset estimation module composed of bottleneck blocks is designed to predict
the location offset of objects in different modalities, which achieves fast alignment
between image pairs.

(3) The proposed local adaptive illumination-driven input-level fusion module (LAIIFu-
sion) can simply convert the single modality object detection model into a multimodal
model, and guarantees real-time inference while improving the detection perfor-
mance.

The rest of this paper is arranged as follows. In Section 2, the overall structure of
the model and the specific details of the two proposed modules are described. Section 3
provides the details of the experiments and related analyses. Finally, Section 4 draws
specific conclusions and provides some discussion.
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2. Methods

In this section, we describe the local adaptive illumination-driven input-level fusion
approach for infrared and visible object detection. The overall framework of the object
detection model and the detection process are first described. Afterwards, the details
of the proposed local illumination perception module and offset estimation module are
introduced. Finally, the loss function used by the detection framework is introduced.

2.1. Overall Network Architecture

Typically, input-level fusion modules consist of an encoder and decoder [31,34]. The
purpose of the encoder is to extract the features of two modalities. The decoder is employed
to reconstruct and fuse the features. In order to prevent the loss of information caused by
downsampling, the size of the feature map is always the same as that of the input image,
but this setting consumes more computing resources. In this paper, the target is to obtain an
image that can be easily recognized by the detection network, instead of pursuing the visual
quality of the image. Therefore, the encoder part is replaced by an efficient information
perception method.

The overall framework of the proposed LAIIFusion is shown in Figure 2. The module
consists of three submodules: the local illumination perception module, offset estimation
module, and adaptive fusion module. In LAIIFusion, the infrared and visible images
Iinf ∈ RH×W×C, Ivis ∈ RH×W×C (H, W, and C, respectively, represent the height, width, and
channel) are first downsampled by two convolutional layers with a 3 × 3 kernel. Through
this operation, the computational complexity of subsequent information perception is
reduced while the critical information is preserved. The downsampled infrared and visible
images are represented as Ids_inf ∈ Rh×w×C, Ids_vis ∈ Rh×w×C, where h = H/4, w = H/4.
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Conv k3s1 indicates that the convolutional kernel size is 3 and stride is set to 1.

Then, Ids_vis is input to the local illumination perception module to extract the illu-
mination perception matrix Willum and generate the infrared and visible weight matrix
Winf, Wvis, which is expressed as

Willum, Winf, Wvis = FLIP(Ids_vis) (1)

where FLIP denotes the local illumination perception module. This module is trained by
calculating the error between the illumination perception matrix and the illumination label.
The amount of information input from infrared and visible into the adaptive fusion module
is determined by the weight matrix Winf, Wvis. Moreover, Ids_inf, Ids_vis are used to estimate
the relative offset shiftx, shifty of the two, which is expressed as

shiftx, shifty = Falign(Ids_inf, Ids_vis) (2)
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where Falign represents the offset estimation module. Using shiftx, shifty, and affine trans-
formations, Ivis is converted into I′vis aligned to Iinf [35]. Input Ivis_inf ∈ RH×W×2C of the
adaptive fusion module is represented as

Ivis_inf = concat
(
WinfIinf, WvisI′vis

)
(3)

Finally, in the adaptive fusion module, two convolutional layers with a kernel size of
3 × 3 and stride of 1 × 1 are set. These two convolutional layers can learn fusion rules that
are beneficial to object detection network through training.

2.2. Local Illumination Perception Module

The information from infrared and visible images can complement each other since
they show different visual characteristics. It is important to determine the information
weights of infrared and visible. Some research works use illumination conditions to
determine the weights of infrared and visible [25,27,28], but their illumination perception
methods ignore the complexity of the scene. Therefore, we designed a local illumination
perception module with more accurate area and illumination labels.

