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Abstract: Landmines and explosive remnants of war are a significant threat in tens of countries and
other territories, causing the deaths or injuries of thousands of people every year, even long after
military conflicts. Effective technical means of remote detecting, localizing, imaging, and identifying
mines and other buried explosives are still sought and have a great potential utility. This paper
considers a positioning system used as a supporting tool for a handheld ground penetrating radar.
Accurate knowledge of the radar antenna position during terrain scanning is necessary to properly
localize and visualize the shape of buried objects, which helps in their remote classification and
makes demining safer. The positioning system proposed in this paper uses ultrawideband radios
to measure the distances between stationary beacons and mobile units. The measurements are
processed with an extended Kalman filter based on an innovative dynamics model, derived from
the model of a pendulum motion. The results of simulations included in the paper prove that using
the proposed pendulum dynamics model ensures a better accuracy than the accuracy obtainable
with other typically used dynamics models. It is also demonstrated that our positioning system can
estimate the radar antenna position with the accuracy of single centimeters which is required for
appropriate imaging of buried objects with the ground penetrating radars.

Keywords: ground-penetrating radar; GPR; position estimation; extended Kalman filter; EKF;
ultrawideband radio modules; UWB; landmines detection; imaging

1. Introduction

The presence of landmines and explosive remnants of war (ERW), such as artillery
shells, grenades, rockets, bombs, and cluster munition remnants, poses a significant world-
wide threat in the areas of current and past military conflicts. It results in deaths and
injuries of mostly civilian victims even many years after the wars.

According to the yearly reports of the Landmine Monitor [1,2], providing a global
overview of the landmine situation, tens of millions of landmines are still buried under-
ground in at least 60 countries and other territories. Only a single year 2021 brought
7073 casualties of mines/ERW (2492 killed and 4561 injured) in 54 different countries, and
80% of the victims were civilians [1–3].

Considering the significance of the problem, efficient methods of mine clearance are
still tough. Currently, various metal detectors (MD) are often used for this purpose, and
contemporary MDs offer excellent parameters, enabling the detection of even very small
and deeply buried metal objects [4–9]. Paradoxically, this high sensitivity can be also their
drawback leading to many false detections which lengthen the time necessary for demining.
Moreover, MDs do not offer any way to initially identify or classify the detected objects
and every detection must be carefully examined. What is even more problematic and
dangerous, not all contemporary landmines and ERWs contain metal elements, which
limits the usefulness of MDs in mine clearance operations.

Apart from the MDs, radar technology has been successfully employed for scanning
near-underground surfaces in search of mines, improvised explosive devices (IED), and
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other explosive remnants of war [6–8,10–14]. Ground penetrating radar (GPR) is a general
term used with respect to techniques using radio waves, typically in a frequency range from
several MHz to several GHz, to acquire information about objects buried underground
or hidden under/behind any other concealing obstacles, surfaces, etc. [3,15–21]. These
techniques enable non-invasive and non-destructive remote detecting, locating, imaging,
and identifying geological structures, cavities, buried objects, and underground man-made
infrastructures, which do not have to contain metal parts. The mentioned features make
GPRs a very useful tool for demining. They can be used for this purpose alone [12,17,22–24]
or integrated with MDs [12,25–30].

In military applications, GPRs can be installed on large armored manned vehicles
with enhanced immunity to nearby explosions [31–35]. For increased safety of the crew, the
radar antennas are usually attached to the end of long arms in front of the vehicle. A good
alternative is mounting GPRs on remotely controlled unmanned wheeled vehicles [36] or
tracked vehicles [30,35,37,38], which eliminates the risk for the crew, and reduces the costs of
the purchase and the exploitation of such systems. The GPRs on vehicle platforms, however,
have limited utility in difficult terrain: mountainous areas, forests, dumps, urban surfaces
covered with debris, or interiors of buildings, where landmines and other explosives can
be typically found. A good solution applicable in such areas is a handheld version of
the ground penetrating radar (HH-GPR) [39–42]. The problem of estimating the antenna
position of such type of radar is addressed in this paper.

The GPR operation requires emitting electromagnetic energy in the direction of the
ground. The transmitted radio waves penetrate near-surface layers of the soil and encounter
on their way various objects and layers of different permittivity ε and conductivity σ, which
results in reflecting and scattering back a portion of the transmitted energy. The echo
signals are received, collected, and processed to detect and create images of buried objects.

Most contemporary GPRs are pulse radars [15,16,22,24,43,44], transmitting repeatable,
very short, high-amplitude pulses and receiving strongly attenuated echo signals reflected
or scattered back from layers’ boundaries and buried objects [3,45,46] as shown in Figure 1.

Figure 1. General idea of GPR operation.

Time delays of subsequent peaks in the received echo signals are proportional to the
depth of the detected objects or layers of different permittivity. Collecting and joint process-
ing multiple echo signals, so-called echograms or radargrams, for a GPR moving along a
predefined scanning path enables locating and imaging those objects and layers [3,15,16].

Three types of visual presentations of GPR radargrams are used in practice [3,14,16,21].
A single echogram was obtained for only one GPR antenna position with coordinates (i, j)
is a one-dimensional signal representation, called an A-scan (Figure 2a). Time delays of the
signal peaks in the A-scan are usually converted into respective depths and the Z-axis is
scaled in the distance units [21,23,39,46,47].
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Figure 2. Types of GPR radargrams’ visual presentations: (a) A-scan; (b) B-scan; (c) C-scan.

An analysis of GPR data is typically based on a two-dimensional signal representation,
called a B-scan, which is a dataset created from many A-scans acquired for various antenna
locations along a usually linear scanning path, as shown in Figure 2b. It represents a radar
image of a vertical surface intersecting the scanned terrain volume below the scanning path.
Due to a relatively large GPR antenna beamwidth, the same buried objects are illuminated
many times from different antenna locations and consequently from different distances.
Therefore, the echo signals form hyperbolic structures visible in the B-scans [14,23,39,46,47].
An example of such a structure for a single-point object is shown as a red hyperbole in
Figure 2b.

Collecting A-scans for multiple antenna locations in the nodes of a grid span onto
the OXY surface, one can create another type of GPR signal visual presentation, called a
C-scan (Figure 2c). This is a three-dimensional signal representation, which is very useful
in visualizing, identifying, and classifying buried objects.

