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Abstract: Cloud occlusion phenomena are widespread in optical remote sensing (RS) images, leading
to information loss and image degradation and causing difficulties in subsequent applications such
as land surface classification, object detection, and land change monitoring. Therefore, thin cloud
removal is a key preprocessing procedure for optical RS images, and has great practical value. Recent
deep learning-based thin cloud removal methods have achieved excellent results. However, these
methods have a common problem in that they cannot obtain large receptive fields while preserving
image detail. In this paper, we propose a novel wavelet-integrated convolutional neural network for
thin cloud removal (WaveCNN-CR) in RS images that can obtain larger receptive fields without any
information loss. WaveCNN-CR generates cloud-free images in an end-to-end manner based on an
encoder–decoder-like architecture. In the encoding stage, WaveCNN-CR first extracts multi-scale
and multi-frequency components via wavelet transform, then further performs feature extraction for
each high-frequency component at different scales by multiple enhanced feature extraction modules
(EFEM) separately. In the decoding stage, WaveCNN-CR recursively concatenates the processed low-
frequency and high-frequency components at each scale, feeds them into EFEMs for feature extraction,
then reconstructs the high-resolution low-frequency component by inverse wavelet transform. In
addition, the designed EFEM consisting of an attentive residual block (ARB) and gated residual block
(GRB) is used to emphasize the more informative features. ARB and GRB enhance features from the
perspective of global and local context, respectively. Extensive experiments on the T-CLOUD, RICE1,
and WHUS2-CR datasets demonstrate that our WaveCNN-CR significantly outperforms existing
state-of-the-art methods.

Keywords: thin cloud removal; remote sensing (RS) images; convolutional neural network (CNN);
wavelet transform

1. Introduction

With the rapid development of optical satellite sensor technology, remote sensing
(RS) images with high spatial, spectral, and temporal resolution have become increasingly
accessible. RS images play a crucial role in modern Earth observation and are widely used
in various applications, including land surface classification [1,2], object detection [3,4],
land change monitoring [5,6], and military command [7]. However, the global annual
mean cloud cover is as high as 67% [8,9], and RS images are invariably contaminated by
clouds, greatly degrading their quality and causing serious adverse effects in subsequent
applications. Thus, it is valuable to remove clouds from RS images while retaining the land
surface information in order to improve their quality and availability.

The semitransparency property of thin clouds makes it possible to recover cloud-free
images from a single cloudy RS image. Within the last decade a large number of thin
cloud removal methods have been proposed, which can be briefly classified into two main

Remote Sens. 2023, 15, 781. https://doi.org/10.3390/rs15030781 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15030781
https://doi.org/10.3390/rs15030781
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5681-2345
https://orcid.org/0000-0001-8786-2540
https://doi.org/10.3390/rs15030781
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15030781?type=check_update&version=1


Remote Sens. 2023, 15, 781 2 of 21

categories: traditional image processing-based methods, and deep-learning (DL)-based
methods. In previous studies, traditional image processing-based methods have been
widely developed thanks to their ease of interpretation and implementation. Shen et al. [10]
proposed a high-fidelity thin cloud removal method based on locally adaptive homomor-
phic filtering (HF). Pan et al. [11] designed a deformed imaging model according to the
statistical properties of RS images and then combined it with the dark channel prior (DCP)
to remove thin clouds. Li et al. [12] developed a two-stage thin cloud removal method that
first utilized HF to improve the distribution of thin clouds, then employed a sphere-model
improved DCP to obtain cloud-free images. Makarau et al. [13,14] removed clouds using
a local search for dark objects to calculate a thin cloud thickness map for each band in
multispectral RS images. These methods rely on assumed physical models or statistical
priors, resulting in poor performance when prior assumptions are inconsistent with the
actual RS images.

Image decomposition and transformation are traditional image processing methods
that have been applied to thin cloud removal. He et al. [15] first extracted the thin cloud
component by low-rank matrix decomposition and automatic thresholding, then subtracted
it from the original cloudy images to obtain cloud-free images. Hu et al. [16] first applied a
multidirectional dual tree complex wavelet transform to decompose cloudy images into
sub-bands, then used a domain adaptation transfer least-squares support vector regression
model to remove thin clouds by enhancing the high-frequency sub-bands and replacing
the low-frequency sub-bands. Furthermore, individual component analysis [17,18] and
principal component transform [19] have been used for thin cloud removal in RS images.
This kind of method does not consider the imaging model of cloud distortion at all, and
cannot obtain satisfactory results for complex scenes with nonuniform clouds.

Other traditional methods that rely on spectral analysis have been proposed for
multispectral RS images. Hong and Zhang [20] improved and extended the haze optimized
transform method to execute thin cloud removal. Lv et al. [21] proposed a thin cloud
removal method based on radiative transfer models and empirical assumptions between
multiple visible bands and one near infrared band, which they further simplified to an
empirical relationship between two visible bands in [22]. Xu et al. [23] and Zhou and
Wang [24] adopted the cirrus band as auxiliary data to remove thin clouds by calculating
the linear regression coefficients between visible/infrared bands and cirrus band. However,
these spectral-based methods do not make full use of the spatial correlation in cloudy
images, and usually fail to work when only few bands are available.

In recent years, DL technology has made impressive achievements in various com-
puter vision tasks, such as image classification [25,26], object detection [27,28], semantic
segmentation [29,30], and image translation [31,32], thanks to its strong abilities in nonlin-
ear fitting and deep feature mining through supervised learning. Previous researchers have
applied DL approaches to thin cloud removal in RS images. Li et al. [33] proposed an end-
to-end deep residual symmetrical concatenation network (RSC-Net) for thin cloud removal.
Wen et al. [34] designed a residual channel attention network (RCA-Net) to remove clouds
by integrating residual learning (RL) and channel attention mechanisms. Li et al. [35]
designed a convolutional neural network (CNN) with two input/output branches for
thin cloud removal in Sentinel-2A images by taking the short-wave infrared and vege-
tation red edge bands as auxiliary inputs in addition to the visible/near infrared bands.
Zhou et al. [36] proposed a lightweight and near-real-time thin cloud removal method using
a multi-scale attention residual network (MSAR-DefogNet). Ding et al. [37] applied condi-
tional variational auto-encoders with uncertainty analysis to generate multiple reasonable
cloud-free images for each cloudy image.

