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Abstract: In this paper, a ground target extraction system for a novel LiDAR, airborne streak tube
imaging LiDAR (ASTIL), is proposed. This system depends on only a single echo and a single
data source, and can achieve fast ground target extraction. This system consists of two modules:
Autofocus SSD (Single Shot MultiBox Detector) and post-processing. The Autofocus SSD proposed
in this paper is used for object detection in the ASTIL echo signal, and its prediction speed exceeds
that of the original SSD by a factor of three. In the post-processing module, we describe in detail
how the echoes are processed into point clouds. The system was tested on a test set, and it can be
seen from a visual perspective that satisfactory results were obtained for the extraction of buildings
and trees. The system mAPIoU=0.5 is 0.812, and the FPS is greater than 34. The results prove that
this ASTIL processing system can achieve fast ground target extraction based on a single echo and a
single data source.

Keywords: airborne streak tube imaging LiDAR (ASTIL); ground target extraction; object detection;
single-shot multibox detector (SSD)

1. Introduction

Airborne LiDAR is an active ground observation system, which has the advantages
of round-the-clock, strong penetration, accurate range finding, and short production cy-
cle [1,2]. Since its ability to quickly collect 3D terrain data in local areas [3], it has been
widely used in urban 3D modeling [4,5], forestry resources survey [6,7], power facility
monitoring [8,9], disaster assessment [10,11], and other applications [12–14]. Airborne
streak tube imaging LiDAR (ASTIL) is a novel LiDAR that was originally applied for
underwater object detection [15], and is still not widely available.

It is generally known that the data format obtained by conventional LiDAR based on
single-point scanning is generally a point cloud. Most post-processing algorithms based on
point clouds generally demand a certain scale of points to obtain reliable results. Taking
the filtering algorithm based on adaptive TIN (triangular irregular network) proposed by
Axelsson [16] as an example, the local lowest point within a user-defined grid is selected as
the seed point, and the grid size should not be smaller than the size of the largest structure.
This requirement for the number of points makes the real-time processing of a single echo
signal from conventional airborne LiDAR a difficult problem to solve.

Compared with the conventional LiDAR, the laser footprint from ASTIL is shaped
into a strip that is hundreds of meters long, and a streak tube is used to collect the echo
signal [17]. These configurations result in the ASTIL having the advantages of wide field of
view and high info acquisition efficiency. Because of the idiosyncratic working mechanism
of ASTIL, its raw echo signal is a two-dimensional single-channel digital image. This kind
of echo signal is rich in semantic information and is capable of reflecting the cross-section
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information of surface objects in the irradiated area [18]. Therefore, it has the potential
to directly identify the target only by relying on a single echo and a single data source.
However, the direct application of the ASTIL raw echo for ground objects extraction has
not received sufficient attention [17,18].

In terms of data processing, S. Zhang [19] presented the solution that geospatial arti-
ficial intelligence applies deep learning techniques to help solve complex detection and
classification problems. Currently, the state-of-the-art deep learning benchmark frame-
works in the field of object detection mainly include Faster RCNN, YOLO (You Only Look
Once) [20], SSD (Single Shot MultiBox Detector) [21], and their derivatives [22]. Faster
RCNN is the first deep learning framework to implement end-to-end object detection [23].
The most prominent contribution of this framework is the proposed RPN (Region Proposal
Network), which associates the proposal region generation and the convolutional network
through the anchor mechanism, with high accuracy [24,25]. This framework with RPN is
called two-stage algorithms, and the prediction accuracy is higher because of the introduc-
tion of RPN, however, at the cost of a decrease in inference speed [26]. One-stage algorithms
abandon the time-consuming component RPN and treat the detection task as a regression
problem, such as YOLO, SSD [27]. SSD is a new object detection framework proposed by W.
Liu et al. [21] in 2015. It is considered as the second one-stage object detection framework
in the deep learning era [28]. SSD predicts objects of different scales from feature maps
of different scales, achieving high detection accuracy. It uses small convolutional filters
applied to feature maps to predict category scores and box offsets for a fixed set of default
bounding boxes. On the Pascal VOC2007 test dataset, the inference speed of the SSD300
model is as high as 59 FPS, which significantly outperforms YOLOV1 in terms of speed and
accuracy. However, the above frameworks were all proposed for RGB real scene images.
For ASTIL echo signals, the semantic information is simpler and has fewer categories, and
ASTIL has higher real-time requirements for signal processing. As a result, the original
SSD network cannot be suitable for the fast processing of ASTIL echo, and needs to be
structurally optimized (see Section 3.1).