The C-scans are often presented as a set of two-dimensional greyscale or color images,
created as horizontal sections through the C-scan volume on various depths [3,21,48]. An
example of such a single image is shown in Figure 3.

Figure 3. Examples of a horizontal section through a C-scan: (a) color image; (b) grayscale image.
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The presented scans were made using a pulse radar produced by IDS GeoRadar
company, containing a DAD K2 control unit and an antenna with a central frequency equal
to 900 MHz. This radar made 850 soundings per second, the duration of the probing pulse
was about 1 ns, and the obtained spatial resolution was about 5 cm.

Knowledge of accurate positions of a GPR antenna moving along a scanning path
is necessary to properly assemble all the acquired radargrams and create high-quality
GPR B-scans or C-scans. Several scientific papers [44,49] and patents [50] suggest that
the GPR antenna positioning accuracy should be better than one eight of a radar signal
wavelength [51]. As typical GPRs work at a frequency range between 400 MHz and 4 GHz
(wavelengths from 7.5 to 75 cm) [49,51], the antenna positioning accuracy should be of the
order of single centimeters which requires using very high-accuracy navigation systems.

Typically, the navigation devices or systems used for GPR antenna positioning are
Global Navigation Satellite Systems (GNSS) receivers [50,52], often with real-time kine-
matic (RTK) corrections, inertial navigation systems [42,52], wheel odometers [50], visual
navigation systems [53], laser scanners [49] or integrated systems combining several of the
mentioned devices [42,50,52].

As most of the listed above devices or systems are not adequate for HH-GPRs, due
to their large size, weight, specific installation requirements, vulnerability to jamming or
signal shadowing, and too low accuracy, the authors of this paper proposed a system based
on several ultrawideband (UWB) radio modules. This concept was first described in an
authors’ conference paper [54], where physical models of a mobile unit and UWB beacons
were presented. The mentioned paper also contained a description of an autocalibration
procedure, used for self-locating the UWB beacons for quickly establishing a frame of
reference before the scanning process, and presented an initial assessment of the system’s
accuracy which in the scanning zone reaches desired level of 2–3 cm.

In another authors’ conference paper [41], it was claimed and demonstrated that the
accuracy of the UWB positioning system can be further improved with a properly chosen
estimation algorithm. In that paper, using an extended Kalman filter (EKF) based on a
GPR antenna motion model, derived from the mathematical pendulum motion model,
was proposed. The mentioned paper, however, contained a proof of concept rather than a
complete and applicable positioning solution, as the proposed pendulum-based dynamics
model used in the EKF was oversimplified to present the main idea only. It assumed that
the attachment point of the “pendulum”, which is the position of a GPR operator’s arm, is
initially known and that the angle of orientation of the main axis of the scanning section
always equals zero degrees. These assumptions can hardly be met in practice. Moreover,
the mentioned conference paper contained only a sketch of the system’s model and very
limited results of its simulative testing.

This paper can be considered a significantly extended version of the above-mentioned
conference paper. It presents an elaborated, practically applicable version of the GPR
antenna positioning system using UWB radio modules and includes a complete description
of its extended mathematical model and detailed results of its simulative testing. The main
novelty of this paper includes:

1. Elaboration and detailed presentation of an advanced and practically applicable
dynamics and observation model of the UWB-based GPR antenna positioning system,
with relinquished simplifying assumptions of the model presented in [41];

2. Elaboration and detailed presentation of the estimation algorithm used in the pro-
posed GPR antenna positioning system;

3. Presentation of new and detailed results of simulative tests of the positioning system
for various realistic system configurations.

This paper is organized as follows. A general concept of the ground penetrating radar,
types of GPR data visualizations, accuracy requirements for GPR antenna positioning,
technologies used for GPR positioning, previous authors’ works in this field, and a discus-
sion of the novelty of this paper are presented in Section 1. The system’s description, its
mathematical model, and the estimation algorithm elaborated by the authors are presented
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in Section 2. The methodology and the results of simulative testing of the GPR antenna
positioning system are presented in Sections 3 and 4 contain a discussion.

2. Materials and Methods
2.1. Scanning Profiles

As has already been mentioned, creating B-scans requires moving a GPR antenna
over the ground, ideally along a linear scanning path (profile) with constant velocity, to
collect linearly arranged and uniformly separated radargrams. Creating C-scans requires
repeating such scanning (profiling) for many equidistant lines in one direction, as shown
in Figure 4a, or bi-directionally, as shown in Figure 4b, where the antenna position is
marked as a letter A [7,15,16]. In multichannel GPRs, with several equidistant antennas, the
profiling can be realized quicker, unidirectionally (like in Figure 4a) for several scanning
paths at a time.

Figure 4. Ideal GPR scanning profiles: (a) unidirectional; (b) bidirectional.

Although in favorable conditions the profiling shown in Figure 4 can be at least
approximately realized with GPRs installed on vehicles (carefully driven or remotely
controlled, in non-demanding terrain and with the use of an accurate supporting navigation
system), this can hardly be achieved with HH-GPRs. The elements of the scanning path, in
this case, are shown in Figure 5, where the letters A and S represent the positions of the
antenna and the sapper.

2.2. UWB Positioning System

The structure of the HH-GPR antenna positioning system proposed in this paper
is shown in Figure 6. It is composed of four stationary modules M1 ÷M4 serving as
radio beacons and two mobile modules MA and MS. The MA module is installed over the
GPR antenna and the MS module over the sapper’s shoulder. All the modules contain
UWB transceivers. Distance measurements realized by these transceivers are collected and
processed using estimation algorithms described in the further part of the paper.
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Figure 5. Scanning profiles typical for HH-GPR: (a) unidirectional; (b) bidirectional.

Figure 6. UWB positioning system for HH-GPR antenna.

The following variables are used in Figure 6:

dAj—distance between a j-th beacon and the antenna module MA,
dSj—distance between a j-th beacon and the sapper module MS,
xj, yj—coordinates of a j-th beacon position,
xA, yA—coordinates of the MA module position,
xS, yS—coordinates of the MS module position,
l—length of the HH-GPR handle (horizontal distance between MS and MA),
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θ—angle between the horizontal projection of the GPR antenna handle and the central axis
of the scanning section.