Furthermore, there are many generative adversarial network (GAN)-based meth-
ods [38,39] that have been proposed to remove thin clouds. Enomoto et al. [40] and
Zhang et al. [41] directly applied conditional GAN (cGAN) [42] to accomplish thin cloud
removal in RS images. Wen et al. [43] presented a GAN based on YUV color space and
implemented thin cloud removal by learning the luminance and chroma components inde-
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pendently. Zhang et al. [44] proposed an improved GAN to recover cloud-free images by
adding color consistency constraints to the loss function. In [45–48], the authors integrated
various attentional mechanisms into GANs to enhance the feature representation ability of
the models, thereby generating cloud-free images with higher quality.

Other studies have removed thin clouds by combining CNN/GAN and imaging
models. Zi et al. [49] proposed a two-stage approach using two CNNs, one for estimating
the reference thin cloud thickness map and the other for estimating the thickness coefficients.
Yu et al. [50,51] developed a multiscale distortion-aware cloud removal network (MCRN) by
incorporating the physical model of cloud distortion into feature extraction. Subsequently,
the hybrid model-based and GAN-based approaches [52,53] have been used for weakly
supervised thin cloud removal to reduce the dependence on paired training data.

However, the above-mentioned CNN-based and GAN-based thin cloud removal meth-
ods suffer from a number of shortcomings. From the perspective of network architecture,
the models with downsampling and upsampling layers easily lead to corrupted image
details, while the other methods without downsampling and upsampling layers result in
poor performance on nonuniform thin cloud removal due to their limited receptive fields.
On the other hand, existing methods perform thin cloud removal in the spatial domain,
ignoring the distinct frequency information.

Considering that wavelet transform [54] is able to decompose an image into quarter-
sized components of different frequencies without any information loss, in this paper we
propose a wavelet-integrated CNN for thin cloud removal (WaveCNN-CR) in RS images,
which can enlarge the receptive field while preserving image details. WaveCNN-CR applies
wavelet transform to extract multi-scale and multi-frequency features, then inverse wavelet
transform is used to reconstruct the high-resolution output. In addition, we design a
global–local enhanced feature extraction module (EFEM) in WaveCNN-CR that integrates
the attention and gating mechanisms, thereby emphasizing the more informative features.
The main contributions of this paper are as follows:

1. We propose a novel wavelet-integrated CNN for thin cloud removal in RS im-
ages, which we call WaveCNN-CR. WaveCNN-CR can obtain multi-scale and multi-
frequency features as well as larger receptive fields without any information loss.
In addition, it can generate cloud-free results with more accurate details by directly
processing the high-frequency features.

2. We design a novel EFEM consisting of an attentive residual block (ARB) and gated
residual block (GRB) in WaveCNN-CR, enabling stronger feature representation
ability. ARB enhances features by capturing long-range interactive global information
based on an attention mechanism, while GRB enhances features by exploiting local
information based on a gating mechanism.

3. We conduct extensive experiments on three public datasets, T-CLOUD, RICE1, and
WHUS2-CR, which respectively include Landsat 8, Google Earth, and Sentinel-2A
images. Compared with existing thin cloud removal methods, WaveCNN-CR achieves
state-of-the-art (SOTA) results both qualitatively and quantitatively.

The remainder of this paper is organized as follows. Section 2 briefly introduces
related works. Section 3 presents details of the proposed thin cloud removal method. Our
experimental results and analysis are described and discussed in Section 4. Finally, our
conclusions are provided in Section 5.

2. Related Works

Below, we provide a brief analysis of the network architecture of existing DL-based
thin cloud removal methods in Section 2.1. In addition, we introduce the application of
wavelets to DL-based computer visual tasks in Section 2.2.

2.1. Network Architecture of Existing DL-Based Methods

Recently, DL-based thin cloud removal methods have achieved amazing results [34,36,47,50].
The major difference between these end-to-end methods lies in their network architectures. There
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are generally two different main structures: plane encoder–decoder structures [33,34,36,43,45,47]
and hourglass-shaped encoder–decoder structures [35,38–41,44,48,50,51]. The former retains
feature maps with the same spatial dimensions as the input image in both the encoder and
decoder without any downsampling or upsampling operations (see Figure 1a), which can
preserve image details without information loss. However, it has limited receptive fields
and lacks the long-range dependencies of image and context, which is not conducive to
the removal of nonuniform thin clouds [55]. The latter structure gradually reduces the size
of the feature maps via downsampling operations in the encoder, then increases the size
of the feature maps via upsampling operations in the decoder (see Figure 1b), which can
obtain larger receptive fields and multi-scale features. Nevertheless, the downsampling
operation (strided-convolution/pooling) damages image details and causes loss of detail
information; furthermore, existing upsampling operations (deconvolution/interpolation)
cannot accurately recover the original data, which is not conducive to the restoration of
image detail [56].

Input OutputInput Output

Downsampling Upsampling

…………

Skip Connection (Optional) Skip Connection (Optional)

 (a) (b)

Figure 1. The two types of network structures used in existing DL-based methods: (a) plane encoder–
decoder structure and (b) hourglass-shaped encoder–decoder structure.

A predominant thin cloud removal method needs to effectively remove thin clouds
from the whole image while avoiding corruption of image details. This requires a thin cloud
removal model with both large receptive fields and no loss of detail information. Existing
methods fail to balance the tradeoff between large receptive fields and preservation of image
detail. To address this problem, in this paper our proposed WaveCNN-CR employs wavelet
transform instead of conventional downsampling operations to enlarge the receptive field
without any information loss, then inverse wavelet transform is used to reconstruct the
high-resolution feature maps. In addition, direct processing of the high-frequency features
obtained by the wavelet transform facilitates the recovery of image detail.

2.2. Wavelet Transform in DL-Based Computer Vision

Wavelet transform [54] decomposes a signal into different frequency components,
which is invertible and information-lossless. Researchers have integrated wavelet trans-
form into CNNs to enhance performance in various computer vision tasks. For exam-
ple, Huang et al. [57] proposed a wavelet-based CNN to recover the missing details in
the wavelet domain for multi-scale face super-resolution. Liu et al. [58] utilized multi-
level wavelet transform to enlarge the receptive field without information loss for image
restoration. Li et al. [56] designed WaveCNets by replacing conventional downsampling
operations with discrete wavelet transform (DWT) to improve the classification accuracy
and noise-robustness of CNNs for image classification. For the stripe noise removal task,
TSWEU [59] utilized wavelet transform to extract the intrinsically directional feature in
the stripe and multi-scale image features; SNRWDNN [60] used quarter-sized wavelet
sub-bands as inputs to simultaneously improve the computational efficiency and destriping
performance. Chen et al. [61] embedded the dual-tree complex wavelet transform into a
CNN for better retrieval of snow information in the single image desnowing task. Wave-
GAN [62] incorporated wavelet transform and GAN to ameliorate synthesis quality from
the frequency domain perspective for few-shot image generation.