In this paper, we propose an ASTIL processing system. This system only needs a single
echo and a single data source to achieve fast ground target extraction, which gives ASTIL
the potential for real-time ground target extraction. This system consists of two modules:
an object detection module and a post-processing module. In the object detection module,
we structurally optimize the original SSD according to the ASTIL signal characteristics, and
propose a Autofocus SSD to speed up the prediction speed. In the post-processing module,
we show in detail how the signal is processed into a point cloud. Then, we conducted an
experiment to compare the performance of the Autofocus SSD and other state-of-the-art
networks. An ablation experiment was executed, and the optimal base network structure
was explored. Finally, we tested the overall performance of the system.

2. Background Knowledge
2.1. Airborne Streak Tube Imaging LiDAR

ASTIL adopts the “pendulum” scanning mode, as shown by the yellow dotted line in
Figure 1a, and the scanning trajectory is zigzag along the flight direction of the flight vehicle.
Figure 1b shows the scanning trajectory of the ASTIL laser footprint in a certain scene.
Some trees and buildings are located within the scanned area. Here, F1 to F4 respectively
represent laser footprints irradiated on different objects. Echo signals of footprint F1 to F4
are shown in Figure 2.

As can be seen from Figure 2, the echo morphological features from buildings and
trees in the ASTIL echo signal are obviously different. The echo from a building is generally
stronger and has two scarps adjacent to the echo from the ground. The echo from trees
is usually low in intensity and appears as a diffuse point cloud. Therefore, two kinds of
ground objects in the ASTIL echo signal can be extracted according to their different echo
morphological features.
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Figure 2. Echo signals in the scene of Figure 1b; The boxes with white border show the local details 
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2.2. Data Collection and Annotation 
The data used for training and test sets were collected near Hanzhong City, Shaanxi 

Province, China. Figure 3 shows a typical scene of the location. In this scene, many 
buildings and trees are irregularly staggered, and this scene can represent the distribution 
pattern of ground objects in most urban low-rise residential areas. As a result, the collected 
data has a good representativeness for the urban low-rise residential area. 

At the phase of data collection, the aircraft was flying at an altitude of about 3000 m 
above sea-level, and ASTIL’s laser repetition frequency was 1000 Hz. More details of the 
data collection are shown in Table 1. The ASTIL irradiated laser footprint on the ground 
surface was about 130 m long and 0.5 m wide. After data collection, we annotated these 
data using the tool, LabelImg. The specific details of various data sets are shown in Table 
2. The class-imbalance is caused by the large difference in the number of categories of
buildings and trees in the raw training set. To address this, we flipped the echo signal
containing only trees up and down, and down sampled the signal containing buildings to
get the final training set.
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Figure 2. Echo signals in the scene of Figure 1b; The boxes with white border show the local details
of the signal; Signals representing trees and buildings are marked by boxes with pink and orange
borders, respectively.

2.2. Data Collection and Annotation

The data used for training and test sets were collected near Hanzhong City, Shaanxi
Province, China. Figure 3 shows a typical scene of the location. In this scene, many
buildings and trees are irregularly staggered, and this scene can represent the distribution
pattern of ground objects in most urban low-rise residential areas. As a result, the collected
data has a good representativeness for the urban low-rise residential area.

At the phase of data collection, the aircraft was flying at an altitude of about 3000 m
above sea-level, and ASTIL’s laser repetition frequency was 1000 Hz. More details of the
data collection are shown in Table 1. The ASTIL irradiated laser footprint on the ground
surface was about 130 m long and 0.5 m wide. After data collection, we annotated these data
using the tool, LabelImg. The specific details of various data sets are shown in Table 2. The
class-imbalance is caused by the large difference in the number of categories of buildings
and trees in the raw training set. To address this, we flipped the echo signal containing
only trees up and down, and down sampled the signal containing buildings to get the final
training set.
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echo type waveform sampling 

training set acquisition time 2014.8.18 14:00:00 
test set acquisition time 2014.8.18 13:41:38 

Table 2. Details of various data sets. 