2.2.1. Local Illumination Perception

The illumination conditions of each area in the image are different. To accurately
perceive the illumination of each area in the image, the image is divided into grid cells.
Therefore, the image I could be expressed as

I =

A11 · · · A1n
... Aij

...
An1 · · · Ann

 (4)

where A11, . . . Aij, . . . , Ann represent the areas of the image. It is equally divided into n
parts in the horizontal and vertical directions. Then, the illumination perception matrix
Willum is expressed by

Willum =

w11 · · · w1n
... wij

...
wn1 · · · wnn

 (5)

where w11, . . . wij, . . . , wnn correspond to the illumination perception values of areas A11, . . .
Aij, . . . , Ann, respectively.

Details of the local illumination perception module are shown in Figure 3. Differing
from object detection, illumination perception prefers color intensity to texture, semantics,
and scale. Since visible images effectively reflect the color intensity of each pixel, downsam-
pled visible image Ids_vis is utilized as the input of the illumination perception. The input
three-channel image is converted into a high-dimensional feature map through convolution.
Then, this feature map enters two branches: the perception branch and adjustment branch.
The perception part consists of four convolutional layers, one maxpooling layer, and one
adaptive average pooling layer. After extracting features, the size of the input feature map
is compressed to 16 × 16 by adaptive averaging pooling. Next, the illumination perception
values for each region are obtained by a convolutional layer with a kernel size of 4 × 4
and stride of 4 × 4. The adjustment branch is similar to the perception branch except
that the last two layers pass through the sigmoid activation function. The adjustment
branch outputs an independent prediction matrix W0 for the current scene. Under good
illumination conditions, appropriate infrared information is still useful for judgment. Using
light perception alone to determine the weights of two modalities is too extreme. Therefore,
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at the end of the module, we construct an adjustment function to generate infrared and
visible weights. The adjustment function is as follows:

Ŵd =

(
Wd −Wn

2

)
·(γ·W0 + β) +

1
2

(6)

where Wd and Wn represent the tendency of the illumination branch to judge the scene in
the daytime and at night, respectively, and γ,β are two learning parameters initialized with
0 and 1. Wvis = Ŵd and Winf = 1− Ŵd are set as the weights for visible and infrared. The
W0 in the adjustment function means that the illumination perception value and visible
weight no longer have a simple linear relationship, and it prevents the weight imbalance of
infrared and visible under extreme illumination conditions. Moreover, it is obtained from
multi-layer convolution prediction, which can more accurately adjust the visible weights of
different scenes than the learnable parameters. The images of two modalities are input into
the adaptive fusion module based on this weight.
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2.2.2. Illumination Label Design

The existing methods regard illumination perception as a binary classification problem,
distinguishing illumination conditions as day and night. However, the binary classification
cannot accurately describe the complex illumination conditions in the real scene. In this
paper, the illumination is defined as a specific value, which is calculated from the RGB
values of all pixels in an area. The local illumination perception module is supervised by
the error between the prediction and the design value of each area. Illumination perception
is regarded as a regression problem to eliminate this incompleteness.

During label design, the image is divided into grid cells by default. Specifically, RGB
brightness values from 0 to 255 are divided into N intervals. Then, the RGB values for all
pixel points in the current area are counted. These statistics in the same interval are added.
Next, we find the interval with the highest frequency, and if the interval is the k-th interval,
the illumination value of this area is expressed as wlabel = k/N. Figure 4 shows the results
of the division, the corresponding illumination values for each area, and the histogram
statistics for one area. The illumination error is defined as

Li =
1

N2 ‖Willum −Wlabel ‖ 2 (7)

where Wlabel represents the label matrix corresponding to the entire image. Willum repre-
sents the illumination perception matrix.
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Figure 4. (a) Original image. (b) The original image is divided into grid cells, and the sample image
is divided into 16 grid cells. (c) The design value of the illumination condition in each area of the
image is shown, where the value 1 represents the strongest and the value 0 represents the weakest.
(d) The histogram of the pixels in the third block of the second row of the partition, where the RGB
values are divided into 32 intervals for statistics.

