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Abstract: Knowledge of grassland classification in a timely and accurate manner is essential for
grassland resource management and utilization. Although remote sensing imagery analysis technol-
ogy is widely applied for land cover classification, few studies have systematically compared the
performance of commonly used methods on semi-arid native grasslands in northern China. This
renders the grassland classification work in this region devoid of applicable technical references. In
this study, the central Xilingol (China) was selected as the study area, and the performances of four
widely used machine learning algorithms for mapping semi-arid grassland under pixel-based and
object-based classification methods were compared: random forest (RF), support vector machine
(SVM), k-nearest neighbor (KNN), and naive Bayes (NB). The features were composed of the Landsat
OLI multispectral data, spectral indices, Sentinel SAR C bands, topographic, position (coordinates),
geometric, and grey-level co-occurrence matrix (GLCM) texture variables. The findings demonstrated
that (1) the object-based methods depicted a more realistic land cover distribution and had greater
accuracy than the pixel-based methods; (2) in the pixel-based classification, RF performed the best,
with OA and Kappa values of 96.32% and 0.95, respectively. In object-based classification, RF and
SVM presented no statistically different predictions, with OA and Kappa exceeding 97.5% and 0.97,
respectively, and both performed significantly better than other algorithms. (3) In pixel-based classi-
fication, multispectral bands, spectral indices, and geographic features significantly distinguished
grassland, whereas, in object-based classification, multispectral bands, spectral indices, elevation, and
position features were more prominent. Despite the fact that Sentinel 1 SAR variables were chosen
as an effective variable in object-based classification, they made no significant contribution to the
grassland distinction.

Keywords: remote sensing; grassland classification; machine learning; random forest; support
vector machine

1. Introduction

Grassland occupies approximately one-third of the Earth’s terrestrial surface [1] and
serves an irreplaceable role in livestock farming [2] and ecosystem services such as water
conservation [3], climate regulation [4], and biodiversity protection [5]. In China, nearly 80%
of the grassland is in arid and semi-arid regions, which are extremely sensitive to external
disturbances. About 90% of native grassland in China has been degraded to various extents,
which impedes the sustainable growth of the regional economy [6,7]. Grassland classifica-
tion is preparatory work for further understanding grassland resources [8,9]. Detailed and
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timely knowledge of grassland classification is desperately needed for sustainable planning
and management of grassland resources.

Remote sensing is the most available technical method for carrying out land cover clas-
sification at the macro scale. Particularly, recent advances in spectroscopy have improved
the technical tools for land monitoring based on remote sensing [10]. Numerous studies
emphasized the value of classifying land cover using data from multiple sources, including
optical, microwave, and other auxiliary data [9,11–13]. However, such attempts mainly
focus on integrated land cover classification. For the existing grassland studies, they focus
more on extraction, and few involve further class distinction. According to the application
case of remote sensing in other land-use types, such as forest and cropland, mapping
detailed grassland types is apparently feasible. However, remote sensing classification is a
complex process, and a good classification depends on the coordination of multi-factors,
including data sources, classifier algorithms, classification approaches, etc.

Optical remote sensing (ORS) is frequently the preferred data source for land obser-
vation. Currently, a wide range of ORS data, at various spatial, spectral, and temporal
scale resolutions, from local to global scales, is available for image classification [9,10].
For large-scale land use retrieval, the Landsat and Sentinel series imageries are especially
popular. However, the similarity of spectral features among herbages makes it challenging
to differentiate mixed grassland types using only a simple spectral image. In response,
some studies suggested using hyperspectral remote sensing to obtain information avail-
able for grassland differentiation to the greatest extent in the narrow vegetation-sensitive
band [14–16]. However, the limited observation range and high costs greatly discount the
applicability of hyperspectral remote sensing in open grasslands. Others recommended in-
tegrating the use of multiple variables such as optical, geometry, texture, and environmental
factors to improve the separability between vegetation from various dimensions [8,17–19].
Recent studies have also highlighted the significance of using time series remote sensing
data in grassland classification [20,21]. Apart from the single ORS-based applications,
some studies confirmed that the fusion of optical remote sensing and synthetic aperture
radar (SAR) could significantly improve vegetation differentiation [12,22,23]. However,
uncertainties and challenges of SAR application in low-vegetation areas still exist from soil
moisture and texture interference [24,25].

Selecting an appropriate classifier is crucial for image classification. The classifiers
can be divided into parametric and non-parametric depending on whether or not an
additional assumption for data distribution is required [11]. Due to their simple training
and operation, parametric classifiers such as logistic regression and naive Bayes (NB) are
advantageous for classification issues involving straightforward logical relationships. In
contrast, non-parametric classifiers can fit intricate non-linear relationships, making them
better suited for monitoring complex land cover. Among them, random forests (RF), k-
nearest neighbor (KNN), and support vector machines (SVM) are the most widely used
in land use classification [26–30]. Studies have shown that these algorithms are effective
at classifying grasslands as well. For instance, Zhao et al. [20] confirmed that combining
RF and PROBA-V remote sensing images has great potential for central African grassland
classification. Rapinel et al. [21] found that the SVM outperformed other classifiers for
mapping grassland plant communities using Sentinel-2 time series data. Dusseux et al. [31]
pointed out that the distribution of grassland management practices can be mapped very
accurately (Kappa = 0.82) at a field scale over large agricultural areas using KNN and a
series of satellite images. However, it is worth noting that these algorithms perform better
only under suitable variables and sample conditions.