Objects Raw Training Set Training Set Test Set 
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3. ASTIL Echo Signal Fast-Processing System 
The overall framework of the ASTIL fast-processing system is shown in Figure 4, 
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Figure 3. Point cloud of data collection area.

Table 1. Data collection details.

Item Configuration Info

acquisition platform Harbin Y-12 (fixed-wing aircraft)
laser wavelength 532 nm

echo type waveform sampling
training set acquisition time 2014.8.18 14:00:00

test set acquisition time 2014.8.18 13:41:38

Table 2. Details of various data sets.

Objects Raw Training Set Training Set Test Set

tree 9249 11,223 18,537
building 28,124 11,086 14,018

3. ASTIL Echo Signal Fast-Processing System

The overall framework of the ASTIL fast-processing system is shown in Figure 4,
which mainly includes two modules: object detection and post-processing. More details
are given in the following sections.
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Figure 4. ASTIL fast-processing system.
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3.1. Autofocus SSD Network
3.1.1. Hierarchical Setting of Default Box Size Based on K-Means

In the SSD network, default boxes with suitable sizes can not only shorten the regres-
sion time, but also improve the prediction accuracy of the model. The default box size
applied in the original SSD is specifically designed for real scene images. However, the
objects in these real scene images are not the same size as those in the ASTIL echo signals.
The k-means clustering was used to calculate default box sizes. We write gu

i as an indicator
for the u-th parameter of the i-th ground truth box size. Here, ground truth box parameters
only contain height and width, n = 2. The distance measure is Euclidean distance, as
defined in (1).

dist(gi, gj) =

√
n

∑
u=1

∣∣∣gu
i − gu

j

∣∣∣2 (1)

Ground truth box sizes is clustered into eight clusters, and the results are shown
in Figure 5. After rounding the clustering results, sizes of the default boxes are (30, 32),
(49, 49), (56, 75), (96, 67), (63, 111), (123, 101), (83, 302), and (71, 174).Fig 5: 

 

 

 

Algorithm 1: 

Algorithm 1: Signal centroid extraction 

Input: Extracted echo signal 500 1000I  

Output: Echo streak centroid 500O  

1 function calc_line(line_data, thresholdsig, thresholdwidth): 

2   indexmax   argmax(line_data) 

3   valuemax   max(line_data) 

4   indexstart   0 

5   indexend   1000 

6   for index = indexmax to indexstart do 

7     if line_data[index] > thresholdsig then 

8       posstart = index 

9     else 

10       break 

11     end if 

12   end for 

13   for index = indexmax to indexend +1 do 

14     if line_data[index] > thresholdsig then 

15       posend = index 

16     else 

17       break 

18     end if 

19   end for 

20   widthsig = posend - posstart +1 

21   if valuemax > thresholdsig and widthsig > thresholdwidth then 

22     out_x = (posstart + posend) / 2 

23     return out_x 

24   end if 

 

25 function main( I , thresholdsig, thresholdwidth): 

26   O   [ ] 

27   foreach line_data I  do 

28     O .append(calc_line(line_data, thresholdsig, thresholdwidth)) 

29   end foreach 

30   return O  

 

 

Figure 5. Clustering results of ground truth boxes. The clusters obtained by clustering are distin-
guished by different colors.

3.1.2. Architecture

Different from real scene images, ASTIL echo signals have the characteristics of con-
centrated echo distribution and straightforward semantic information. In view of these
characteristics, we improve the SSD network and propose a Autofocus SSD network.
Figure 6 shows the overall architecture of the network. Here, “IRB” represents the inverted
residual module in the MobileNetV2 [29]. ‘CONV’, ‘Maxpool’, ‘FC’, and ‘BN’ denote con-
volutional layer, maximum pooling layer, fully connected layer, and batch normalization
layer, respectively. F1 to F4 represent feature maps. ‘LOC’ and ‘CONF’ denote the location
and confidence prediction modules of the model, respectively. ‘SRE’ is the signal region
extractor and ‘SRE backbone’ is the feature extraction network, and these two modules
constitute the signal region extraction unit proposed in this paper.