Unlike most of these approaches, which generally replace downsampling operations
with wavelet transforms, then directly concatenate the low-frequency and high-frequency
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components and feed them into the convolution layer for feature extraction, our proposed
WaveCNN-CR adopts multi-level wavelet transform to decompose the input features
into multi-scale frequency components and perform feature extraction for each frequency
component separately in the encoding stage. Then, the processed low-frequency and high-
frequency components are combined and gradually restored to their original resolution by
inverse DWT (IDWT) in the decoding stage.

3. Method

In this paper, we propose a thin cloud removal method for RS images using a wavelet-
integrated CNN, WaveCNN-CR. First, we present the overall framework of WaveCNN-CR
in Section 3.1. Then, in Section 3.2 we describe the hierarchical wavelet transform in
WaveCNN-CR. Moreover, we elaborate the architecture of ARB and GRB in detail in
Sections 3.3 and 3.4, respectively. Finally, we introduce the loss function of WaveCNN-CR
in Section 3.5.

3.1. Overall Framework

The framework of the proposed WaveCNN-CR is shown in Figure 2. Considering
a cloudy RGB image I ∈ RH×W×3 with spatial dimensions H ×W, WaveCNN-CR first
employs a 3× 3 convolution operation to obtain low-level features F0 ∈ RH×W×C, where
C is the number of channels. Then, the hierarchical wavelet transform is applied to
decompose the shallow features F0 into four levels of high-frequency components, i.e.,
HF1 ∈ R H

2 ×
W
2 ×3C, HF2 ∈ R H

4 ×
W
4 ×3C, HF3 ∈ R H

8 ×
W
8 ×3C, and HF4 ∈ R H

16×
W
16×3C, along

with a low-frequency component LF4 ∈ R H
16×

W
16×C. Next, HF1, HF2, and HF3 pass directly

through three consecutive EFEMs to obtain deep features. The proposed EFEM consists of
an ARB and a GRB (see Figure 3a). At each level in the decoding stage, the low-frequency
features are first concatenated with high-frequency features and then passed through three
EFEMs, before finally being converted into the low-frequency features of the upper level
by IDWT. Therefore, the low-resolution image features are gradually recovered as high-
resolution features. After four IDWT operations, WaveCNN-CR obtains enriched deep
features Fd ∈ RH×W×C with the same spatial dimensions as the input image, and Fd are
further refined using three EFEMs at high spatial resolution. Finally, WaveCNN-CR utilizes
a 3× 3 convolution to transform the refined feature Fr into a residual image R ∈ RH×W×3

and generates a clear image J = I + R by global residual learning.
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Figure 2. The overall framework of the proposed WaveCNN-CR.



Remote Sens. 2023, 15, 781 6 of 21

Norm

·

+

C3´3 Convolution

Split

Element-wise Multiplication

Element-wise Addition

Concatenation

Layer Normalization

CAB

3´3

·

1´1

3´3

+

3´3

+

+

ARB

GRB

1´1

HGAP

VGAP

C

S

1´1

1´1

·

1´w´c

h´1´ch´w´c

1´(h+w)´c

1´(h+w)´c/r

h´1´c h´1´c/r

1´w´c
1´w´c/r

h´w´c

Fin

Fin

Fin Fin

Fout
Fout

Fout Fout
(a) EFEM (b) ARB (c) GRB (d) CAB

3´3

Norm

´

´

S

VGAP

HGAP Horizontal Global
Average Pooling

Vertical Global
Average Pooling

Non-linear

Sigmoid

Matrix Multiplication

h´w´c

h´w´c

h´w´2c

1´1 Convolution1´1

GELU Activation

Figure 3. Detailed architecture of the modules in WaveCNN-CR: (a) enhanced feature extraction
module, (b) attentive residual block, (c) gated residual block, and (d) coordinate attention block.

3.2. Hierarchical Wavelet Transform

Wavelet transform provides information on both frequency and spatiality without
any information loss, which is crucial for accurate thin cloud removal and image detail
preservation. WaveCNN-CR adopts a simple yet effective wavelet transform, namely, Haar
wavelet [63]. Haar wavelet contains two operations (i.e., DWT and IDWT) and four wavelet
filters, i.e., a low-pass filter fLL and high-pass filters fLH , fHL, and fHH .

fLL =
1
2

[
1 1
1 1

]
, fLH =

1
2

[
−1 −1
1 1

]
, fHL =

1
2

[
−1 1
−1 1

]
, fHH =

1
2

[
1 −1
−1 1

]
(1)

The low-pass filter focuses on low-frequency image structure information. In contrast,
the high-pass filters capture high-frequency image detail and texture information.

First, we extract multi-scale and multi-frequency wavelet features by four-level DWT
and recursively invert the processed multi-scale features to reconstruct an initial resolution
output by IDWT, as shown in Figure 2. Specifically, the shallow features F0 are decomposed
into a quarter-sized low-frequency component LL1 and high-frequency components LH1,
HL1, and HH1 via DWT in the first level, which can be formulated as

LL1 = F0 ~ fLL, LH1 = F0 ~ fLH , HL1 = F0 ~ fHL, HH1 = F0 ~ fHH (2)

where ~ represents the convolution operation. Then, the decomposition continues itera-
tively on LLi−1 to produce LLi, LHi, HLi, and HHi (i = 2, 3, 4). Hence, we obtain a total
of one low-frequency component and twelve multi-scale high-frequency components. We
take LL4 as the low-frequency features LF4 and concatenate LHi, HLi, and HHi in the
channel dimension as the ith level high-frequency features HFi. In the decoding stage, we
iteratively concatenate LFi and HFi, feed them into the EFEM for feature extraction, then
apply IDWT to reconstruct LFi−1 (i = 4, 3, 2, 1).