In addition, the basic analysis unit is an important factor in image classification. It
could be a pixel, a group of neighboring pixels, or the whole image. Generally, the classifi-
cation from remotely sensed imagery can be divided into two image analysis approaches:
pixel based and object based [32]. The pixel-based analysis technique is conducted on a
per-pixel level, using only the spectral information available for that individual pixel. In
contrast, object-based analysis is carried out on a cluster group of pixels, considering the
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spatial properties of each pixel as they relate to each other [33]. Numerous studies have
compared the applicability of these two analysis approaches under different conditions.
For medium- or high-resolution satellite imagery, most claimed that the object-based im-
age analysis technique has more potential than that of the pixel based [34–38]. However,
some claim that, in a particular situation, there is no statistically significant difference
between these two approaches [32,39]. Currently, limited studies have systematically com-
pared the performance of these two approaches with popular machine learning algorithms
for the semi-arid grassland classification in northern China, leaving this field lacking in
methodologies and technical references.

To bridge the knowledge gap mentioned above, this study focused on central Xilingol,
a representative semi-arid grassland of northern China, and carried out the following
studies: (1) compared the performance of both pixel-based and object-based classification
approaches with a selection of frequently used machine learning algorithms: RF, SVM,
KNN, and NB on semi-arid grassland classification; (2) examined the effectiveness of
Landsat OLI multispectral bands, spectral indices, geographic factors, Sentinel SAR C
bands, geometric factors, and texture features for mapping semi-arid grassland.

2. Materials and Methods
2.1. Study Area

Xilingol (43◦26′~45◦52′N, 115◦18′~118◦06′E) is located in the south-central Mongolian
Plateau and is a core region of native grassland in China (Figure 1). The terrain of this area
is higher in the south and lowers in the north, with an average altitude of 1000 m (Figure 1).
The climate belongs to a mid-temperate semi-arid continental climate, with total annual
precipitation of 300 mm and an average annual temperature of 3 ◦C. According to the China
grassland classification system (CGCS) released in the 1980s, the typical steppe is the main
grassland type, and a few meadow steppes are in the eastern region. The dominant species
include Stipa grandis (S. grandis), Stipa krylovii (S. krylovii), Leymus chinensis (L. chinensis),
Artemisia frigida (A. frigida), Caragana microphylla (C. microphylla), and Achnatherum splendens
(A. splendens).

2.2. Classification System and Sample Data

The predominant land types of the study area include grassland, shrubland, cropland,
mining area, building, and waterbody. According to the CGCS, the grassland was further
classified into hilly meadow steppe, hilly steppe, plain steppe, sandy steppe, saline meadow,
and marshy meadow (Table 1). Compared with other classification standards, CGCS focuses
more on integrating natural and social attributes of grassland and defines grassland types
as a unit with the same natural and economic characteristics at a particular time and
space [40–42]. The grassland types involved in this study are defined as follows:

(1) Hilly meadow steppe occurs mainly in the high relief sites of 900~1500 m with rel-
atively moist and fertile soils, and the dominant species include Stipa baicalensis,
Filifolium sibiricum, and Leymus chinensis.

(2) Hilly steppe is mainly formed at elevations between 600 and 1300 m and is dominated
by xerophytic or semi-xeric bunchgrass.

(3) Plain steppe is the most widely distributed grassland type in this area, and occurs
under a semi-arid climate with annual precipitation around 350 mm. The most
common communities are dominated by Stipa grandis, Stipa krylovii, Leymus chinensis,
Cleistogenes squarrosa, and Artemisia frigida.

(4) Sandy steppe has distinctive zonal characteristics and is mainly found in
Hunshandak sandland.

(5) Saline meadow occurs mainly on salinized depression sites, broad valleys, fringes of
lake basins, and river flats within steppe and desert regions. It is primarily composed
of mesic perennial halophytes, such as Achnatherum splendens and Leymus chinensis.

(6) Marshy meadow is primarily composed of hygrophilous herbs, such as Phragmites
australis, and has transitional characteristics between a meadow and a marsh.
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Figure 1. Location of the study area and distribution of the sample points.

A total of 3620 samples across the above-mentioned land covers were collected through
field observation (taking photos and GPS positioning) combined with high-resolution
imagery, Gaofen (2.5 m × 2.5 m), from July to August 2017 (Figure 1). After that, these
samples were randomly divided into training and testing datasets in a ratio of 7:3. The
distribution of samples for each land cover is shown in Table 1.



Remote Sens. 2023, 15, 750 5 of 22

Table 1. Classification system and sample distributions.

Land Covers No. of Samples

Non-vegetation

Waterbody T1 47

Building T2 97

Mining area T3 50

Vegetation

Non-grassland
Cropland T4 59

Shrubland T5 61

Grassland
(CGCS)

Hilly meadow steppe T6 191

Hilly steppe T7 555

Plain steppe T8 826

Sandy steppe T9 870

Saline meadow T10 340

Marshy meadow T11 524

2.3. Remote Sensing Data and Preprocessing
2.3.1. Multispectral Imagery

Multispectral imagery (path/row: 124/29) of the Landsat-8 OLI/TIRS Level-1 product
was downloaded from the Geospatial Data Cloud site, Chinese Academy of Sciences
(http://www.gscloud.cn, accessed on 15 November 2022), and the imaging time was
17 July 2017. The Landsat is the longest-running Earth observation program, and Landsat
8 launched on 11 February 2013. Landsat-8 carries an optical sensor that provides a global
coverage image every 16 days at a spatial resolution of 30 m (bands 1~7, 9) and 15 m
(panchromatic). In this study, the visible light bands 2, 3, and 4, the near-infrared (NIR)
band 5, and the short-wave infrared (SWIR) bands 6 and 7 were selected for training models.
Moreover, three commonly used spectral indices, normalized difference vegetation index
(NDVI) [43], normalized difference built-up index (NDBI) [44], and normalized difference
water index (NDWI) [45], were calculated to enhance the separability between vegetation
and non-vegetation. The formulas are as follows:

NDVI =
NIR− R
NIR + R

(1)

NDBI =
SWIR− NIR
SWIR + NIR

(2)

NDWI =
G− NIR
G + NIR

(3)

where NIR, R, G, and SWIR represent the reflectance of near-infrared, red, green, and
short-wave infrared bands, respectively.