In order to meet the demand of fast processing of echo signals, we improved the
original SSD by adding a signal region extraction unit and simplifying the base network,
which improves the prediction speed.
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Figure 6. Autofocus SSD network architecture. ‘CONV’, ‘Maxpool’, ‘FC’, and ‘BN’ denote con-
volutional layer, maximum pooling layer, fully connected layer, and batch normalization layer,
respectively. F1 to F4 represent feature maps. ‘LOC’ and ‘CONF’ denote the location and confidence
prediction modules of the model, respectively. ‘SRE’ is the signal region extractor and ‘SRE backbone’
is the feature extraction network, and these two modules constitute the signal region extraction unit
proposed in this paper.

3.1.3. Signal Region Extraction Unit

The original SSD network extracts feature maps by the base network and some CBR
modules, and then predicts position and confidence on each cell of each output feature
map. Write the convolution filter as Conv(cinput, coutput, k, s, p), where cinput, coutput, k, s
denote the input channel, output channel, kernel size, and stride, respectively, and p refers
to the number of zeros padded around the input tensor.

For input channel c, the number of default boxes on the feature map ndbox, the location
prediction module ‘LOC’ is written as L, can be expressed as (2). Here, Tξ is defined as a
tensor dimensional transformation mapping shown in (3). Suppose the single-scale feature
map (such as F1 in Figure 6) Fs ∈ RN×c×h×w, because there are four regression parameters
for ground-truth box, here ξ is set to 4. L(Fs) is also considered as a linear transformation
as shown in (4).

L = [Conv(c, 4 · ndbox, (3, 3), 1, 1) ◦ T4] (2)

Tξ : RN×c×h×w → RN×ξ× c·h·w
ξ (3)

RN×c×h×w → RN×4ndbox×h×w → RN×4×hwndbox (4)

Similarly, for the categories number cls, the confidence prediction module ‘CONF’ C,
can be expressed as (5). C(Fs) is a linear transformation as shown in (6).

C = [Conv(c, (cls + 1) · ndbox, (3, 3), 1, 1) ◦ Tcls+1] (5)

RN×c×h×w → RN×(cls+1)·ndbox×h×w → RN×(cls+1)×hwndbox (6)

Therefore, for multi-scale feature maps F = (F1, F2, F3, F4), Oloc, Oconf denotes the
predicted output tensor with respect to the location and confidence, then (7) and (8)
are established.

Oloc ∈ R
N×4×ndbox·

4
∑

i=1
hiwi

(7)
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Oconf ∈ R
N×(cls+1)×ndbox·

4
∑

i=1
hiwi

(8)

The raw echo signal (Figure 2) size of ASTIL is 500 × 1000 (height × width). However,
as the signal region extraction in Figure 6 shows, those streaks indicating the signal,
called signal streaks, are concentrated in only one part of the image (yellow box), and the
information in other areas is not substantially useful for the processing of the echo signal.
In view of this, the signal region extraction unit (SREU) was proposed.

The SREU is composed of a signal region extraction backbone (SRE backbone) and a
signal region extractor (SRE). The SRE backbone is intercepted from the first three layers of
the MobileNetV2 network, however, we adjusted the stride of the third layer to (2,2). It is
specifically composed of CBR, IRB1_1, and IRB1_2 (See the SRE backbone in Figure 6). In
the other hand, the SRE (see SRE in Figure 6) was set up with two channels, the input of
channel a is the feature map extracted from the SRE backbone, and the input of channel
b is the raw echo signal. The feature map entering channel a is extracted features by two
convolutional and pooling layers, after which the predicted signal center is output by a
fully connected layer and a sigmoid activation function. Then, the SRE expands 150 pixels
left and right based on the predicted signal center, and the signal region is obtained. Table 3
shows the specific configuration of the SRE. The signal center value is clamped to [150, 850]
to prevent cropping beyond the image.

Table 3. SRE specific configuration.

Operator cinput coutput k s p

CONV 24 16 (3, 3) 1 none
Maxpool – – (3, 3) – –
CONV 16 8 (3, 3) 1 none

Maxpool – – (3, 3) – –
FC 624 1 – – –

After the input image is processed by SREU, the size is cropped from raw 500 × 1000
to 500 × 300 with almost no information loss. After that, suppose the input I ∈ RN×c×h×w ,
output OSREU

loc and OSREU
conf , which are processed by SREU, become (9) and (10).