3.3. Attentive Residual Block

Attention mechanisms are widely used in various computer vision tasks, such as
image classification, object detection, image denoising, and thin cloud removal, and can
effectively improve the learning ability of CNNs. Attention enhances feature representation
by recalibrating the feature maps to emphasize useful features and suppress useless features.
In addition, RL can directly transfer features from shallow layers to deeper layers through
skip connection. In particular, for the thin cloud removal task RL can avoid corruption of
clear ground information. Meanwhile, RL allows CNNs with greater depth to be trained
more easily. Inspired by this, we combined an attention mechanism with RL in our proposed
attentive residual block for enhanced feature extraction.

The architecture of our proposed ARB is shown in Figure 3b, and its mathematical
formula can be expressed as
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Fout = Att(W3×3(Fin)) + Fin (3)

W3×3(Fin) = Fin ~ ω (4)

where Fin and Fout are the input and output feature maps of ARB, respectively, Att(·)
represents the attention block, W3×3 denotes the 3× 3 convolution, and the convolution
kernel ω is the parameter of the network. First, ω is assigned initial values by random ini-
tialization and then gradually optimized by backpropagation according to the loss function
in the training stage. ARB first employs a convolutional layer for feature extraction, then
aggregates global contextual information for feature enhancement through the attention
block. In this paper, we utilize the coordinate attention block (CAB) [64], which can obtain
channel attention and global spatial attention simultaneously by integrating the horizontal
attention and vertical attention. CAB performs better than the classical SE channel atten-
tion block [65] and CBAM [66] because SE contains only channel attention, while CBAM
calculates channel attention and local spatial attention separately.

Figure 3d presents the architecture of CAB. With an input tensor Fin ∈ Rh×w×c,
two one-dimensional global average pooling operations are first used to aggregate the
input features along the horizontal and vertical directions, respectively. The resulting two
direction-aware feature maps Fh ∈ Rh×1×c and Fw ∈ R1×w×c can then be formulated as

Fh = HGAP(Fin) (5)

Fw = VGAP(Fin) (6)

where HGAP and VGAP refer to horizontal global average pooling and vertical global
average pooling, respectively. Then, Fh and Fw are concatenated and encoded by a 1× 1
convolutional layer and a nonlinear activation layer, which can be written as

Fenc = δ(W1×1([Fh, Fw])) (7)

δ(X) = X · ϕ(X + 3)/6 (8)

where [·, ·] represents the concatenation along the spatial dimension, W1×1 denotes the 1× 1
convolution, ϕ is the non-linear activation function ReLU6 [67], and Fenc ∈ R1×(h+w)×c/r

are the output encoded feature maps. Here, r is the channel reduction ratio. Then, Fenc
are split along the spatial dimension into two separate feature maps, Fh

enc ∈ Rh×1×c/r and
Fw

enc ∈ R1×w×c/r. An additional two 1× 1 convolution operations are used to convert
Fh

enc and Fw
enc into tensors with the same number of channels as Fin, respectively, and the

following sigmoid function is used for normalization, obtaining

gh = σ(W1×1
h (Fh

enc)) (9)

gw = σ(W1×1
w (Fw

enc)) (10)

where σ is the sigmoid function and gh and gw are the horizontal and vertical attention
weights, respectively. Finally, gh and gw are combined to rescale the input features Fin, and
the output of CAB can be written as

Fout = Fin � (gh ⊗ gw) (11)

where � and ⊗ denote elementwise multiplication and matrix multiplication, respectively.

3.4. Gated Residual Block

After ARB obtains the enhanced features using the global context information, we
further apply the gating mechanism to control the flow of features based on the local context
information. The gating mechanism can be modeled as the element-wise multiplication of
two parallel paths of 3× 3 convolutional layers, one of which is followed by a nonlinear
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activation layer. The architecture of our proposed GRB is illustrated in Figure 3c. With an
input tensor Fin ∈ Rh×w×c, GRB can be formulated as

Fout = W1×1(Gating(Fin)) + Fin (12)

Gating(Fin) = W3×3
1 (ψ(Fin))� φ(W3×3

2 (ψ(Fin))) (13)

ψ(Fl
in) =

Fl
in − µl√
(σl)2 + ε

· gl + bl (l = 1, 2, ..., c) (14)

where ψ and φ are the layer normalization [68] and GELU nonlinearity [69], respectively,
Fl

in denotes the l-th channel of the input tensor, µl and (σl)2 are the mean and variance of
Fl

in, respectively, ε is a small constant that prevent the denominator from being zero, and gl

and bl are two learnable parameters. Here, it is worth noting that we first use two 3× 3
convolutions to expand the channels of the layer normalized features by a factor of two in
order to exploit richer local features, then finally reduce the channels back to the original
input dimension by a 1× 1 convolution. Overall, GRB allows us to choose which part of the
features should be propagated to the next layer of the network. Specific to the thin cloud
removal task, thanks to global residual learning this means allowing information relating
to clouds to pass forward while blocking information on cloud-free regions, resulting in
better thin cloud removal performance and better fidelity in cloud-free regions.

3.5. Loss Function

The L1 norm and mean squared error (MSE) are the most commonly used loss func-
tions in supervised image-to-image translation tasks. However, the minimization of MSE
suppresses high-frequency detail information, causing the phenomenon of regression to the
mean and resulting in blurred and oversmoothed results [70,71]. Therefore, in this paper
we employ L1 loss to optimize WaveCNN-CR. The loss function can be expressed as

L(ω) =
1
N

N

∑
i=1
‖ fω(Ii)− GTi‖1 (15)

where Ii and GTi are the ith thin cloud image and corresponding ground truth (cloud-free
reference image) in the training set, respectively, N is the number of training samples,
|| • ||1 represents the L1 norm, fω denotes our WaveCNN-CR, and ω represents the pa-
rameters of WaveCNN-CR. Here, we aim to minimize L(ω) in order to obtain the optimal
parameters ω∗.

ω∗ = arg min
ω

L(ω) (16)

4. Results and Discussion

In this part, we first describe the experimental settings, including the datasets, eval-
uation metrics, and implementation details, in Section 4.1. Next, the ablution study on
the T-CLOUD dataset is presented and discussed in Section 4.2. Finally, we conduct
comparative experiments with other SOTA methods in Section 4.3.