2.3. Offset Estimation Module

To capture the spatial offset caused by the process of data acquisition, we design an end-
to-end offset estimation module. Figure 5 describes the architecture of the offset estimation
module. First, Ids_inf and Ids_vis are spliced on the channel dimension. Afterwards, the
infrared and visible feature point sets Xinf, Xvis could be obtained. The collection of these
two feature point sets can be represented as

Xinf ⊕ Xvis = flatten(Φ(Ids_inf ⊕ Ids_vis)) (8)

where Φ is the feature extraction network. We consider image pair Ids_inf, Ids_vis as inputs to
the network. The output feature map is expanded by a flatten operation to form the feature
point set X. Symbol represents channel dimension stitching. The bottleneck structure [36]
shown in Figure 6 is utilized to extract features. More critical features can be extracted by
mapping the input to high-dimensional space. The bottleneck structure can reduce the
computational complexity, and the skip connection can prevent the gradient disappearance.
Finally, the shifts sx, sy are estimated by two neurons in the linear layer.

The resulting offset is the relative spatial offset between the visible and the infrared
images. Therefore, the affine matrix θ is expressed as

θ =

(
1 0 sx
0 1 sy

)
(9)
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This matrix means that the image is shifted sx in the X axis and sy in the Y axis. Then,
each pixel offset matrix is generated from the affine matrix. For the coordinates x, y of each
pixel, the new coordinates x′, y′ are formed after the following transformation:

(
x′

y′

)
=

(
1 0 sx
0 1 sy

)x
y
1

 (10)

For pixel values of non-integer coordinate points, bilinear interpolation is required
to extract pixel values. The calculation formula of the gray value calculated by bilinear
interpolation is as follows:

Vc
i =

H

∑
n

W

∑
m

Uc
nmmax

(
0, 1−

∣∣x′ −m
∣∣)max

(
0, 1−

∣∣y′ − n
∣∣) (11)

where Vc
i is the gray value of a point on the c-th channel of the output image, and Uc

nm is
the gray value of the c-th channel point (n, m) of the input image. This formula means that
the gray value of the target point (x′,y′) is determined by the gray value of the four points
around (x, y), and the weight is affected by the distance between the two points. Finally,
the aligned image I′vis can be obtained by transforming the input image according to the
pixel offset matrix and the pixel values of the corresponding coordinate points.
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2.4. Loss Function

The proposed method is a fusion module for object detection tasks. The training
of LAIIFusion is different to that of the other input-level fusion methods. It is trained
jointly with the object detection network and is affected by the loss function of the network.
The adaptive fusion module in LAIIFusion is guided by detection loss and illumination
factors to generate the appropriate image for detection. Therefore, the training loss function
of the whole visible–infrared object detection framework consists of at least three parts:
illumination perception loss Li, classification loss Lcls, and regression loss Lreg. The final
loss function is

L = Li + Lcls + Lreg (12)

The Lcls and Lreg settings are provided by the selected object detection network.

3. Experiment and Analysis
3.1. Dataset Introduction

The DroneVehicle dataset [37] contains 28,439 pairs of visible–infrared images and
all the images are captured by an UAV. This is the first multispectral large-scale vehicle
detection dataset from an UAV perspective. Besides day and night scenes, this dataset also
includes dark night. Dark night data mainly come from parking lots, residential areas, and
road scenes without street lights. Night data come mainly from streets, neighborhoods,
and so on. For this dataset, the affine transformation and region clipping methods have
been employed to ensure that most image pairs are aligned. However, there are still some
image pairs with shifts due to imperfections of the registration algorithm. Figure 7 shows
the visualization of images in the DroneVehicle dataset.
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The KAIST multispectral pedestrian dataset [38] contains 95,328 pairs of visible–
infrared images, which are captured from a vehicle’s top view. The detected objects are
classified into three categories: person, people, and cyclist. Different from other datasets,
the KAIST dataset not only incorporates a large number of night-captured images to in-
crease the richness of the scenes in the dataset, but also considers the complexity of the
illumination conditions in the real scene. Since most of the original KAIST dataset images
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are adjacent frames and have high similarity, some images are removed, and the optimized
dataset consists of 8963 pairs of training images and 2252 pairs of test images. Some images
of the KAIST dataset are shown in Figure 8.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 19 
 