We assumed that the UWB radios used in our system are PulsON P440 modules from
TDSR [55]. They use the two-way time-of-flight (TW-TOF) method for ranging and offer an
operating range between 300 and 1100 m and a ranging accuracy of about 2 cm in line of
sight (LOS) conditions. Such parameters give the potential to build a positioning system
with the desired centimeter-level accuracy, required in the considered application of the
HH-GPR antenna positioning.

The placement of beacons outside a potentially hazardous area, as shown in Figure 6,
is only one of the possible options, suggested for quick and easy deployment of the system
in terrain. Other beacons’ locations are also possible, and their relative positions with
respect to the mobile units MA and MS influence the accuracy of the UWB positioning
system, which will be discussed in detail in the Results section of the paper.

2.3. Mathematical Model

As can be seen in Figure 5, the scanning profiles are composed of fragments that
resemble arcs rather than straight sections. Moreover, the velocity of the HH-GPR antenna
is more changeable than in GPRs installed on vehicle platforms, as typically an operator
(sapper) performs a swinging motion, initially accelerating and finally decelerating the
antenna. Therefore, the collected radargrams are not linearly arranged nor uniformly sepa-
rated. Nevertheless, the acquired A-scans can be used to create two- or three-dimensional
GPR visualizations of buried objects provided that the antenna positions are known for all
the collected radargrams [3,15,16].

A single arc belonging to the scanning profile is shown in Figure 7. If we consider
the changeable angular velocity of the antenna motion (initially accelerating and finally
decelerating), such a trajectory resembles the motion of a mathematical pendulum [56], and
can be described by the following formula:

d2θ

dt2 +
a
l

sin θ = 0, (1)

where:
θ—angle between the horizontal projection of the GPR antenna handle and the central

axis of the scanning section,
a—acceleration forcing the HH-GPR antenna (MA module) motion,
l—length of the HH-GPR handle (horizontal distance between MS and MA).

Figure 7. Part of HH-GPR antenna trajectory (a single arc of the scanning profile).
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The acceleration a is analogous to the gravity acceleration g in the mathematical pen-
dulum motion model. Contrary to g, which can be considered a constant, the acceleration a
is more changeable and to large extent depends on the operator’s strength, fatigue, style of
HH-GPR operation, etc., thus we treat it as an additional variable to be estimated and we
model it as a Wiener stochastic process [57–59]. Considering the geometrical relationships
shown in Figure 7, the equations describing the antenna and the sapper’s arm motion can
be formulated as follows: 

.
xA = ωl cos γ = ω(yA − yS).
yA = −ωl sin γ = −ω(xA − xS).
xS = uxS.
yS = uyS.
θ = ω
.

ω = d2θ
dt2 = − a

l sin θ
.
a = ua

, (2)

where:

xA, yA—coordinates of the HH-GPR antenna (MA module) position,
xS, yS —coordinates of the sapper’s arm (MS module) position,
uxS , uyS —Gaussian white noises representing random components of the sapper’s arm
(MS module) motion,
l—length of the HH-GPR handle (horizontal distance between MS and MA),
θ—angle between the horizontal projection of the GPR antenna handle and the central axis
of the scanning section,
γ—angle between the horizontal projection of the GPR antenna handle and the OY axis of
the frame of reference,
ω—angular velocity of the HH-GPR antenna (MA module) motion,
a—acceleration forcing the HH-GPR antenna (MA module) motion,
ua—Gaussian white noise representing random changes of a.

Rewriting Equation (2) to fit it into the standard form of a nonlinear continuous
dynamics model [60–63]:

.
x(t) = f[x(t)] + G(t)u(t), (3)

one obtains the following detailed version of this model, which has been further used in
our estimation algorithm:

.
xA.
yA.
xS.
yS.
θ
.

ω
.
a


︸ ︷︷ ︸

.
x(t)

==



ω(yA − yS)
−ω(xA − xS)

0
0
ω

− a
l sin θ

0


︸ ︷︷ ︸

f[x(t)]

+



0 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 1


︸ ︷︷ ︸

G(t)

uxS

uyS

ua


︸ ︷︷ ︸

u(t)

. (4)

The nonlinear observation model in the following standard form [60–62]:

z(k) = h[x(k)] + v(k), (5)

has been formulated assuming that at every step k the UWB positioning system realizes
four distance measurements between a j-th beacon and the antenna module MA:

dAj(k) =
√(

xA(k)− xj
)2

+
(
yA(k)− yj

)2
+ vAj(k), (6)
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and four distance measurements between a j-th beacon and the sapper module MS:

dSj(k) =
√(

xS(k)− xj
)2

+
(
yS(k)− yj

)2
+ h2 + vSj(k), (7)

where:

dAj—distance between a j-th beacon and the antenna module MA,
dSj—distance between a j-th beacon and the sapper module MS,
xj, yj—coordinates of a j-th beacon position,
xA, yA—coordinates of the MA module position,
xS, yS—coordinates of the MS module position,
h—sapper’s arm height,
vAj, vSj—distance measuring errors for MA and MS modules.

A detailed version of the observation model, which has been further used in our
estimation algorithm, is as follows:



dA1(k)
dA2(k)
dA3(k)
dA4(k)
dS1(k)
dS2(k)
dS3(k)
dS4(k)


︸ ︷︷ ︸

z(k)

=



√
(xA(k)− x1)

2 + (yA(k)− y1)
2√

(xA(k)− x2)
2 + (yA(k)− y2)

2√
(xA(k)− x3)

2 + (yA(k)− y3)
2√

(xA(k)− x4)
2 + (yA(k)− y4)

2√
(xS(k)− x1)

2 + (yS(k)− y1)
2 + h2√

(xS(k)− x2)
2 + (yS(k)− y2)

2 + h2√
(xS(k)− x3)

2 + (yS(k)− y3)
2 + h2√

(xS(k)− x4)
2 + (yS(k)− y4)

2 + h2


︸ ︷︷ ︸

h[x(k)]

+



vA1(k)
vA2(k)
vA3(k)
vA4(k)
vS1(k)
vS2(k)
vS3(k)
vS4(k)


︸ ︷︷ ︸

v(k)

. (8)

As the antenna module MA is kept close to the soil during scanning, and the differences
between slant distances dAj and their horizontal projections are very small, we assumed
that their altitude over the ground can be omitted in the observation model. On the other
hand, the MS module is placed over the ground on the sapper’s arm, and its altitude h is
non-negligible. In our model, we assumed that it is constant, as its changes in the order of
centimeters during the system’s operation can be neglected for typical distances from the
UWB beacons, which are in the order of tens of meters. In a real system the altitude h can
be a settable constant, adjusted before using the system, based on the sapper’s height.