4.1. Experimental Setting
4.1.1. Datasets

In our experiments, we evaluated our method on three public datasets: T-CLOUD [37],
RICE [72], and WHUS2-CR [35]. Table 1 summarizes the similarities and differences of
these three datasets.
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Table 1. Properties of the T-CLOUD, RICE1, and WHUS2-CR datasets used in the experiments.

Dataset Source Size Training Test Type

T-CLOUD Landsat 8 256× 256 2351 588 Nonuniform
RICE1 Google Earth 512× 512 400 100 Uniform

WHUS2-CR Sentinel-2A 256× 256 4000 1000 Nonuniform

(1) T-CLOUD dataset: The data in T-CLOUD are from Landsat 8 RGB images. The
dataset contains 2939 doublets of cloudy images and their clear counterparts separated
by one satellite re-entry period (16 days). At first, the original optical RS image pairs are
captured by the same satellite sensor at different times. Then, the image sub-regions which
have similar lighting conditions on the corresponding cloudy and cloud-free images are
selected to form the training and testing data. Finally, the paired cloudy and cloud-free
images can be obtained by cropping at the corresponding position. All images are cropped
to a size of 256× 256 pixels. The data are split with a ratio of 8:2, with 2351 images in the
training set and 588 images in the test set.

(2) RICE dataset: RICE contains two subsets: thin cloud-contaminated RICE1 and
thick cloud-contaminated RICE2. The former consists of 500 pairs of cloudy images and
their cloud-free counterparts, all with a size of 512× 512, while the latter has 450 triplets of
images, each triplet containing a reference image without clouds, a thick cloud-covered
image, and the mask of the clouds. We chose RICE1 for our thin cloud removal experiments.
In RICE1, all images are collected from Google Earth by setting whether or not to exhibit
the cloud layer. We randomly selected 400 pairs for training and the remaining 100 pairs
for testing.

(3) WHUS2-CR dataset: In the WHUS2-CR dataset, cloudy and corresponding cloud-
free images are captured by the Sentinel-2A satellite, which has a multispectral imager
for ground exploration. To reduce the difference between cloudy and cloud-free images
as much as possible, the time lag of the acquisition dates of cloudy and corresponding
cloud-free images is set to ten days, which is the revisitation time of the Sentinel-2A satellite.
In WHUS2-CR, we randomly cropped 5000 image patches with a size of 256× 256 pixels
from the original high-resolution image pairs. In our experiments, 4000 pairs were used for
training and 1000 pairs for testing.

4.1.2. Evaluation Metrics

To quantitatively evaluate the performance of thin cloud removal methods, we adopted
the widely used peak signal-to-noise ratio (PSNR) [73], structural similarity (SSIM) [74],
and CIEDE2000 [75] as full-reference metrics.

Specifically, PSNR calculates the ratio of the maximum pixel value against the pixel-
wise evaluation error, which can be formulated as

PSNR(X, Y) = 10 · log10
(2B − 1)2

MSE(X, Y)
(17)

MSE(X, Y) =
1
N
||X−Y||2 (18)

where MSE is the mean squared error between the thin cloud removal result X and the
ground-truth image Y, N is the number of pixels in the image, and B denotes the bit depth
of the image, which is generally takes a a value of 8, that is, 2B − 1 = 255. A larger PSNR
indicates a better thin cloud removal result.

SSIM evaluates the similarity between two images in terms of luminance, contrast,
and structure:

SSIM(X, Y) = l(X, Y) · c(X, Y) · s(X, Y) (19)

l(X, Y) =
2µXµY + c1

µ2
X + µ2

Y + c1
(20)
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c(X, Y) =
2σXσY + c2

σ2
X + σ2

Y + c2
(21)

s(X, Y) =
σXY + c3

σXσY + c3
(22)

where µX and µY are the mean values of X and Y, respectively, σ2
X and σ2

Y are the variances
of X and Y, respectively, σXY is the covariance of X and Y, and c1, c2, and c3 are small
constants that prevent the denominator term from being zero. The value of SSIM ranges
from 0 to 1, with larger values indicating a better thin cloud removal effect.

CIEDE2000 measures the color difference between two images, which is consistent
with subjective human visual perception. CIEDE2000 can be defined as

CIEDE2000(X, Y) =

√(
∆L′

kLSL

)2

+

(
∆C′

kCSC

)2

+

(
∆H′

kHSH

)2

+RT

(
∆C′

kCSC

)(
∆H′

kHSH

)
(23)

where ∆L
′
, ∆C

′
, and ∆H

′
are the CIELAB metrics lightness, chroma, and hue differences

between X and Y, respectively; kL, kC, and kH are the parametric factors; and the weighting
factors SL, SC, and SH and interactive term RT are calculated from ∆L

′
, ∆C

′
, and ∆H

′
,

respectively. For detailed calculations, refer to [76]. A smaller value of CIEDE2000 indicates
better color preservation.

4.1.3. Implementation Details

The proposed WaveCNN-CR was implemented in PyTorch and trained on an Intel
Gold 6252 CPU and an NVIDIA A100 GPU. The number of channels in the first convolution
layer was set to C = 48, and the channel reduction ratio in CAB was set to r = 4. We
trained WaveCNN-CR with the Adam [77] optimizer (β1 = 0.9, β2 = 0.999). The batch size
and training epochs were set to 1 and 300, respectively. The initial learning rate was set to
0.0003 for the first 100 epochs, then gradually reduced to 0 over the next 200 epochs using
the cosine annealing strategy [78]. In addition, we used horizontal and vertical flipping for
data augmentation.

4.2. Ablation Study

To verify the effectiveness of the proposed WaveCNN-CR, we conducted extensive
ablation experiments to analyze the overall architecture of WaveCNN-CR and the structure
of EFEM, ARB, and GRB. The T-CLOUD dataset was employed for training and testing.
For fast comparisons, the training epochs in all ablation experiments were set to 150.