 

illumination conditions in the real scene. Since most of the original KAIST dataset images 
are adjacent frames and have high similarity, some images are removed, and the 
optimized dataset consists of 8963 pairs of training images and 2252 pairs of test images. 
Some images of the KAIST dataset are shown in Figure 8.  

 
Figure 8. Visualization of images in the KAIST dataset. (a) Bright daytime scene. (b) Daytime scene 
with shadows. (c) Bright night scene. (d) Night scene. 

3.2. Implementation Details 
The experiments are conducted in the PyTorch 1.8.0, CUDA 10.2 framework based 

on a single NVIDIA Tesla V100 and the Ubuntu 20.04 system. The proposed module is 
combined with YOLOv5L [10] for joint training and performance demonstration. 
YOLOv5L utilizes the COCO pre-training weight. The model was trained with the SGD 
optimizer, and 16 batch image pairs were input at a time. The displayed results are the 
best in the training stage. Linear preheating and cosine annealing are used to update the 
learning rate during training. When using the KAIST dataset for training, the initial 
learning rate is 0.0032, and the momentum is 0.843, totaling 20 epochs. On the 
DroneVehicle dataset, the initial learning rate is 0.01, the momentum is 0.937, and a total 
of 50 epochs were trained. In addition, all data augmentation methods used in YOLOv5L 
are cancelled because the method in this paper requires processing of the original image. 
In contrast experiments, the related methods do not use data augmentation. The IoU 
threshold for MNS is set to 0.425 during the test. 

3.3. Evaluation Metrics 
For the DroneVehicle dataset, AP is used as the evaluation index. By calculating the 

area enclosed by the precision (P)–recall (R) curve and the x and y axes, the average 
precision can better represent the network’s detection performance. These indicators are 
defined as follows: P = TPTP + FP (13) 

R = TPTP + FN (14) 

Figure 8. Visualization of images in the KAIST dataset. (a) Bright daytime scene. (b) Daytime scene
with shadows. (c) Bright night scene. (d) Night scene.

3.2. Implementation Details

The experiments are conducted in the PyTorch 1.8.0, CUDA 10.2 framework based
on a single NVIDIA Tesla V100 and the Ubuntu 20.04 system. The proposed module is
combined with YOLOv5L [10] for joint training and performance demonstration. YOLOv5L
utilizes the COCO pre-training weight. The model was trained with the SGD optimizer,
and 16 batch image pairs were input at a time. The displayed results are the best in the
training stage. Linear preheating and cosine annealing are used to update the learning
rate during training. When using the KAIST dataset for training, the initial learning rate is
0.0032, and the momentum is 0.843, totaling 20 epochs. On the DroneVehicle dataset, the
initial learning rate is 0.01, the momentum is 0.937, and a total of 50 epochs were trained.
In addition, all data augmentation methods used in YOLOv5L are cancelled because the
method in this paper requires processing of the original image. In contrast experiments,
the related methods do not use data augmentation. The IoU threshold for MNS is set to
0.425 during the test.

3.3. Evaluation Metrics

For the DroneVehicle dataset, AP is used as the evaluation index. By calculating
the area enclosed by the precision (P)–recall (R) curve and the x and y axes, the average
precision can better represent the network’s detection performance. These indicators are
defined as follows:

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)

AP =
∫ 1

0
P(R)dR (15)

where FP indicates the number of negative samples misjudged as positive, TP indicates the
number of positive samples correctly judged, FN indicates the number of positive samples
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misjudged as negative, and TN indicates the number of negative samples correctly judged.
For AP, this paper uses an IoU threshold of 0.5, expressed as AP50.