2.4. Estimation Algorithm

An extended Kalman filter for HH-GPR antenna position estimation was designed
based on the previously described dynamics and observation models and its flowchart is
shown in Figure 8.

After initialization of the EKF at step k = 0 or after closing each subsequent filter’s
loop at steps k > 0, the filter alternately performs prediction and correction steps. The
prediction step requires previous calculations of the fundamental matrix F, the transition
matrix Φ, and the covariance matrix of disturbances Q at every step k. The method of
calculating the F matrix (more precisely it is Fk−1 but to shorten the notation the index k− 1
will be omitted in further equations) is explained in Appendix A.
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Figure 8. Flowchart of the Extended Kalman Filter used for HH-GPR antenna position estimation.

Using the calculated F matrix and the G matrix from the equation (4), Φk,k−1 and Qk−1
matrices are obtained as follows [60–62]:

Φk,k−1 = eF∆t ≈ I + F∆t +
(F∆t)2

2!
(9)

Qk−1 ≈ Qc1∆t +
(
FQc1 + Qc1FT) (∆t)2

2 +
[
F2Qc1 + 2FQc1FT + Qc1

(
FT)2

]
(∆t)3

6

+
[
F3Qc1 + 3F2Qc1FT + 3FQc1

(
FT)2

+ Qc1
(
FT)3

]
(∆t)4

24 ,
(10)

where:
Qc1 = GQcGT, (11)

and ∆t is a period between two successive time steps k− 1 and k.
The Qc matrix from Equation (11) represents the covariance matrix of continuous distur-

bances which is a 3-by-3 diagonal matrix containing power spectral densities SxS , SyS and Sa
of the noises uxS , uyS and ua composing the disturbances vector u(t) in Equation (4):
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Qc = diag
([

SxS , SyS , Sa
])

. (12)

The predicted state vector x̂k|k−1 is calculated in accordance with the following general
equation [64,65]:

x̂k|k−1 =

k∆t∫
(k−1)∆t

f[x(t)]dt, (13)

but in practical calculations we use Heun’s numerical integration method [65–68] which
leads to the following formulae:

x̂k|k−1 = x̂k−1|k−1 +
1
2

[
f
(

x̂k−1|k−1

)
+ f
(

x̂k−1|k−1 + f
(

x̂k−1|k−1

))]
, (14)

where x̂k−1|k−1 is the final state vector estimate from the previous step k− 1.
Apart from the predicted state vector x̂k|k−1, the covariance matrix of prediction errors

Pk|k−1 is calculated based on the covariance matrix of filtration errors Pk−1|k−1 from the
previous step k− 1 as follows [60–62]:

Pk|k−1 = Φk,k−1Pk−1|k−1ΦT
k,k−1 + Qk−1, (15)

where we use the mentioned matrices Φ and Q.
The correction step requires previous calculations of the observation matrix H at every

step k, and the method of its calculation is explained in Appendix B. This step involves a
calculation of the Kalman gains matrix Kk, a correction of the predicted state vector x̂k|k−1
based on the current measurement vector zk, which produces the final estimate x̂k|k at
the step k, as well as calculation the covariance matrix of filtration errors Pk|k, and these
operations are realized as follows [60–62]:

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk

)−1
, (16)

x̂k|k = x̂k|k−1 + Kk

(
zk − h

(
x̂k|k−1

))
, (17)

Pk|k = (I−KkHk)Pk|k−1. (18)

The Rk matrix in Equation (16) is the covariance matrix of measurement errors [60,61]
which is formed as an 8-by-8 diagonal matrix, containing the variances of all eight distance
measurements performed between pairs of UWB modules in the positioning system:

Rk = diag
([

σ2
A1, σ2

A2, σ2
A3, σ2

A4, σ2
S1, σ2

S2, σ2
S3, σ2

S4

])
, (19)

where σ2
Aj and σ2

Sj represent variances of distance measurement between a j-th beacon and
the antenna module MA or the sapper module MS.

2.5. Alternative Positioning Algorithms

Apart from the proposed pendulum-model-based EKF, simpler algorithms can also be
used to estimate the HH-GPR antenna position. One possible solution is a non-linear least
squares (NLS) algorithm [57,69,70] which processes a vector z(k) of distance measurements
collected at each step k without using the previously estimated state vector and without
filtration. Such an algorithm does not use any dynamics model either. The NLS requires an
initialization by assigning at least coarse values to the antenna coordinates xA and yA and
subsequently, it improves their estimates iteratively. This algorithm is simple but due to
lack of filtration, its accuracy is not high.

Better estimation results can be obtained by using EKF filters based on nearly-constant-
velocity (CV) or nearly-constant-acceleration (CA) dynamics models [57,71–74], which are
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typically applied in navigation and radiolocation. The CV model (20) assumes a rectilinear
uniform motion, whereas the CA model (21) assumes a uniformly accelerated motion, and,
in both cases, small disturbances of these ideal movements are modeled by the vector u(t):

.
xA.
vx.
yA.
vy


︸ ︷︷ ︸

.
x(t)

==


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

F[x(t)]


xA
vx
yA
vy


︸ ︷︷ ︸

x(t)

+


0 0
1 0
0 0
0 1


︸ ︷︷ ︸

G(t)

[
uvx

uvy

]
︸ ︷︷ ︸

u(t)

, (20)



.
xA.
vx.
ax.
yA.
vy.
ay


︸ ︷︷ ︸

.
x(t)

==



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
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where:

xA, yA—coordinates of antenna position,
vx, vy—components of antenna velocity,
ax, ay—components of antenna acceleration,
uvx , uvy —Gaussian white noises representing random disturbances of CV motion,
uax , uay —Gaussian white noises representing random disturbances of CA motion.