2.3.2. Synthetic Aperture Radar Data

SAR data of the Sentinel-1 SAR Ground Range Detected (GRD) product were down-
loaded from the Google Earth Engine (GEE) platform, and the imaging time was July 2017.
The Sentinel-1 is equipped with twin polar-orbiting satellites and performs all-weather C-
band SAR imaging. The GRD product consists of focused SAR data that have been detected,
multi-looked, and projected to the ground range using an Earth ellipsoid model [46,47].
The GEE provides GRD data in three resolutions (10 m, 25 m, or 40 m), four band combi-
nations, and three instrument modes. Each scene contains either 1 or 2 out of 4 possible
polarization bands, depending on the instrument settings. In this study, except for VV and
VH, the ratio form of these two bands, VV/VH and VH/VV, were also considered. All

http://www.gscloud.cn
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SAR data were resampled to match a 30 m spatial resolution with Landsat imagery using
cubic convolution.

2.3.3. Topographic Data

Topographic factors, including elevation, slope, and aspect of the ASTER Global
Digital Elevation Model (GDEM) were obtained from the NASA Earth data platform
(https://earthdata.nasa.gov, accessed on 15 November 2022). ASTER GDEM is a global-
scale digital elevation model data with 30 m spatial resolution jointly released by NASA
and Japan’s Ministry of Economy, Trade, and Industry (METI) [48]. Compared with
the previous version, version 2 mainly focuses on incorporating newer ASTER data and
improving resolution by replacing the original 9 × 9 with a 5 × 5 window and partially
removing biases and artifacts [48,49]. The data were resampled to 30 m of spatial resolution
using cubic convolution.

2.4. Image Segmentation

Image segmentation is the first step for object-based image analysis. In this study,
the multiresolution segmentation algorithm embedded in eCognition software version 9.0
was utilized. Based on the assumption of color and spatial continuity of individual image
objects, this algorithm generates objects until a threshold representing the maximum object
variation is reached [50]. The threshold parameters mainly consist of “scale”, “shape”,
and “compactness”. Among these, the “scale” value that defines the relative size of image
objects is regarded as the most influential factor on the classification precision of the final
map [32]. Thus, choosing an appropriate “scale” value is the most crucial step in image
segmentation. In addition, the input layers are essential to the segmentation outcome.
In this study, the selection of appropriate input layers and the above-mentioned tunable
parameters was guided by prior knowledge and obtained through trial and error and visual
inspection [8,32,39]. After loop testing various segmentation scales, the scale greater than
50 tended to under-segment the image with discernible mixtures of land cover, whereas the
scale less than 50 tended to over-segment the image with adjacent objects of the same land
cover observed. Moreover, when NDVI is used as the input layer, the differences between
vegetation communities are more evident (Figure 2). Finally, blue, green, red, NIR, and
NDVI were selected as input layers, and the “scale”, “shape”, and “compactness” were
taken as 50, 0.1, and 0.5, respectively.

Figure 2. Image segmentation at different scales and input layers: (a) segmentation at a scale value
of 30 with the multispectral band; (b) segmentation at a scale value of 50 with the multispectral
band; (c) segmentation at a scale value of 30 in combination with the multispectral band and NDVI;
(d) segmentation at scale value of 50 in combination with the multispectral band and NDVI.

2.5. Feature Selection

In this study, a total of 20 layers (features) were chosen as potential classification
features for pixel-based image analysis from the multispectral bands (blue, green, red,
NIR, SWIR1, and SWIR2), spectral indexes (NDVI, NDWI, and NDBI), topographic factors
(elevation, aspect, and slope), position (pixel coordinates), and SAR variables (VH, VV,

https://earthdata.nasa.gov
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VH/VV, and VV/VH). Additionally, three different months of NDVI (April, July, and
September) were employed to increase the separability between vegetation types (Table 2).

Table 2. Image layers used in pixel-based classifications.

Feature Types Image Layers No. of Features

S1 Multispectral band Blue, green, red, NIR, SWIR1, SWIR2 6

S2 Spectral indices NDVI-4, NDVI-7, NDVI-9, NDWI, NDBI 5

S3 Geography Aspect, elevation, slope, X, Y 5

S4 SAR VH, VV, VH/VV, VV/VH 4

Unlike pixels, object features permit contextual relationships between image objects
to be incorporated into object-based image analysis. This means that the features are not
limited to spectral, but can also include texture and geometry. In this study, a total of
158 object features belonging to spectral (mean, standard deviation), geometry, position,
and texture were selected for object-based image analysis (Table 3). The object texture
was analyzed using the gray-level co-occurrence matrix (GLCM) [51] and six commonly
used statistical variables were calculated for each object: mean, homogeneity, dissimilarity,
entropy, contrast, and correlation.

Table 3. Object features used in object-based classifications.