In the KAIST dataset, MR−2 is utilized to evaluate the effectiveness of network de-
tection. MR−2 is an important indicator in pedestrian detection, which consists of the
false positives per image (FPPI) and miss rate (MR). The false positives per image (FPPI)
represents the average false detection rate for each picture. The miss rate (MR) indicates
the miss rate in the test results. Their formulas are expressed as

MR = 1− R (16)

FPPI =
FP

thenumberofimage
(17)

MR−2 is computed by averaging the MR at nine FPPI rates evenly spaced in log-
space in the range 10−2 to 100 (for curves that end before reaching a given FPPI rate,
the minimum miss rate achieved is used). The smaller the MR−2, the better the model
performance. In pedestrian detection, MR−2 is selected instead of AP because the upper
limit of the acceptable false negative rate for each image is independent of the pedestrian
density [39].

In addition, the frames per second (FPS) is introduced to measure the computational
complexity of the network. FPS is defined as the number of pictures processed per second,
and a higher number on the same platform means lower computational complexity of
the network.

3.4. Analysis of Results

In this section, our experiments are described from three perspectives. First, we
compare LAIIFusion with other existing works on the DroneVehicle and KAIST datasets.
Second, the effect of different RGB interval division N on the local illumination perception
module is analyzed. Then, LAIIFusion is combined with some general object detection
models to demonstrate the generality of the proposed method. Finally, the effectiveness
of local illumination perception, offset estimation, and LAIIFusion is verified through an
ablation study. In these experiments, the best results are shown in bold.

3.4.1. Experiments on DroneVehicle

The proposed LAIIFusion is compared with CMDet and UA-CMDet, which are Dron-
eVehicle dataset benchmarks [37]. We also use an advanced feature-level fusion method,
MBNet [28]. It is also compared with an input-level fusion method, addition. The addition
method means that infrared and visible images are element-wise added with a weight of
0.5. The size of the input image for all networks is 640 px × 512 px.

Table 1 shows the results of the evaluation on the DroneVehicle dataset. The results
show that the proposed LAIIFuison achieves the highest mAP of 66.32%, which is 2.22%
better than the benchmark UA-CMDet. Table 2 shows the quantitative results of each
category on the DroneVehicle dataset. The proposed method achieves the best detection
performance for targets such as buses and freight cars. Figure 9 illustrates the visual
comparison with only infrared images, only visible images, the addition method, and the
proposed LAIIFusion detection results on the DroneVehicle dataset. It can be observed that
the objects are successfully detected by LAIIFusion. Our method can provide more detailed
visible information in the area with sufficient light, and generates more recognizable
features for the target. Especially in the two images taken at night, buildings and road signs
are wrongly identified as vehicles by other methods, and the proposed method can avoid
this problem.



Remote Sens. 2023, 15, 660 12 of 19

Table 1. Comparisons of detection performance on the DroneVehicle dataset.

Fusion Stage Method Modality mAP

Multi-Stage
Fusion

CMDet [37] visible + infrared 62.58
UA-CMDet [37] visible + infrared 64.01

MBNet [28] visible + infrared 62.83

No Fusion
YOLOv5L [10] visible 57.02

YOLOv5L infrared 62.93

Input-Level
Fusion

YOLOv5L + Addition visible + infrared 64.89
YOLOv5L +

LAIIFusion (ours) visible + infrared 66.23

Table 2. Per-class comparisons of detection performance on the DroneVehicle dataset.