4.2.1. Analysis of Overall Architecture

To demonstrate the effectiveness of wavelet transform in WaveCNN-CR, we com-
pared it with three variant models without wavelet transform. One of the variants was
designed with the plane structure (denoted as Plane) and the other two variants adopted
the hourglass-shaped structure, one utilizing convolution and deconvolution with stride 2
as the respective downsampling and upsampling operations (denoted as Hourglass1) and
the other using average pooling as the downsampling operation and bilinear interpolation
as the upsampling operation (denoted as Hourglass2). In Hourglass2, we employed 1 × 1
convolution before downsampling and upsampling to ensure that the number of channels
in its feature map was consistent with that in WaveCNN-CR. The qualitative comparison
results are shown in Figure 4. Plane was limited by the small receptive fields, resulting in
unsatisfactory result on nonuniform thin clouds (see the red box area). Hourglass2 per-
formed better than Hourglass1, effectively removing the nonuniform thin clouds, though
there were blurry detail textures in its results. In contrast, our proposed WaveCNN-CR
benefited from the wavelet transform without information loss, effectively removing the
nonuniform thin clouds while accurately recovering the detailed texture of the image.
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(b) Plane(a) Input (c) Hourglass1

(e) WaveCNN-CR(d) Hourglass2 (f) Reference

Figure 4. Visual comparisons of different network architectures: (a) input cloudy image; (b–e) respec-
tive results of Plane, Hourglass1, Hourglass2, and WaveCNN-CR; (f) reference cloud-free image.

Table 2 presents the quantitative results. It can be seen that compared with Hourglass2,
Plane performed poorly in terms of PSNR and CIEDE2000, while performing better on
the SSIM metric. This is because there were no downsampling/upsampling operations in
Plane, thereby protecting the detailed texture of the image. Our proposed WaveCNN-CR
is able to integrated wavelet transform into CNN, achieving the best results on all three
evaluation metrics.

Table 2. Ablution analysis of the overall architecture of WaveCNN-CR. The bold and underlined
text indicates the best and second-best performance, respectively. The ↑ symbol indicates that larger
values are better, while ↓ indicates that smaller values are better.

Architecture PSNR↑ SSIM↑ CIEDE2000↓

Plane 30.15 0.8681 3.7293
Hourglass1 29.45 0.8492 4.1804
Hourglass2 30.43 0.8676 3.6911

WaveCNN-CR 31.01 0.8813 3.4262

4.2.2. Effectiveness of EFEM

In the proposed WaveCNN-CR, EFEM consists of an ARB followed by a GRB. To verify
the effectiveness of EFEM, we compared it with three variants: (1) two ARBs (denoted
ARB_ARB), (2) two GRBs (denoted GRB_GRB), and (3) one GRB followed by one ARB
(denoted GRB_ARB). As shown in Table 3, the results of the combination of ARB and GRB
were better than those of two ARBs or GRBs alone, indicating that global ARB and local
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GRB are complementary. The proposed EFEM composed of ARB and GRB in sequence,
achieved the best results, which also proves that this global–local enhancement strategy
can obtain higher performance gains.

Table 3. Ablution analysis of the structure of EFEM. The bold and underlined text indicates the best
and second-best performance, respectively. The ↑ symbol indicates that larger values are better, while
↓ indicates that smaller values are better.

EFEM PSNR↑ SSIM↑ CIEDE2000↓

ARB_ARB 28.41 0.8440 4.3556
GRB_GRB 30.58 0.8783 3.5269
GRB_ARB 30.85 0.8792 3.4644

Ours(ARB_GRB) 31.01 0.8813 3.4262

4.2.3. Analysis of ARB

To verify the effectiveness of the ARB, we compared it with variant modules with
different structures. In Table 4, CB denotes a regular convolutional block without an
attention mechanism or residual connection, while AB and RB represent an attentive block
with attention mechanism and residual block with residual connection, respectively. In
addition, ARB_SE and ARB_CBAM represent ARBs with SE and CBAM attention modules,
respectively. From the quantitative comparison results, it can be seen that, as compared with
CB, RB obtained better results, while AB achieved higher PSNR gains while showing poor
performance in terms of SSIM and CIEDE2000. The later three ARBs with different attention
mechanisms were significantly better than the first three, illustrating the effectiveness of
combining the attention mechanism and RL. Our ARB using CAB achieved the best results,
with 31.01 dB in PSNR, 0.8813 in SSIM, and 3.4262 in CIEDE2000.

Table 4. Ablution analysis of the structure of ARB. The bold and underlined text indicates the best
and second-best performance, respectively. The ↑ symbol indicates that larger values are better, while
↓ indicates that smaller values are better.

Block PSNR↑ SSIM↑ CIEDE2000↓

CB 28.65 0.8547 4.2068
AB 29.14 0.8359 4.3878
RB 28.84 0.8600 4.1158

ARB_SE 30.64 0.8777 3.5421
ARB_CBAM 30.27 0.8742 3.6667

Ours(ARB_CAB) 31.01 0.8813 3.4262

4.2.4. Analysis of GRB

We conducted experiments to verify the effectiveness of GRB. As shown in Table 5,
CB represents the convolutional block without a gating mechanism or residual connection,
while GB and RB denote the gated block with gating mechanism and residual block with
residual connection, respectively. GB performed the worst, indicating that the gating
mechanism plays a negative role when there is no residual connection. Based on RB, our
GRB with gating mechanism showed improved performance of 1.33 dB PSNR, 0.0187 SSIM,
and 0.4843 CIEDE2000.

Table 5. Ablution analysis of the structure of GRB. The bold and underlined text indicates the best
and second-best performance, respectively. The ↑ symbol indicates that larger values are better, while
↓ indicates that smaller values are better.

Block PSNR↑ SSIM↑ CIEDE2000↓

CB 26.80 0.8134 5.2177
GB 25.50 0.7727 5.9063
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Table 5. Cont.

Block PSNR↑ SSIM↑ CIEDE2000↓

RB 29.68 0.8626 3.9105
Ours(GRB) 31.01 0.8813 3.4262

4.3. Comparisons with SOTA Methods

In this section, we present the experimental results on the T-CLOUD, RICE1, and
WHUS2-CR datasets used to evaluate our proposed WaveCNN-CR. Quantitative and
qualitative comparisons were conducted against several SOTA methods, including four
CNN-based methods (RSC-Net [33], MCRN [50], MSAR-DefogNet [36], and RCA-Net [34])
and five GAN-based methods (SpA-GAN [45], UNet-GAN [38], MS-GAN [39], Color-
GAN [44], and AMGAN-CR [47]).