Feature Types Object Features No. of Features

C1

S1 Blue, green, red, NIR, SWIR1, SWIR2

Mean, standard
deviation

12

S2 NDVI-4, NDVI-7, NDVI-9, NDWI, NDBI 10

S3 Aspect, elevation, slope 6

S4 VH, VV, VH/VV, VV/VH 8

C2 Area, width, length, length/width, asymmetry,
density, compactness, roundness Geometry 8

C3 X max, X min, X center, Y max, Y min, Y center Position 6

C4
Blue, green, red, NIR, SWIR1, SWIR2, NDVI-4,

NDVI-7, NDVI-9, NDWI, NDBI, aspect, elevation,
slope, VH, VV, VH/VV, VV/VH

Mean, homogeneity,
dissimilarity, entropy,
contrast, correlation

108

Recursive feature elimination (RFE), a wrapper-type feature selection algorithm, was
applied to filter valuable features for both pixel-based and object-based classification. RFE
operates by employing a base algorithm to identify a subset of features, then eliminating
irrelevant features until only the useful component remains [52].

2.6. Classification Algorithms

RF is currently one of the most popular and widely used supervised classification
algorithms on land use observation [26,27]. It is an extension of the bagging strategy
as it utilizes both bagging and feature randomness to create a collection of uncorrelated
trees [53]. Although RF has the least variability in its prediction accuracy among the
popular machine learning algorithms [54], several tunable hyperparameters, such as the
number of trees (ntree) and the number of features at each split point (mtry), remain to be
considered. Among these, ntree controls the number of trees that stabilize the predicted
error, and mtry determines the correlation between different trees. In addition, the tree
complexity can be adjusted by the node size parameter.

SVMs are a set of supervised learning methods often used to solve land classification
problems [29,30]. The core idea of SVM is to find a hyperplane that can classify data in the
n-dimensional feature space by introducing the concept of the kernel function [55]. That is,
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the SVM aims to create the best line or decision boundary that can separate n-dimensional
space into classes. As for the kernel function, it can either be linear or non-linear, depending
on data complexity. In this study, the radial basis function (RBF), a commonly used non-
linear kernel function, was applied. For the RBF, two tunable hyperparameters: penalty
factor (c) and the kernel parameter (gamma) need to be adjusted. Among these, the
penalty factor controls the trade-off between achieving a low error on the training data
and minimizing the norm of the weights, and the gamma factor controls the distance of
influence of a single training point [56].

KNN is a simple non-parametric supervised learning method that uses proximity to
make classifications or predictions about the grouping of an individual data point [57].
That is, KNN only determines the group to which the data to be classified belongs based
on the group of the nearest one or several samples. For classification problems, a sample
is classified by a plurality vote of its neighbors, with it being assigned to the class most
voted among its k-nearest neighbors. Obviously, the k value is the most critical tuning
hyperparameter for the KNN algorithm. Generally, larger values of k reduce the effect of
the noise on the classification but also make boundaries between classes less distinct [58].

NB is a set of supervised learning algorithms based on applying Bayes’ theorem and
the assumption of independent feature conditions, with a solid theoretical foundation and
robust classification effect [59]. There is no single algorithm for training such classifiers
except for a family of algorithms based on a shared principle. That is, all classifiers assume
that the value of a particular feature is independent of the importance of any other part,
given the class variable. In this study, Gaussian naive Bayes, which supports continuous-
valued features and follows a Gaussian distribution, was applied as a classifier algorithm.
This makes it possible to fit the model by simply computing the mean and standard
deviation of the training data.

Model building and tuning of individual parameters were accomplished through
repeated 5-fold cross-validation based on the training data. All the training procedures for
models were carried out in R, and the involved main algorithm packages included “caret”,
“randomForest”, “e1071”, and “naivebayes”.

2.7. Accuracy Assessment

All classifications were evaluated for accuracy using a confusion matrix [60], which is
a standard format for accuracy evaluation consisting of a matrix with n rows and n columns.
The confusion matrix contains two significant “single value” metrics for understanding
classifier performance: the overall accuracy (OA), which represents the total number of
accurate predictions across all classified classes, and the Kappa statistics, which measures
the agreement between classification and truth values. For a specific category, it can
be measured by the user accuracy (UA), which represents the probability that a value
predicted to be in a certain class is that class, and the producer accuracy (PA), which is
the probability that a value in a given class was classified correctly. In addition, the F1
score, the harmonic mean of the precision and recall, was used to evaluate the classification
accuracy of each class.

McNemar’s test [61] was used to determine whether or not there were prediction
differences between each pair of classifiers in the same classification method and between
the same classifier in two distinct classification methods. The McNemar’s test is a non-
parametric statistical test for paired nominal data, which checks the marginal homogeneity
of two dichotomous variables. The null hypothesis is that there are no significant differences
between selected classifiers. That is, if the calculated probability is lower than the selected
significance level (p < 0.05), the null hypothesis is rejected, and it can be concluded that the
classifiers’ predictions are significantly different from each other.
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3. Results
3.1. Pixel-Based Classifications

Table 4 lists the classification accuracy of the pixel-based classifiers under different
feature combinations. Except for NB, the other three classifiers demonstrated significant
prediction accuracy, with OA and Kappa exceeding 75% and 0.70, respectively, when
only multispectral bands were employed as features. After spectral indices were added,
the accuracy of all classifiers improved, particularly OA and Kappa of NB increased by
9.38% and 1.11. On this basis, accuracy improved further after adding geographic features,
particularly for RF and SVM, with the OA reaching 95.58% and 95.31%, respectively, and
the Kappa reaching 0.9467 and 0.9435. In contrast, adding SAR variables on the same basis
did not improve accuracy significantly, and even KNN accuracy decreased. Although the
classifiers had an acceptable prediction result in the condition of all features, it was not
much different from the performance under the combination of the multispectral bands,
spectral indices, and geographic features.

Table 4. Accuracy assessment for pixel-based classifiers under different feature combinations.