Method Car Truck Bus Van Freight Car

UA-CMDet [37] 87.51 60.70 87.08 37.95 19.04
YOLOv5L (visible) [10] 86.83 55.50 83.14 34.42 25.34

YOLOv5L (Infrared) 95.26 51.03 89.39 27.15 51.83
YOLOv5L + Addition 95.19 53.66 88.56 29.74 57.29

YOLOv5L + LAIIFusion
(ours) 94.45 54.38 90.46 33.89 57.91
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Figure 9. Visualization of only infrared images (a), only visible images (b), addition method (c), and
proposed LAIIFusion (d) detection results on DroneVehicle dataset. The missed object is marked
with blue circles. The incorrect object is marked with green circles. Red, yellow, pink and orange
rectangles represent cars, vans, freight cars and bus targets, respectively.
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3.4.2. Experiments on the KAIST Dataset

The KAIST dataset is used to verify the effectiveness of the proposed LAIIFusion in
more scenarios and applications. For performance comparison, some existing feature-level
and decision-level fusion detectors, such as IAF R-CNN [25], CIAN [26], AR-CNN [29],
and MBNet [28], are employed to perform detection experiments. It is also compared with
two input-level fusion methods, addition and DenseFuse [31]. The performance of these
input-level fusion methods is analyzed with the conditions of taking the fused images as
YOLOv5L inputs. The size of the input image for all networks is 640 px × 512 px.

Table 3 shows the validation results on the KAIST dataset, where the platform column
represents the computing platform used for the network test. The results show that the
performance of the proposed method is significantly improved, especially in the night
recognition. The night MR−2 of the proposed method reaches 6.96, which is 0.9 lower
than the second-best detector, MBNet. Although there is still a gap between feature-level
fusion and our input-level fusion method in detection performance, the inference speed
based on YOLOv5L is 21 FPS faster than MBNet. Moreover, the proposed LAIIFusion
realizes real-time detection on the NVIDIA RTX2060 platform. This shows that input-level
fusion has lower computational complexity than feature-level fusion, and our method is
lightweight. Compared with other input-level fusion methods, LAIIFusion brings the most
significant improvement in around-the-clock detection ability, and has the least impact on
the inference efficiency of the original model.

Table 3. Comparisons of detection performance on the KAIST dataset. In the ‘Platform’ column,
NVIDIA GTX 1080 Ti has 11.3 T single-precision floating point operations (FLOPs), while NVIDIAI
RTX 2060 has 6.45 TFLOPs. YOLOv5L (visible) means that only visible images are used for training
and testing.

Fusion Stage Method All Day Night Near Medium Far Platform fps

Multi-Stage
Fusion

IAF R-CNN [25] 15.73 14.55 18.26 0.96 25.54 77.84 - -

CIAN [26] 14.12 14.77 11.13 3.71 19.04 55.82 GTX
1080 Ti 14

AR-CNN [29] 9.34 9.94 8.38 0 16.08 69.00 GTX
1080 Ti 8

MBNet [28] 8.13 8.28 7.86 0 16.07 55.99 RTX 2060 10

No Fusion
YOLOv5L (visible) [10] 15.14 11.24 22.97 1.82 23.05 54.70 RTX 2060 32

YOLOv5L (infrared) 15.94 20.52 7.02 3.11 19.49 37.34 RTX 2060 32

Input-Level
Fusion

YOLOv5L + Addition 13.72 11.90 17.13 0 22.58 63.36 RTX 2060 32
YOLOv5L + DenseFuse [31] 16.09 14.41 19.45 0 24.42 64.36 RTX 2060 18

YOLOv5L + LAIIFusion
(ours) 10.44 12.22 6.96 1.66 16.09 40.95 RTX 2060 31

In order to show the effectiveness of the proposed LAIIFusion, Figure 10 visualizes
only infrared images, only visible images, the addition method, and the detection results
of LAIIFusion on the KAIST dataset. It can be seen that our method has better detection
accuracy and robustness. Although the addition method uses infrared and visible infor-
mation, the supplemented amount of infrared information in areas with poor illumination
conditions is still insufficient, resulting in missed detection and false detection.
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pedestrian target.