The quantitative results are presented in Tables 6–8. It can be seen that the five
attention-based methods, including MSAR-DefogNet, RCA-Net, SpA-GAN, AMGAN-CR,
and WaveCNN-CR, significantly outperformed the remaining five methods without an
attention mechanism, proving the effectiveness of the attention mechanism. Our proposed
WaveCNN-CR achieved remarkable performance gains over existing methods on all three
datasets. Compared to the most recent best method, MSAR-DefogNet, WaveCNN-CR
achieved improvements of 2.37 dB, 2.16 dB, and 0.40 dB PSNR and 0.0406, 0.0116, and
0.0150 SSIM on the T-CLOUD, RICE1, and WHUS2-CR datasets, respectively. For the
color difference indicator, CIEDE2000, the quantitative results consistently showed that
WaveCNN-CR achieveds the best performance, demonstrating that WaveCNN-CR has
great potential to improve thin cloud removal performance.

Table 6. Quantitative evaluations on the T-CLOUD dataset. The bold and underlined text indicates
the best and second-best performance, respectively. The ↑ symbol indicates that larger values are
better, while ↓ indicates that smaller values are better.

Method PSNR↑ SSIM↑ CIEDE2000↓

RSC-Net [33] 23.98 0.7596 7.0502
MCRN [50] 26.60 0.8091 5.5816

MSAR-DefogNet [36] 28.84 0.8432 4.1862
RCA-Net [34] 28.69 0.8443 4.3708
SpA-GAN [45] 27.15 0.8145 4.9107

UNet-GAN [38] 23.71 0.7630 7.6156
MS-GAN [39] 24.04 0.7228 7.8543

Color-GAN [44] 24.01 0.7490 6.9769
AMGAN-CR [47] 27.85 0.8317 4.5691

WaveCNN-CR 31.21 0.8838 3.3479

Table 7. Quantitative evaluations on the RICE1 dataset. The bold and underlined text indicates the
best and second-best performance, respectively. The ↑ symbol indicates that larger values are better,
while ↓ indicates that smaller values are better.

Method PSNR↑ SSIM↑ CIEDE2000↓

RSC-Net [33] 21.34 0.8150 8.3078
MCRN [50] 31.09 0.9465 3.3767

MSAR-DefogNet [36] 33.58 0.9534 2.7066
RCA-Net [34] 32.49 0.9537 2.2334
SpA-GAN [45] 29.62 0.8844 4.3374

UNet-GAN [38] 23.92 0.8085 7.6766
MS-GAN [39] 27.74 0.8796 5.6267
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Table 7. Cont.

Method PSNR↑ SSIM↑ CIEDE2000↓

Color-GAN [44] 21.57 0.8065 8.5284
AMGAN-CR [47] 29.05 0.8965 4.4694

WaveCNN-CR 35.74 0.9650 1.7922

Table 8. Quantitative evaluations on the WHUS2-CR dataset. The bold and underlined text indicates
the best and second-best performance, respectively. The ↑ symbol indicates that larger values are
better, while ↓ indicates that smaller values are better.

Method PSNR↑ SSIM↑ CIEDE2000↓

RSC-Net [33] 29.03 0.9056 4.6571
MCRN [50] 28.81 0.9163 4.7939

MSAR-DefogNet [36] 29.89 0.9168 5.2028
RCA-Net [34] 29.57 0.9128 4.4211
SpA-GAN [45] 28.78 0.8887 4.7904

UNet-GAN [38] 29.58 0.9008 5.1388
MS-GAN [39] 27.59 0.8560 6.2101

Color-GAN [44] 29.24 0.9020 4.7212
AMGAN-CR [47] 28.82 0.8672 4.9061

WaveCNN-CR 30.29 0.9318 4.1469

In addition, we calculated the average pixel values of the input cloudy images, refer-
ence images, and results of different methods on the three test datasets, as shown in Table 9.
It can be observed that all the thin cloud removal results were darker than the input cloudy
image. The results of WaveCNN-CR had the closest average pixel values to the reference
images, indicating that our WaveCNN-CR achieved the best thin cloud removal results.

Table 9. Statistical results of the average pixel values of the input cloudy images, reference images,
and results of different methods on the three test datasets.

Method T-CLOUD RICE1 WHUS2-CR
Red Green Blue Red Green Blue Red Green Blue

Input 101.31 96.71 106.93 131.09 130.98 127.39 80.89 87.73 98.41
RSC-Net [33] 67.12 62.52 69.52 128.08 124.34 114.84 64.54 68.89 75.71
MCRN [50] 70.55 63.31 69.93 118.80 118.29 105.75 66.20 69.84 75.30

MSAR-DefogNet [36] 71.77 65.64 71.95 122.96 120.69 110.56 66.18 70.49 76.18
RCA-Net [34] 69.64 64.42 70.24 121.06 119.94 108.56 66.64 71.25 76.99
SpA-GAN [45] 69.96 64.27 70.78 121.56 121.36 110.28 66.52 72.74 78.78

UNet-GAN [38] 67.24 62.31 72.29 125.87 123.24 117.82 64.08 69.22 75.87
MS-GAN [39] 66.92 62.19 69.60 118.87 116.90 107.60 62.92 67.85 73.04

Color-GAN [44] 69.94 63.96 71.16 119.16 123.26 108.43 64.18 68.28 75.67
AMGAN-CR [47] 70.14 64.48 70.93 122.04 120.38 109.37 66.01 69.75 74.57

WaveCNN-CR 70.78 64.88 71.13 122.34 120.43 109.70 65.05 69.79 75.00
Reference 71.09 65.14 71.35 122.48 120.68 109.85 64.59 70.03 76.45

Qualitative comparisons of each method are shown in Figures 5–7. In Figure 5, we
compared the cloud removal capabilities of various methods on the nonuniform T-CLOUD
dataset. The visual results show that RSC-Net suffered from cloud residue, MCRN had no-
ticeable color distortion, and grid-like artifacts were observed in UNet-GAN. While the thin
cloud removal results from GAN-based methods had few residual clouds, the difference
from the reference image was relatively large, such as with Color-GAN, which may be due
to the instability of GANs during training. On the other hand, MSAR-DefogNet, RCA-Net,
and WaveCNN-CR all generated satisfactory cloud-free results, with our WaveCNN-CR
having more accurate details and more consistent colors when compared to the reference
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image. Overall, WaveCNN-CR achieved the best results in terms of thin cloud removal,
image detail recovery, and color fidelity.