Clearly, the CV and CA models do not fit ideally the actual HH-GPR antenna motion
but nevertheless, they can be used for prediction in EKFs. Such filters are not optimal, but
they are simpler than the EKF presented in Figure 8 because both dynamics models are
linear, and the prediction of the state vector is realized like in a linear Kalman filter [60–62]:

x̂k|k−1 = Φk,k−1x̂k|k. (22)

Moreover, the transition matrix Φ and the covariance matrix of disturbances Q can be
calculated in advance before the filter implementation using the simple formula [62] and
they remain constant during the filters’ operation. Thus, such EKFs do not require in-run
calculation of the Jacobian matrix F and the matrices Φ and Q.

All the mentioned algorithms, NLS and EKFs based on the CV and CA models, have
been implemented by the authors and tested to compare them with the previously described
pendulum-model-based EKF. Further in the paper, the following acronyms will be used for
these algorithms: NLS, EKF-CV, EKF-CA, and EKF-PND.

Although the EKF-CV and the EKF-CA are not optimal, their accuracy can be maxi-
mized by choosing appropriate power spectral densities of disturbances Svx , Svy of uvx , uvy

noises in the CV model or Sax , Say of uax , uay noises in the CA model. Their choice affects
the values of the Q matrices and consequently influences the information quality [75],
notably estimation errors of the filters. The process of choosing filters’ parameters and
minimizing their estimation errors is called “tuning Kalman filter” [76] and it was realized
in the case of the EKF-CV and EKF-CA designed in our research.

3. Results

The described HH-GPR antenna positioning system and the proposed pendulum-
model-based EKF were implemented and simulatively tested in MATLAB® version R2022b.
The simulations included an assessment of the dependence of the system’s accuracy on the
positions of UWB stationary modules M1÷M4 deployed around the area of interest, where
the demining process is going to be performed. The results of these analyses are presented
in Section 3.1. In further experiments, the accuracy of the EKF-PND filter was analyzed for
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chosen scanning sections. This accuracy was also compared with the accuracy of the NLS,
EKF-CV, and EKF-CA algorithms. The results of these tests and accuracy comparisons are
presented in Section 3.2.

3.1. Influence of UWB Beacons’ Locations on System’s Accuracy

Possible locations of the UWB stationary modules M1 ÷M4 are to large extent depen-
dent on the terrain characteristics and the obstacles present around the scanning area. The
sapper usually cannot place it freely when he deploys the system’s elements in a previously
unsearched and potentially hazardous terrain. When approaching a minefield, he usually
knows which part of the terrain is free of explosives and where the search should start.
Thus, the most typical and safe locations for placing the UWB beacons lay in front and
on the sides of the minefield, as shown in Figure 6. Such a system’s geometry is certainly
not optimal from the accuracy point of view, but even under the mentioned limitations,
the actual placement of M1 ÷M4 may significantly influence the positioning accuracy in
various areas of the minefield.

To verify the mentioned dependence of the positioning accuracy on the locations of
the UWB stationary modules, three system configurations with different locations of the
M1 ÷M4 modules were considered. The assumed positions of the modules are given in
Table 1 and are graphically presented in Figure 9.

Table 1. Locations of the UWB stationary modules for different system configurations.

Configuration Number
Coordinates of the UWB Modules

M1 M2 M3 M4

C1 [0,0] [100,0] [−50,30] [150,30]

C2 [30,0] [70,0] [10,30] [90,30]

C3 [40,0] [60,0] [30,30] [70,30]

Figure 9. Locations of the UWB stationary modules for different system configurations.

We assumed that an area of 500 m × 500 m lying in front of the UWB beacons is
divided by a grid with cells of 10 m × 10 m each. For every node of this grid, a set
of ten thousand UWB measurements was generated in MATLAB®, and its position was
estimated using a simple iterative NLS algorithm, without any Kalman filtration. Based on
the parameters of P440 modules, declared by their producer [55], we assumed that UWB
measurement errors have zero-mean Gaussian distribution with a standard deviation of
2 cm. Next, RMS errors (RMSE) for each node were calculated and the obtained results for
the three system’s configurations are shown as colormaps in Figure 10. As the RMSE is
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very large in the vicinity of the UWB modules, the colormap is presented for the area where
the y coordinate is larger or equal to 50 m. In practice, it means that the actual placement
of the UWB beacons should be in the foreground of the minefield, far enough ahead of its
border, to ensure that the positioning accuracy in the planned search zone is high.

Figure 10. RMSE for different system configurations: (a) C1; (b) C2; (c) C3.

As can be seen, the smallest positioning errors are achievable in front of the place,
where the UWB stationary modules M1 ÷M4 are located. The high-accuracy zone is wider
and deeper for a more extended baseline of the positioning system.

Mean and maximal RMSE values for the whole area of 450 m × 500 m and for smaller
areas, limited to the nearest 100 m × 100 m and 50 m x 50 m respectively, in front of the
UWB stationary modules M1 ÷M4 are given in Table 2.

Table 2. Mean and maximal RMSE values for areas of various sizes.

Configuration Number

The Area of Interest

450 m x 500 m 100 m x 100 m 50 m x 50 m

RMSE Values [cm]

Mean Max Mean Max Mean Max

C1 4.0786 11.8357 2.0348 2.4603 1.9048 2.1324

C2 8.9495 15.1545 3.6597 4.9420 3.1985 4.0216

C3 15.5555 28.2914 6.6283 9.1209 5.6234 6.9220

As can be seen, the proposed positioning system can provide a centimeter level
of accuracy in areas large enough for practical demining tasks and for reasonable and
practically realizable systems’ configurations. The high-accuracy zone could certainly be
extended if the UWB stationary modules were more distributed around the area to be
scanned, however for safety reasons it cannot always be achieved.

3.2. Positioning Accuracy

The accuracy of the EKF-PND filter was assessed and compared with the accuracy of
EKF-CV and EKF-CA filters as well as with the accuracy of an NLS algorithm in MATLAB®

for the C1 configuration of the system. The dynamics and observation models given by
Equations (4) and (8) were used to generate the antenna trajectories and the parameters
chosen during the simulations are given in Table 3. The choice of these parameters was
done in such a way that the shape and duration of the resulting antenna trajectory resemble
typical HH-GPR antenna trajectories.
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Table 3. Parameters used in dynamics and observation models during simulations.