3.4.3. Parameter Analysis of RGB Value Interval Division

Selecting the number of RGB value interval divisions N is an important step in il-
lumination label design, and it is also the key to ensuring the accurate training of the
illumination perception (LIP) module. In order to find the most suitable N, the LIP module
is combined with YOLOv5L for joint training and performance demonstration on the Dron-
eVehicle dataset. Table 4 shows that the best performance can be obtained when the RGB
value is divided into 32 intervals. More intervals lead to overfitting of training and decrease
the robustness of the LIP module. When fewer intervals are employed, the performance
begins to decline because the generated illumination label cannot give accurate supervision.

Table 4. Result of varying the number of RGB value interval divisions.

N mAP mAP0.5:0.95

8 64.74 46.83
16 64.55 46.55
32 65.05 48.11
64 64.75 47.44

128 64.60 47.47
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3.4.4. Generality of Proposed Method on KAIST

To illustrate the generality of our fusion method, LAIIFusion is integrated into recent
single modality detectors, including YOLOv3 [9], SSD [6], and YOLOXm [11]. Table 5
demonstrates the detection results of different object detectors with our LAIIFusion. The
results show that LAIIFusion has a positive effect on these single-mode detectors and is
more effective than adding the two-mode data alone. Compared with the results of the
visible modality, LAIIFusion reduces the MR−2 of YOLOv3, SSD, and YOLOXm by 8.8, 4.82,
and 3.74, respectively. In particular, LAIIFusion can greatly improve the night detection
performance of the network. The night MR−2 of YOLOv3 decreases from 29.40 to 7.77, and
the night MR−2 of SSD decreases from 52.90 to 21.75, with a decrease of more than 50%.

Table 5. Results of visible modality, addition, and LAIIFusion on KAIST dataset.

Method All Day Night Near Medium Far

YOLOv3 (visible) [9] 21.77 17.09 29.40 9.32 26.36 56.59
YOLOv3 + addition 18.89 21.85 13.21 0 26.92 62.55

YOLOv3 + LAIIFusion 12.97 15.50 7.77 0 19.66 47.23

SSD (visible) [6] 37.77 30.74 52.90 11.82 41.34 77.32
SSD + addition 35.51 31.10 44.15 4.74 46.53 82.80

SSD + LAIIFusion 32.95 37.86 21.75 8.51 38.99 73.58

YOLOXm (visible) [11] 21.31 14.88 33.97 1.55 28.72 64.46
YOLOXm + addition 22.95 20.96 27.01 0.03 34.82 72.72

YOLOXm + LAIIFusion 17.57 21.91 9.12 1.97 26.67 58.46

3.4.5. Ablation Study

In this part, we conducted experiments to evaluate the effectiveness of our two sub-
modules on the DroneVehicle dataset and KAIST dataset. First, the effect of YOLOv5
under only visible and only infrared modalities are tested. Table 6 shows that the night
detection performance under the visible modality and daytime performance under the
infrared modality are both poor. Then, after adding the adaptive fusion (AF) module, the
around-the-clock detection performance of the network is significantly improved, and the
MR−2 drops to 12.23. The AF module provides more balanced detection performance, and
the daytime MR−2 is 6.11 lower than for the infrared modality. The performance of the
model is further improved by adding the local illumination perception (LIP) module, and
the around-the-clock MR−2 drops to 11.75. However, misalignment leads to noise in the
fused image, which results in a slight decline in daytime detection performance. After
adding the offset estimation (OE) module, a complete LAIIFusion is formed. With the
addition of LAIIFusion, the around-the-clock detection performance of the network further
decreased from 11.75 MR−2 to 10.44 MR−2. Both day and night detection performance are
improved. LAIIFusion in the DroneVehicle dataset is 9.33% higher than only the visible
modality and 3.42% higher than only the infrared modality. The experimental results show
that these modules have good compatibility and generality, and can effectively improve
the performance of the entire network.