RF SVM KNN NB

OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa

S1 79.76 0.7553 82.98 0.7945 77.09 0.723 64.77 0.5813
S1 + S2 84.27 0.8096 85.92 0.8304 78.01 0.7338 74.15 0.6918

S1 + S2 + S3 95.58 0.9467 95.31 0.9435 80.40 0.7632 86.84 0.8416
S1 + S2 + S4 86.46 0.8365 86.48 0.837 76.63 0.7171 77.55 0.7323

S1 + S2 + S3 + S4 95.40 0.9445 95.77 0.949 79.21 0.7487 87.49 0.8495

The F1-score of each land cover under the five feature combinations is depicted
in Figure 3. RF and SVM performed significantly better than the other two classifiers,
particularly for grassland recognition. Under the combination of multispectral, spectral,
and geographic features, the F1 score of each classifier was comparable to that under all
features. This indicates that the SAR variables did not improve the performance of the
model. In addition, geographic features significantly enhanced the F1 score of each land
cover, especially grassland types. This demonstrates that topography and location played a
crucial role in distinguishing land cover types. In contrast to other land types, SVM and
NB performed poorly in identifying cropland and shrubland.

The relationship between classifier performance and the number of features is illus-
trated in Figure 4. It can be observed that classifiers have distinct feature requirements.
After testing each feature, the best prediction was achieved when only 6 (NDVI-7, NDBI,
NDWI, Elevation, X, and Y) and 15 (S1, S2, Elevation, X, VV, and VH) features were retained
for RF and KNN, respectively. SVM and NB performed better when all features were used
in the modeling process.

Figure 5 compares the classification confusion matrices of pixel-based methods uti-
lizing the optimal features combination (The hyperparameter tuning process is shown in
Appendix A.). RF presented the highest accuracy (OA: 96.32%, Kappa: 0.9556), followed by
SVM (OA: 95.77%, Kappa: 0.949), NB (OA: 87.49%, Kappa: 0.8495), and KNN (OA: 80.86%,
Kappa: 0.7692). In the figure, the orange upper and diagonal lines represent the PA and UA,
respectively. From this, it can be observed that RF had a higher classification accuracy for
each land cover. Except for cropland and shrubland, the PA and UA of other land covers
were over 85%. SVM also performed well, except for cropland, where the UA was 69% and
the rest of the land covers achieved an accuracy of over 80%. In the NB classification, 53%
of cropland was mistakenly labeled as marshy meadow, which made the cropland UA only
47%. Other than these two types, the accuracy for all other land cover types exceeded 75%.
In contrast, KNN returned a lower prediction for most land covers and a greater number of
misclassifications and omissions.
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Figure 3. F1 score of pixel-based classifiers under different feature combinations.

Figure 4. Relationship between the performance of pixel-based classifiers and the number of features
(feature filtered by RFE).
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Figure 5. Confusion matrices for the optimized pixel-based classifications.

3.2. Object-Based Classifications

Table 5 lists the prediction accuracy of object-based classifiers under different feature
combinations. The classifiers returned satisfactory results when only multispectral bands
were used for modeling, particularly for RF and SVM, with OA and Kappa values of 0.9311
and 0.9281, respectively. This suggests that most land cover types can be distinguished using
these spectral bands. After spectral indices were added, the accuracy of KNN and NB was
significantly improved, with OA at 87.13% and 81.71% and Kappa at 0.8445 and 0.7804. The
topographic variables also served to model improvement, particularly for NB, OA, and Kappa,
which increased by 4.5% and 0.054, respectively. After adding a series of features from SAR,
geometry, position, and texture, the performance of RF and SVM did not change much, while
that of KNN and NB continuously increased. This implies that, in this study, excessive features
were against model improvement and would hinder its performance.

Table 5. Accuracy assessment for object-based classifiers under different feature combinations.

RF SVM KNN NB

OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa

S1 94.30 0.9311 94.03 0.9279 85.48 0.8247 77.21 0.7269
S1 + S2 94.85 0.9379 93.84 0.9257 87.13 0.8445 81.71 0.7804

S1 + S2 + S3 96.88 0.9623 96.69 0.9601 88.33 0.8591 86.21 0.8344
C1 97.70 0.9722 97.43 0.9689 88.60 0.8625 88.79 0.8653

C1 + C2 97.43 0.9689 97.24 0.9667 87.50 0.8488 89.43 0.873
C1 + C2 + C3 98.62 0.9833 97.59 0.9754 94.68 0.9378 92.12 0.9091

C1 + C2 + C3 + C4 98.25 0.9789 97.43 0.9689 94.94 0.9389 91.36 0.8958
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Figure 6 shows the F1-score of the object-based classifiers on each land cover. Under
different feature conditions, RF and SVM outperformed the other two algorithms. It can be
clearly seen, in both RF and SVM classifications, that the topographic features significantly
improved the identifying capability of the model for the waterbody, and the position
improved the accuracy of the mining area. Except for the hilly meadow steppe, the F1-score
achieved over 0.9 for other grassland types when using only multispectral bands, indicating
these two classifiers were sensitive to differences between grasslands. For all classifiers,
most land covers presented the highest prediction accuracy when spectral, geometric, and
position features were used.

Figure 6. F1 score of object-based classifiers under different feature combinations.

As shown in Figure 7, selected classifiers have different requirements for features.
RF had the most stable prediction accuracy after using only 10 features, and achieved the
highest accuracy when retaining 32 useful features. SVM stabilized the accuracy after
testing 60 features and performed best when selecting 95 valid features. The robustness
of KNN and NB was inadequate, and the precision fluctuated as the number of features
increased. The models were most accurate when all 158 features were retained for KNN
and 40 features were retained for NB.