Parameter Name Symbol Value Unit

Length of the HH-GPR handle l 1.6 m

Starting angle of the scanning section θ −34.2 ◦

Nominal acceleration a 0.25 m
s2

Standard deviations of all the distance measuring errors σ 0.02 m

x-coordinate of the initial sapper position xS 80 m

y-coordinate of the initial sapper position yS 50 m

Sapper’s arm height h 1.6 m

Period between two successive time steps t 0.1 s

Power spectral density of disturbances uxS SxS 4·10−3 m2

s

Power spectral density of disturbances uyS SyS 4·10−3 m2

s

Power spectral density of disturbances ua Sa 3·10−3 m2

s5

The same standard deviations of all the distance measuring errors σAj = σSj = σ and
power spectral densities SxS , SyS , Sa given in Table 3 were used in the EKF-PND for setting
the values of the R and Q matrices. The EKF-CV and EKF-CA also use σAj = σSj = σ as
given in Table 3, but as their dynamics models are different, their Q matrices required finding
power spectral densities of different noises Svx , Svy or Sax , Say . This was done during the

mentioned tuning process and the obtained values are as follows: Svx = Svy = 4.2·10−3 m2

s3

and Sax = Say = 6.1·10−3 m2

s5 .
Firstly, the results of the antenna position estimation with the EKF-PND and the NLS

algorithm were compared for various orientations of scanning sections and chosen results
of these tests are presented in Figure 11. These experiments confirmed that the EKF-PND
filter works properly and achieves a similar accuracy for various orientations of the central
axis of the scanning section.

Next, a closer inspection of the estimation results was done for all the implemented
algorithms for a chosen orientation of the central axis of the scanning section equal to 45◦.

A comparison of HH-GPR antenna positions estimated with NLS, EKF-CV, EKF-CA,
and EKF-PND is presented in Figure 12. As can be seen, all these algorithms are capable of
properly estimating the antenna position, however, their accuracy is noticeably different
and required further analysis, which will be presented further.

At this step of the simulations, the results of the estimation of other elements of the
state vector x from the dynamics model given by Equation (4) were analyzed and they are
presented in Figures 13–15. The angle θ between the horizontal projection of the antenna
handle and the central axis of the scanning section, estimated with the EKF-PND filter, is
shown in Figure 13. The results of angular velocity estimation are presented in Figure 14.
Figure 15 contains an estimate of the acceleration a forcing the HH-GPR antenna movement.
All these figures contain only results for the EKF-PND, as other algorithms do not estimate
variables such as θ, ω, and a.
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Figure 11. Estimated antenna positions with EKF-PND and NLS, for various orientations of the
central axis of the scanning section: (a) 45◦; (b) 135◦; (c) 225◦; (d) 315◦.

Figure 12. Comparison of antenna positions estimated with NLS, EKF-CV, EKF-CA, and EKF-PND.
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Figure 13. Angle between the horizontal projection of the antenna handle and the central axis of the
scanning section estimated with EKF-PND.

Figure 14. Angular velocity of the antenna motion estimated with EKF-PND.
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Figure 15. Acceleration estimated with EKF-PND.

To better compare the accuracy of estimation with various algorithms, we conducted a
series of ten thousand simulations and calculated average RMS antenna position errors for
the whole scanning sections for each realization of the simulations. The obtained RMSE
values are shown in Figure 16. Single points in various colors are RMS antenna position
errors obtained with NLS, EKF-CV, EKF-CA, and EKF-PND. Although they are changeable
in various simulation runs, they form bands on noticeably different levels.

Figure 16. Comparison of RMS antenna position errors for NLS, EKF-CV, EKF-CA, and EKF-PND.

Based on the above results we created a histogram of RMS antenna position errors for
NLS, EKF-CV, EKF-CA, and EKF-PND and it is presented in Figure 17. From this and the
previous figure, one can conclude that the EKF-PND is more accurate than all other tested
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algorithms and the EKF-CV and EKF-CA perform similarly, but still better than the NLS
algorithm. The EKF-CA is slightly more accurate than the EKF-CV.

Figure 17. Histogram of RMS antenna position errors for NLS, EKF-CV, EKF-CA, and EKF-PND.

A comparison of numerical values of average RMS antenna position errors for all the
realizations and for the NLS, EKF-CV, EKF-CA, and EKF-PND algorithms are given in
Table 4. This table also presents percentage improvements of accuracy for EKF-CV and
EKF-CA vs. NLS and EKF-PND versus all other algorithms. As can be seen, in the chosen
simulation scenario, the EKF-PND provides positioning results about 40% more accurate
than other tested EKFs and about 60% better than NLS.

Table 4. Average RMS antenna position errors for NLS, EKF-CV, EKF-CA, and EKF-PND.

NLS EKF-CV EKF-CA EKF-PND

Mean RMSE [cm] 2.14 1.39 1.32 0.83

Improvement vs. NLS [%] — 35.2 38.3 61.1

Improvement vs. CV [%] — — — 40.0

Improvement vs. CA [%] — — — 36.9

4. Discussion

In this paper, an accurate positioning system dedicated as a supporting tool for a
handheld ground penetrating radar was presented. The system uses ultrawideband radio
technology for accurate distance measurements and processes them to estimate the GPR
antenna position. Various estimation algorithms were used for this purpose, from NLS,
through simple EKFs (EKF-CV and EKF-CA), based on those typically used in radiolocation
and navigation CV and CA dynamics models, to the EKF-PND, based on the proposed by
the authors’ dynamics model derived from the model of a pendulum motion.

The results of simulations included in the paper have demonstrated that the proposed
positioning system can provide a desired centimeter level of accuracy in areas large enough
for practical demining tasks. They also have shown how the actual placement of UWB
beacons influences the system’s accuracy. It occurs that the smallest positioning errors are
achievable in some distance in front of the area where the beacons are located and that
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the high-accuracy positioning zone is wider and deeper for a more extended baseline of
the system.