(a) Input (b) RSC-Net (c) MCRN (d) MSAR-DefogNet

(e) RCA-Net (h) MS-GAN(f) SpA-GAN (g) UNet-GAN

(i) Color-GAN (j) AMGAN-CR (k) WaveCNN-CR (l) Reference

Figure 5. Visual comparisons on the T-CLOUD dataset: (a) input cloudy image; (b–k) results of
RSC-Net [33] , MCRN [50], MSAR-DefogNet [36], RCA-Net [34], SpA-GAN [45], UNet-GAN [38],
MS-GAN [39], Color-GAN [44], AMGAN-CR [47], and our proposed WaveCNN-CR, respectively;
(l) reference cloud-free image.

Figure 6 shows the visual results of a heavily thin cloud-contaminated image in the
uniform RICE1 dataset. The results indicate that RSC-Net, SpA-GAN, UNet-GAN, and
Color-GAN suffered from many remaining clouds. The remaining five methods, MCRN,
MSAR-DefogNet, RCA-Net, MS-GAN, and AMGAN-CR, all obtained cloud-free results,
although with varying degrees of color deviation compared to the reference image. The
restored image obtained with the proposed WaveCNN-CR had more similar patterns to the
reference image, with no color distortion, which is consistent with the quantitative results.
Furthermore, a thin cloud removal instance of a moderately thin cloud-contaminated
image in the WHUS2-CR dataset is shown in Figure 7. It can be observed that while all
comparison methods suffered from varying degrees of color distortion, the visual quality
of the restoration results demonstrates the superiority of WaveCNN-CR.
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(a) Input (b) RSC-Net (c) MCRN (d) MSAR-DefogNet

(e) RCA-Net (h) MS-GAN(f) SpA-GAN (g) UNet-GAN

(i) Color-GAN (j) AMGAN-CR (k) WaveCNN-CR (l) Reference

Figure 6. Visual comparisons on the RICE1 dataset: (a) input cloudy image; (b–k) results of RSC-
Net [33], MCRN [50], MSAR-DefogNet [36], RCA-Net [34], SpA-GAN [45], UNet-GAN [38], MS-
GAN [39], Color-GAN [44], AMGAN-CR [47], and our proposed WaveCNN-CR, respectively; (l) ref-
erence cloud-free image.

Furthermore, we compared the parameters, computational cost, and test time of differ-
ent methods on the T-CLOUD dataset, with the results shown in Table 10. It can be seen
that RSC-Net, UNet-GAN, MS-GAN, and Color-GAN had relatively lower computational
costs and time consumption, however, their thin cloud removal performance was relatively
poor. While MCRN, RCA-Net, SpA-GAN, and AMGAN-CR had higher computational and
time costs, and their thin cloud removal results were better than those of the previous four
methods. MSAR-DefogNet achieved a good balance between parameters, computations,
time cost, and the effectiveness of cloud removal. Overall, our WaveCNN-CR had the
highest number of parameters and the second-highest cost in terms of computation and
time. Compared with MSAR-DefogNet, our WaveCNN-CR made sacrifices in terms of
memory usage and time consumption, but showed greatly improved effectiveness in thin
cloud removal.



Remote Sens. 2023, 15, 781 17 of 21

(a) Input (b) RSC-Net (c) MCRN (d) MSAR-DefogNet

(e) RCA-Net (h) MS-GAN(f) SpA-GAN (g) UNet-GAN

(i) Color-GAN (j) AMGAN-CR (k) WaveCNN-CR (l) Reference

Figure 7. Visual comparisons on the WHUS2-CR dataset: (a) input cloudy image; (b–k) results of
RSC-Net [33], MCRN [50], MSAR-DefogNet [36], RCA-Net [34], SpA-GAN [45], UNet-GAN [38],
MS-GAN [39], Color-GAN [44], AMGAN-CR [47], and our proposed WaveCNN-CR, respectively;
(l) reference cloud-free image.

Table 10. Parameters, computational cost, and test time of different methods on the T-CLOUD dataset.

Image Parameters (M) FLOPs (G) Test Time (ms)

RSC-Net [33] 0.11 14.84 8.06
MCRN [50] 1.41 94.90 44.68

MSAR-DefogNet [36] 0.80 104.90 6.11
RCA-Net [34] 2.27 401.79 21.33
SpA-GAN [45] 0.21 33.97 19.03

UNet-GAN [38] 3.31 11.83 4.89
MS-GAN [39] 8.08 44.27 10.83

Color-GAN [44] 0.51 9.95 5.58
AMGAN-CR [47] 0.29 96.96 16.05

WaveCNN-CR 30.38 395.09 40.23
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5. Conclusions

In this paper, we proposed a novel thin cloud removal method for RS images, called
WaveCNN-CR, that integrates wavelet transform into CNN. Benefiting from the lossless
decomposition of wavelet transform, WaveCNN-CR is able to obtain large receptive fields
and simultaneously preserve image details, which is an advantage over existing thin cloud
removal methods. Specifically, WaveCNN-CR adopts hierarchical DWT to decompose the
input features into multi-scale and multi-frequency components, then performs feature
extraction for each high-frequency component at different scales using multiple EFEMs in
the encoding stage. Then, the processed low-frequency and high-frequency components are
recursively combined to reconstruct the high-resolution output in the decoding stage via
IDWT. Furthermore, we designed a novel EFEM to integrate global and local information
to improve the feature representation ability of WaveCNN-CR. This EFEM is composed
of both ARB and GRB; ARB enhances features through the global contextual information
captured by attention mechanism, while GRB enhances features through the local contextual
information exploited by the gating mechanism. We conducted comparative experiments
on three publicly available datasets, T-CLOUD, RICE1, and WHUS2-CR, that include
Landsat 8, Google Earth, and Sentinel-2A images, respectively. Both the qualitative and
quantitative results demonstrated that WaveCNN-CR significantly outperforms other SOTA
methods in terms of thin cloud removal and image detail restoration.

In future work, we intend to apply WaveCNN-CR to multispectral and multitemporal
RS images, making full use of spatial, spectral, and temporal information to remove clouds.
Additionally, WaveCNN-CR could be applied to other image restoration tasks such as
denoising, deblurring, and deraining. Considering that the collection of large datasets with
paired images is time-consuming, WaveCNN-CR could be combined with transfer learning
on a small dataset or combined with GANs in a weakly supervised way to remove thin
clouds from RS images.
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