Table 6 lists the effective features of object-based classifiers. For RF, the effective
features were multispectral bands, spectral indices, elevation, SAR, position, and texture
statistics, whereas for SVM, some geometric features were chosen in addition to these. It
can be noted that the selected texture features were more from homogeneity, entropy, and
correlation statistics and presented irregularly. Among the selected features in NB, pixel
mean and standard deviation accounted for the vast majority, and there were also some
position and texture features. These indicate that multispectral bands, spectral indices,
elevation, position, and SAR variables served critical roles in training these classifiers.
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Figure 7. Relationship between the performance of object-based classifiers and the number of
variables (feature filtered by RFE).

Table 6. Effective features of object-based classifiers.

Object-Based Algorithms Selected Variables No. of Variables

RF

Mean (S1, S2, elevation, VV, VH), standard deviation (blue,
red, NDVI-7, NDWI, elevation), C3, homogeneity (blue,

green, elevation), entropy (blue, elevation, slope),
correlation (elevation)

32

SVM

Mean (S1, S2, S3, VV, VH), standard deviation (S1, S2,
elevation), width, length, length/width, C3, GLCM mean

(S1, S2), homogeneity (red, green, S2, S3), dissimilarity (S2),
entropy (S1, elevation, S3, VV, VH), contrast (blue, green,

NIR, S2, S3), correlation (red, S2, S3)

95

KNN All 158

NB

Mean (red, NIR, SWIR1, SWIR2, S2, aspect, VV, VH),
standard deviation (SWIR1, SWIR2, NDVI-4, NDVI-7,

Aspect), Xmin, Xmax, Xcenter, GLCM mean (blue, green, red,
NDVI-7, NDWI), homogeneity (red, SWIR1, SWIR2,

NDVI-7, NDVI-9, NDBI, aspect, slope), entropy (SWIR1,
SWIR2, aspect, slope, VV), dissimilarity (NDVI-7, NDVI-9)

40

Figure 8 compares the classification confusion matrices of object-based methods uti-
lizing the optimal feature combinations (The hyperparameter tuning process is shown in
Appendix A.). In general, the differences between the 4 classifications were not much; OA
and Kappa were both higher than 90% and 0.9. The highest accuracy was achieved by RF
(OA: 98.83%, Kappa: 0.9852), followed by SVM (OA: 97.63%, Kappa: 0.9733), KNN (OA:
94.94%, Kappa: 0.9389), and NB (OA: 92.56%, Kappa: 0.9101). Both RF and SVM had a
considerable identification precision for each land cover, with few misclassifications and
omissions. KNN achieved over 89% UA for all categories except shrubland and over 83%
PA for all classes except cropland. NB performed poorly on each land cover classification,
and the misclassification error was 33% and 42% for buildings and shrubland, respectively.
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Figure 8. Confusion matrices for the optimized object-based classifications.

3.3. Comparison of Pixel-Based and Object-Based Classifications

The classification maps from each classifier, both pixel-based and object-based, are
compared in Figure 9. In general, all classifications show a reasonably visual depiction
of land covers in the study area. In pixel-based classifications, RF accurately described
the actual grassland distribution, particularly in extracting sparsely distributed sandy
steppe and hilly meadow steppe in complex terrain areas. It can be clearly seen that
RF performed better in identifying some specific vegetation patches, such as marshy
meadows in the river tidal flats and parks (Figure 9a). Although SVM also depicted a
similar map, it underperformed in the extraction of marshy meadow, and there were
omissions (Figure 9b). Both KNN and Bayes presented a relatively low performance in
depicting some land types, such as hilly steppe and saline meadow, exaggerating their
actual distribution. In addition, affected by the outlier pixel, the “salt-and-pepper noise”
was also evident in these maps (Figure 9c,d). In object-based classifications, RF and SVM
outperformed other classifiers for differentiating complex land covers, especially when
the extracted water bodies, buildings, and mining areas were more consistent with the
actual distributions (Figure 9). RF performed well in mapping marshy meadows and
reflected the reed communities distributed along river banks and urban parks. Although
NB described these land types, it was slightly inferior in identifying the specific boundaries
(Figure 9h). When the same algorithm is compared, both pixel-based and object-based
classifications showed similar patterns for most land covers, especially on the waterbody,
building, mining area, and cropland areas.
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Figure 9. Comparison of pixel-based and object-based classification results: (a) pixel-based RF;
(b) pixel-based SVM; (c) pixel-based KNN; (d) pixel-based NB; (e) object-based RF; (f) object-based
SVM; (g) object-based KNN; (h) object-based NB.

The pixel-based algorithm pairings exhibited a statistically significant difference
(p < 0.05) according to McNemar’s test (Table 7). That is, the predictions of these algorithms
for the study area were significantly different from each other. Most of the non-significant
pairings were for the waterbody, shrubland, and hilly meadow steppe. There was no
real difference between RF and SVM for predicting the waterbody (p = 0.500), cropland
(p = 1.000), shrubland (p = 0.250), sandy steppe (p = 0.092), and saline meadow (p = 0.302),
and no real difference between RF and KNN for predicting the waterbody (p = 0.500), hilly
meadow steppe (p = 0.125), and hilly steppe (p = 0.375). RF and NB had the same predic-
tions for the waterbody (p = 0.500), shrubland (p = 0.063), hilly meadow steppe (p = 0.219),
and hilly steppe (p = 0.375). Apart from cropland, observations for all land covers were
statistically consistent between KNN and NB.

Table 7. McNemar’s test for each of the two classifiers in the pixel-based method.