Further experiments have confirmed that the EKF-PND filter works properly for
various orientations of the central axis of the scanning section and have proved that using
the proposed pendulum dynamics model ensures a better accuracy than the accuracy
obtainable with other typically used dynamics models CV and CV. The simulations have
shown that the EKF-PND provides positioning results about 40% more accurate than other
tested EKFs (EKF-CV and EKF-CA) and about 60% better than NLS.
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Appendix A

Appendix A explains the method applied by the authors for calculating the funda-
mental matrix F, which is necessary to perform each prediction step in the EKF.

The F matrix is a Jacobian of the nonlinear vector-valued function f(x) from the con-
tinuous dynamics model (4). It is obtained by calculating the first-order partial derivatives
of the f(x) function with respect to all the elements of the state vector x [60–62].

The numerical values of its elements are calculated at each processing step k, based on
the state vector x̂k−1|k−1, which is estimated at the previous step k− 1, and therefore the F
matrix at this step can be more specifically written as Fk−1.

A general formula for calculating the Fk−1 matrix is given by (A1) and the equations
(A2)–(A10) explain the way of calculating all its individual non-zero elements.

Fk−1 =

[
∂f(x)

∂x

]∣∣∣∣
x=x̂k−1|k−1
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(
∂ f1

∂ω
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The final shape of the fundamental matrix Fk−1 can be obtained by placing all its
individual elements given by the Equations (A2)–(A10) at appropriate positions in (A1)
and it is given below as Equation (A11).

Fk−1=



0 ω̂k−1|k−1 0 −ω̂k−1|k−1 0 ŷAk−1|k−1
− ŷSk−1|k−1

0
−ω̂k−1|k−1 0 ω̂k−1|k−1 0 0 x̂Sk−1|k−1

− x̂Ak−1|k−1
0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0

0 0 0 0 − âk−1|k−1 cos θ̂k−1|k−1
l 0 − sin θ̂k−1|k−1

l
0 0 0 0 0 0 0


(A11)

Appendix B

Appendix B explains the method applied by the authors for calculating the observation
matrix H, which is necessary to perform each correction step in the EKF.

The H matrix is a Jacobian of the nonlinear vector-valued function h(x) from the
observation model (8). It is obtained by calculating the first-order partial derivatives of the
h(x) function with respect to all the elements of the state vector x [60–62].

The numerical values of its elements are calculated at each processing step k, based on
the predicted state vector x̂k|k−1. Thus, the H matrix at the step k can be more specifically
written as Hk.

A general formula for calculating the Hk matrix is given by (A12) and the equations
(A13)–(A16) explain the way of calculating all its individual non-zero elements.
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ŷSk|k−1
− yj

)2
+ h2

. (A16)

The final shape of the observation matrix Hk, obtained by placing all its individual
elements given by the Equations (A13)–(A16) at appropriate positions in (A12) is given
below as Equation (A17).

Hk =



x̂Ak|k−1
−x1

d̂A1k|k−1

ŷAk|k−1
−y1

d̂A1k−1
0 0 0 0 0

x̂Ak|k−1
−x2

d̂A2k|k−1

ŷAk|k−1
−y2

d̂A2k−1
0 0 0 0 0

x̂Ak|k−1
−x3

d̂A3k|k−1

ŷAk|k−1
−y3

d̂A3k−1
0 0 0 0 0

x̂Ak|k−1
−x4

d̂A4k|k−1

ŷAk|k−1
−y4

d̂A4k−1
0 0 0 0 0

0 0
x̂Sk|k−1

−x1

d̂S1k|k−1

ŷSk|k−1
−y1

d̂S1k|k−1

0 0 0

0 0
x̂Sk|k−1

−x2

d̂S2k|k−1

ŷSk|k−1
−y2

d̂S2k|k−1

0 0 0

0 0
x̂Sk|k−1

−x3

d̂S3k|k−1

ŷSk|k−1
−y3

d̂S3k|k−1

0 0 0

0 0
x̂Sk|k−1

−x4

d̂S4k|k−1

ŷSk|k−1
−y4

d̂S4k|k−1

0 0 0



(A17)
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To keep the notation of Equation (A17) more compact, the following auxiliary variables
were introduced in the denominators of respective fractions:

d̂Ajk|k−1
=

√(
x̂Ak|k−1

− xj

)2
+
(

ŷAk|k−1
− yj

)2
, for j = 1 . . . 4, (A18)

d̂Sjk|k−1
=

√(
x̂Sk|k−1

− xj

)2
+
(

ŷSk|k−1
− yj

)2
+ h2, for j = 1 . . . 4. (A19)
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42. Pasternak, M.; Miluski, W.; Czarnecki, W.; Pietrasiński, J. An optoelectronic-inertial system for handheld GPR positioning. In
Proceedings of the 15th International Radar Symposium (IRS), Gdansk, Poland, 16–18 June 2014. [CrossRef]

43. Zoubir, A.M.; Chant, I.J.; Brown, C.L.; Barkat, B.; Abeynayake, C. Signal processing techniques for landmine detection using
impulse ground penetrating radar. IEEE Sens. J. 2002, 2, 41–51. [CrossRef]

44. Lee, J.S.; Nguyen, C.; Scullion, T. A novel, compact, low-cost, impulse ground-penetrating radar for nondestructive evaluation of
pavements. IEEE Trans. Instrum. Meas. 2004, 53, 1502–1509. [CrossRef]

45. Suksmono, A.B.; Bharata, E.; Lestari, A.A.; Yarovoy, A.G.; Ligthart, L.P. Compressive Stepped-Frequency Continuous-Wave
Ground-Penetrating Radar. IEEE Geosci. Remote Sens. Lett. 2010, 7, 665–669. [CrossRef]

46. Iftimie, N.; Savin, A.; Steigmann, R.; Dobrescu, G.S. Underground Pipeline Identification into a Non-Destructive Case Study
Based on Ground-Penetrating Radar Imaging. Remote Sens. 2021, 13, 3494. [CrossRef]

47. Bigman, D.P.; Day, D.J. Ground penetrating radar inspection of a large concrete spillway: A case-study using SFCW GPR at a
hydroelectric dam. Case Stud. Constr. Mater. 2022, 16, e00975. [CrossRef]

48. Jing, H.; Vladimirova, T. Novel algorithm for landmine detection using C-scan ground penetrating radar signals. In Proceedings
of the Seventh International Conference on Emerging Security Technologies (EST), Canterbury, UK, 6–8 September 2017; pp.
68–73. [CrossRef]

49. Grasmueck, M.; Viggiano, D.A. Integration of Ground-Penetrating Radar and Laser Position Sensors for Real-Time 3-D Data
Fusion. IEEE Trans. Geosci. Remote Sens. 2007, 45, 130–137. [CrossRef]

50. Doerksen, K.; McNaughton, A. Positioning system for ground penetrating radar instruments. U.S. Patent US 2003/0112170 A1,
19 June 2003.