Table 6. Ablation results of adaptive fusion (AF), the local illumination perception (LIP), and offset
estimation (OE) module.

Method
DroneVehicle

Dataset KAIST Dataset

mAP All Day Night Near Medium Far

YOLOv5L [10] (visible) 57.02 15.14 11.24 22.97 1.82 23.05 54.70
YOLOv5L (infrared) 62.93 15.94 20.52 7.02 3.11 19.49 37.34

YOLOv5L + AF 64.72 12.23 14.41 7.75 0.03 19.48 53.88
YOLOv5L + AF + LIP 63.71 11.75 14.14 7.33 0.02 17.51 50.66

YOLOv5L + AF + LIP + OE 66.23 10.44 12.22 6.96 1.66 16.09 40.95
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4. Discussion
4.1. Lightweight Technology for Infrared and Visible Object Detection

The object detection model based on infrared and visible has been studied by many
scholars because of its advantages, such as not being limited by the illumination conditions,
good robustness, etc. However, the demand for a large number of computing resources is
the limitation of multimodal models, and there is little research on a multimodal model
with a low computational cost. At present, the lightweight methods for deep neural net-
works mainly include compressing existing models and redesigning lightweight networks.
In this paper, the LAIIFusion module is designed to reduce the cost of multimodal feature
extraction. The experimental results show that the proposed method achieves real-time
multimodal object detection on the NVIDIA RTX 2060 platform. However, the computation
of the original network is still large, and it is difficult to achieve real-time inference on
small embedded devices such as FPGA and PLC. Therefore, it is still necessary to appropri-
ately use pruning [40,41], quantification [42,43], knowledge distillation [44,45], and other
model compression methods to reduce the amount of parameters and calculations of the
current model.

4.2. Adaptability in Different Around-the-Clock Scenarios

The around-the-clock datasets of two different application scenarios were used to
verify the adaptability of LAIIFusion. It can be seen that our method offers the single-
mode target detection network more competitive detection performance. Especially when
YOLOv5L is combined with LAIIFusion, the around-the-clock vehicle detection accuracy
from the UAV perspective is the highest. However, the addition of the proposed method
slightly decreases the detection performance of the original network in the daytime. It is
speculated that there is still much additional infrared information in the daytime scene,
which masks the recognizable visible features. Therefore, it is meaningful to design a more
flexible adjustment function.

5. Conclusions

In this work, a local adaptive illumination-driven input-level fusion for infrared
and visible object detection is proposed. The proposed LAIIFusion could significantly
reduce the computation and achieve satisfactory FPS in visible–infrared detection. In
particular, by dividing the image into multiple grid cells, perceiving the illumination in
each grid cell, and redesigning labels with histograms, more accurate scene illumination
can be extracted. By using this method, a reliable reference for subsequent fusion could
be obtained. Furthermore, an end-to-end offset estimation module is designed for the
infrared–visible object location offset problem. This module could efficiently sense the
offset through multilayer convolution, effectively alleviating the negative impact of the
image on the inter-offset. From the experimental results, it can be seen that the proposed
LAIIFusion can generate fused images that are more conducive to detection. Meanwhile,
several single-modal object detection networks combined with our method were utilized to
conduct performance improvement experiments. The results show that the comprehensive
performance is improved, especially in the night detection scene. Through the comparison
experiments with the feature-level fused detection networks, it could be concluded that the
proposed method only shows less accuracy and obtains faster inference speeds.

At present, the detection performance of input-level fusion methods is still not as high
as that of feature-level fusion methods. The complementary information of infrared and
visible images has not yet been fully explored. The computational cost of this method
is still high for embedded devices. In the next step, we will explore how to effectively
extract complementary information from infrared and visible images and further compress
existing multimodal networks using a lightweight method.
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