All T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

RF vs. SVM 0.000 0.500 0.001 0.000 1.000 0.250 0.039 0.021 0.001 0.092 0.302 0.000
RF vs. KNN 0.000 0.500 0.000 0.000 0.000 0.002 0.125 0.375 0.000 0.000 0.000 0.000
RF vs. NB 0.000 0.500 0.000 0.000 0.006 0.063 0.219 0.375 0.000 0.000 0.000 0.000

SVM vs. KNN 0.000 1.000 0.038 0.000 0.000 0.016 0.625 0.001 0.035 0.000 0.000 0.000
SVM vs. NB 0.000 1.000 0.038 0.000 0.006 0.500 0.250 0.001 0.008 0.000 0.000 0.000
KNN vs. NB 0.002 1.000 1.000 0.286 0.000 0.063 1.000 1.000 0.375 1.000 0.388 0.222

McNemar’s test (Table 8) determined that only the prediction of RF and SVM were
statistically the same (p = 0.618) in the object-based pairing algorithms. Selected algorithms
had the same predictions for the waterbody, shrubland, and hilly meadow steppe. This
means these land covers are more prone to be identified. There were no significant differ-
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ences between RF and SVM for predicting the waterbody (p = 1.000), shrubland (p = 0.063),
hilly meadow steppe (p = 0.125), plain steppe (p = 0.089), sandy steppe (p = 0.519), and
marshy meadow (p = 0.066), and no real difference between RF and KNN in the water-
body (p = 1.000), shrubland (p = 1.000), hilly meadow steppe (p = 1.000), and hilly steppe
(p = 0.238). There was a statistical difference in observation of the building and mining area
between RF and NB.

Table 8. McNemar’s test for each of the two classifiers in the object-based method.

All T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

RF vs. SVM 0.618 1.000 0.000 0.000 0.016 0.063 0.125 0.004 0.089 0.519 0.000 0.066
RF vs. KNN 0.000 1.000 0.000 0.038 0.031 0.250 1.000 0.008 0.238 0.001 0.000 0.000
RF vs. NB 0.004 0.500 0.000 0.000 0.500 1.000 0.500 0.063 0.388 0.222 0.710 0.085

SVM vs. KNN 0.000 1.000 1.000 0.004 1.000 0.500 0.250 1.000 0.000 0.000 0.016 0.007
SVM vs. NB 0.002 1.000 0.125 0.675 0.125 0.125 0.625 0.125 0.011 0.101 0.000 0.000
KNN vs. NB 0.000 0.500 0.219 0.029 0.219 0.500 1.000 0.250 0.804 0.000 0.000 0.000

McNemar’s test (Table 9) showed that only the paring classifications of pixel-based
and object-based SVM were statistically consistent (p = 0.318) and the other three algorithms
had significantly different predictions. These algorithms had the same predicting accuracies
for the waterbody, shrubland, and hilly meadow steppe. There was no statistical difference
in the waterbody (p = 1.000), cropland (p = 1.000), shrubland (p = 1.000), hilly meadow
steppe (p = 1.000), and hilly steppe (p = 0.125) between two RF predictions. SVM had the
same prediction on most of the land covers, except for the building and sandy steppe. The
paring KNN had the same predictions on the waterbody (p = 0.500), shrubland (p = 0.065),
and hilly meadow steppe (p = 0.063), and presented different observations on other classes.
There was no real difference between the two NB predictions on the waterbody (p = 1.000),
shrubland (p = 0.219), hilly meadow steppe (p = 0.250), and hilly steppe (p = 0.219).

Table 9. McNemar’s test for the same classifier based on different classification methods.

All T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

RF vs. RF 0.000 1.000 0.000 0.000 1.000 1.000 1.000 0.125 0.000 0.000 0.000 0.000
SVM vs. SVM 0.318 1.000 0.000 0.403 0.070 0.727 0.289 0.629 0.054 0.007 0.424 1.000
KNN vs. KNN 0.000 0.500 0.000 0.000 0.000 0.065 0.063 0.039 0.007 0.000 0.000 0.000
Bayes vs. NB 0.000 1.000 0.000 0.000 0.012 0.219 0.250 0.219 0.003 0.000 0.000 0.000

4. Discussion
4.1. Comparison of Classification Methods for Semi-Arid Grassland

In contrast, object-based classifications presented a more realistic land cover, even
though both pixel-based and object-based methods offered similar land cover depictions
of the study area. According to McNemar’s test, object-based classification outperformed
pixel-based classification even when using the same algorithm, indicating that this tech-
nique is more appropriate for grassland classification tasks. This is consistent with most
previous studies [62–66]. Object-based classification is more closely aligned with the vi-
sual interpretation process than pixel-based classification, allowing classifiers to identify
target objects by combining the use of the objects themselves and contextual information.
Although some studies suggested that the object-based analysis is better suited to high
spatial resolution imagery [38,62,67], this study considers that it is also ideal for classifying
open grassland with coarser resolution imagery. This is because a grassland type perhaps
contains many different communities (or herbages), and pixel-based statistics are easier
to be affected by outliers, thus exaggerating or reducing the potential differences of these
grasslands. While some object characteristics, such as mean and standard deviation, can
avoid this to some extent, RF and SVM are consistently the most widely used algorithms
due to their few tunable hyperparameters and high performance [68]. Numerous studies
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have shown that both algorithms are effective at classifying grasslands [8,20–22]. The
results show that RF had the highest accuracy in the pixel-based classification, while in
the object-based classification, both RF and SVM significantly outperformed the other
two algorithms and were not statistically different from one another. However, RF was
superior in terms of feature selection and model stability, offering significant prediction
under a limited number of variables. This suggests that RF is better suited for semi-arid
area grassland classification tasks. KNN demonstrated high prediction accuracy in both
pixel-based and object-based classifications despite being a straightforward nonparametric
algorithm. However, these algorithms, including NB, are prone to sample imbalance and
are erroneous in their assessments of rare categories. The results show that there was
significant misclassification and omission in the classification of some land covers for
both algorithms.