51. Pasternak, M.; Kaczmarek, P. Continuous wave ground penetrating radars: State of the art. In Proceedings of the SPIE, Event: XII
Conference on Reconnaissance and Electronic Warfare Systems, Oltarzew, Poland, 19–21 November 2018; SPIE: Bellingham, WA,
USA, 2019; pp. 1–7. [CrossRef]

http://doi.org/10.3390/s19153390
http://doi.org/10.1117/12.383598
http://doi.org/10.5515/JKIEES.2012.12.1.55
http://doi.org/10.1109/RADAR.2008.4720994
http://doi.org/10.3390/agronomy9100638
http://doi.org/10.1109/TGRS.2009.2039936
https://www.chelton.com/land/explosive-ordnance-detection-systems/amulet-vehicle-mounted-eods/
https://www.chelton.com/land/explosive-ordnance-detection-systems/amulet-vehicle-mounted-eods/
https://www.defensemedianetwork.com/stories/general-dynamics-develops-super-buffalo-to-enhance-counter-ied-operations-part-i-multi-functionality/
https://www.defensemedianetwork.com/stories/general-dynamics-develops-super-buffalo-to-enhance-counter-ied-operations-part-i-multi-functionality/
https://www.exponent.com/experience/ground-penetrating-radar-system,
https://www.militaryaerospace.com/sensors/article/14175811/groundpenetrating-radar-ied-detection
https://www.militaryaerospace.com/sensors/article/14175811/groundpenetrating-radar-ied-detection
https://www.chemring.com/what-we-do/sensors-and-information/ied-detection,
https://www.chemring.com/what-we-do/sensors-and-information/ied-detection,
https://www.australiandefence.com.au/land/sme-proves-radar-equipped-ugv-concept-for-mine-and-ied-detection
https://www.australiandefence.com.au/land/sme-proves-radar-equipped-ugv-concept-for-mine-and-ied-detection
https://www.drdo.gov.in/muntra-m
http://doi.org/10.1117/12.2177812
http://doi.org/10.1109/TGRS.2003.817804
http://doi.org/10.23919/IRS48640.2020.9253877
http://doi.org/10.1109/IRS.2014.6869297
http://doi.org/10.1109/7361.987060
http://doi.org/10.1109/TIM.2004.827308
http://doi.org/10.1109/LGRS.2010.2045340
http://doi.org/10.3390/rs13173494
http://doi.org/10.1016/j.cscm.2022.e00975
http://doi.org/10.1109/EST.2017.8090401
http://doi.org/10.1109/TGRS.2006.882253
http://doi.org/10.1117/12.2524524


Remote Sens. 2023, 15, 741 25 of 25

52. Ferrara, V.; Pietrelli, A.; Chicarella, S.; Pajewski, L. GPR/GPS/IMU system as buried objects locator. Measurement 2018, 114,
534–541. [CrossRef]

53. Barzaghi, R.; Cazzaniga, N.E.; Pagliari, D.; Pinto, L. Vision-Based Georeferencing of GPR in Urban Areas. Sensors 2016, 16, 132.
[CrossRef]

54. Kaniewski, P.; Kraszewski, T.; Pasek, P. UWB-Based Positioning System for Supporting Lightweight Handheld Ground-
Penetrating Radar. In Proceedings of the IEEE International Conference on Microwaves, Antennas, Communications and
Electronic Systems (COMCAS), Tel Aviv, Israel, 4–6 November 2019; pp. 1–4. [CrossRef]

55. TDSR. Data Sheet/User Guide P440 UWB Module; TDSR: Petersburg, TN, USA, 2020.
56. Awrejcewicz, J. Mathematical and Physical Pendulum. In Classical Mechanics. Advances in Mechanics and Mathematics, 2012th

Edition; Springer: New York, NY, USA, 2012; Volume 29. [CrossRef]
57. Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software;

Wiley-Interscience; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001.
58. Balakrishnan, A.V. Introduction to Random Processes in Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1995.
59. Szabados, T. An elementary introduction to the Wiener process and stochastic integrals. In Studia Scientiarum Mathematicarum

Hungarica; Akadémiai Kiadó: Budapest, Hungary, 2010.
60. Brown, R.G.; Hwang, P.Y.C. Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises, 4th ed.; John Wiley &

Sons, Inc.: Hoboken, NJ, USA, 2012.
61. Kaniewski, P.T. Struktury, Modele i Algorytmy w Zintegrowanych Systemach Pozycjonujących i Nawigacyjnych; Wojskowa Akademia
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75. Stawowy, M.; Duer, S.; Paś, J.; Wawrzyński, W. Determining Information Quality in ICT Systems. Energies 2021, 14, 5549.

[CrossRef]
76. Candy, J.V. Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods, 2nd ed.; John Wiley & Sons, Inc.: Hoboken,

NJ, USA, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.measurement.2017.05.014
http://doi.org/10.3390/s16010132
http://doi.org/10.1109/COMCAS44984.2019.8958144
http://doi.org/10.1007/978-1-4614-3740-6_2
http://doi.org/10.1109/TAC.2011.2168129
http://doi.org/10.1109/TSP.2004.823465
http://doi.org/10.1109/CSSS.2012.395
http://doi.org/10.1109/TAES.2003.1261132
http://doi.org/10.3390/s22010347
http://doi.org/10.1109/WiMOB.2012.6379178
http://doi.org/10.3390/en14175549

	Introduction 
	Materials and Methods 
	Scanning Profiles 
	UWB Positioning System 
	Mathematical Model 
	Estimation Algorithm 
	Alternative Positioning Algorithms 

	Results 
	Influence of UWB Beacons’ Locations on System’s Accuracy 
	Positioning Accuracy 

	Discussion 
	Appendix A
	Appendix B
	References