4.2. Feature Selection for Semi-Arid Grassland Classifications

A growing number of studies have concentrated on using high spatial resolution
and hyperspectral imagery to produce a high-quality map of land cover classification as
remote sensing techniques have advanced. However, most places lack access to these
data sources, particularly in open grassland. Due to this, medium-resolution multispectral
imagery from series such as the Landsat or Sentinel continues to be the primary source
of information for grassland observation in these regions. Meanwhile, the grassland in
northern China is characterized by low-vegetated, complex community structures, all of
which make grassland classification more challenging. Most studies suggested improving
the separability of land covers through the enrichment of classification features [12,19,69].
This study investigated the potential impact of multisource features on the classification
of grasslands. Although selected methods performed different requirements for features,
some similarities could still be seen. In the case of land covers, particularly grassland
types, geographical factors, such as topography and position, had a significant impact on
classification accuracy. This is because the CGCS is a standard for classifying grasslands
based on the habitat of the vegetation, and each class is determined by the topographic
and climatic characteristics of the vegetation. Geographical conditions still play a role in
determining vegetation distribution, even for other standards. Furthermore, in this study,
these methods demonstrate that too many features hinder prediction. In other words,
removing redundant features is crucial for enhancing model performance. Especially for
object-based classification, since features are not limited to pixel values but can be geometry,
texture, and context, it is challenging to reasonably filter influential variables. The results
show that only a few GLCM texture statistics helped with classification and that geometric
features were inappropriate for classifying land cover. This is because native grassland
lacks obvious geometric features, making it difficult to distinguish it from other regular-
shaped land types such as buildings and cropland. SAR has been widely used for land
classification in recent years and has the advantages of strong penetration and all-weather
observation [70,71]. According to this study, SAR had no substantial role in pixel-based
classification. Although it was selected as an effective variable in object-based classification,
no significant contribution to the grassland distinction was seen. These show that the
Sentinel 1 SAR C band is inappropriate for classifying semi-arid grasslands. Since effective
scattering only happens when the particles are on the scale of the radar wavelength [72],
this may have something to do with why most grassland types did not meet the SAR’s
scattering requirement.

4.3. Limitations and Uncertainties

Although it has been established that remote-sensing-based grassland classification is
somewhat feasible, there are still some limitations and uncertainties. First, unlike the land
covers with apparent perceptual characteristics, such as buildings, cropland, and forest,
grassland classification is a highly abstract idea, and a defined class may include a variety
of herbages and communities. This makes it challenging to find their similarities to create
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a classification identity. For instance, even though the CGCS specifies the habitat traits
for each type, it is more of an empirical range and falls short of including all potential
grasslands. Second, grasslands are susceptible to external disturbances such as climate
changes and human activities, and community structures are prone to changes. Because
of this, it is difficult to accurately represent a natural grassland using the few remote
sensing data sources available. Additionally, the spectral and temporal resolution of
the available data makes it challenging to accurately reflect the complex phenology of
grassland vegetation. In these regards, we consider that different classification systems
should be formulated according to the classification purpose and scale and that a more
flexible standard should be used for grassland classification accuracy assessment. In
addition, we recommend using multisource data, including multi-temporal data, to try to
improve the separability between vegetation communities from multiple perspectives. The
transferability aspect is also important to highlight the domain adaptation of the models
proposed in this study. Understanding how classifiers learn from a source domain and
generalize to a target domain is critical for applying the models in other areas. In light of
this, we proposed that the sample-based and feature-based methods could be used [73].
They are appropriate to transfer the model to the target region because they have been
widely used in land use and land cover classification for aligning disparities between
domains so that the trained model can be generalized into the domain of interest [74].
Density ratio estimation is the typical solution for minimizing the discrepancy between the
re-weighted source sample distribution and the actual target sample distribution [75]. A
deep residual network is also being developed as a feature-based method to address the
problem of step dispersion during model training for the target domain [76].

5. Conclusions

In this study, the central Xilingol (China) was selected as the study area, and the
performance of four commonly used machine learning algorithms (RF, SVM, KNN, and
NB) in classifying semi-arid grassland under pixel-based and object-based classification
methods was compared. Meanwhile, the capabilities of Sentinel C-band SAR, Landsat OLI
multispectral bands, texture features, and geographical factors for grassland classification
were evaluated. Overall, the object-based methods were more accurate and depicted a
more realistic land cover distribution than the pixel-based methods. In the pixel-based clas-
sification, RF performed best, and OA and Kappa achieved 96.32% and 0.9556, respectively,
when only 6 valid features were used. In the object-based classification, the prediction of
RF and SVM had no statistical difference, but both were significantly higher than other
algorithms. Given feature selection, robustness, and prediction accuracy, the object-based
RF method is more suitable for semi-arid grassland classification tasks in northern China.
In pixel-based classification, multispectral bands, spectral indices, and geographic features
contribute significantly to distinguishing grassland, whereas, in object-based classifica-
tion, predominant features are more derived from multispectral bands, spectral indices,
elevation, and position features. Although Sentinel 1 SAR variables were selected as an
effective variable in object-based classification, there was no significant contribution to the
grassland distinction.
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Appendix A

Figure A1. Hyperparameter grid search of RF in pixel-based (right) and object-based (left) classifica-
tion methods under optimal feature combination.
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