OSREU
loc ∈ R

N×4× 3
10 ndbox·

4
∑

i=1
hiwi

(9)

OSREU
conf ∈ R

N×(cls+1)× 3
10 ndbox·

4
∑

i=1
hiwi

(10)

According to the SSD working mechanism, OSREU
loc and OSREU

conf are used for post-
processing processes such as non-maximum suppression. Compared to and Oloc, and Oconf,
the data size of OSREU

loc and OSREU
conf is reduced to 3/10 of original outputs.

3.1.4. Streamlining the Base Network

The original SSD is mainly applied to real scene images, and its base network is the
truncated VGG16. However, the ASTIL echo signal possesses simple semantic information
and small pattern space compared with real scene images, and the use of complex VGG
networks does not achieve fast prediction. Therefore, the base network of the framework
proposed adopted the truncated MobileNetV2 with simple structure and low number
of parameters for fast signal processing. The specific configuration is shown as the base
network in Figure 6. We only intercepted the first 11 layers of MobileNetV2 and adjusted
the stride of the convolutional filter in the second CBR in the seventh inversed residual
structure to (1, 1) to get feature maps at the appropriate scale. For the exploration of the
base network structure, see Section 4.3.3.
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3.1.5. Loss Function

Let xk
ij = {0, 1} denotes the i-th default box matching to the j-th ground truth box of

category k. When xk
ij is 1, it means that the both have a matching relationship and vice versa.

In this research, the overall objective loss function is a weighted sum of the localization
loss, the confidence loss, and the SREU prediction loss:

L(x, s, l, g, ĉsig, csig)

= 1
Ndbox

(Lloc(x, l, g) + Lconf(x, s)) + 10 · LSREU(ĉsig, csig)
(11)

where Lloc(x, l, g) is the localization loss between the predicted bounding box (l) and
ground truth box (g), and Lconf(x, s) is the confidence loss. s denotes the confidence score.
ĉsig and csig are the signal center predicted by SREU and the ground truth signal center,
respectively. Ndbox is the number of matched default boxes. Similar to SSD, we regress
the offsets for the center (cx, cy) of the default bounding box (d) and for its width (w)
and height (h), refer to Equation (12). lm

i is the regression parameters predicted by the
i-th bounding box. ĝm

j is the regression parameters generated by the i-th bounding box
matching to the j-th ground truth box.

Lloc(x, l, g) =
Ndbox

∑
i∈Pos

∑m∈{cx,xy,w,h} xk
ijsmoothL1(lm

i − ĝm
j )

ĝcx
j = (gcx

j − dcx
i )/dw

i ĝcy
j = (gcy

j − dcy
i )/dh

i
ĝw

j = log(gw
j /dw

i ) ĝh
j = log(gh

j /dh
i )

(12)

Especially, the confidence loss of object recognition is

Lconf(x, s) = −
Ndbox

∑
i∈Pos

xk
ij log(ŝk

i )− ∑
i∈Neg

log(ŝ0
i ) (13)

where ŝk
i = exp(sk

i )/∑k exp(sk
i ).

The prediction loss of the SREU is shown in Equation (14).

LSREU(ĉsig, csig) =
∣∣∣ĉsig − csig

∣∣∣ (14)

3.2. Post-Processing of the Echo Signal

The ASTIL echo signal only reflects the cross-sectional outline of the surface of the
ground object within the laser irradiation area (150 m× 0.5 m). For common ground objects,
multiple echo signals are required to complete the detection of the object as a whole. In
order to correctly map the complete surface morphology and geographic location of objects,
it is necessary to convert the echo signals into a point cloud format. This section proposes a
pipeline for converting ASTIL echo signal to a point cloud.

3.2.1. Signal Centroid Extraction

The horizontal coordinate of each pixel of the signal streak in the ASTIL echo signal
reflects the distance information of the target, whereas the vertical coordinate of the pixel
reflects the spatial location information of the target. Only by accurately obtaining the
distance and position information of the pixels representing the target can they be inverted
into point clouds using the imaging model combined with pos information.

Signal centroid extraction is similar to the skeleton of signal streak, as shown in
Algorithm 1. The method of extracting the signal centroid for each row is as follows. First,
find the position (indexmax) and its value (valuemax) of the pixel with the largest value in
that row. If there is more than one equal maximum value, the leftmost pixel is used as the
maximum pixel. Second, the start and end positions (posstart and posend) of the signal streak
larger than the signal threshold (thresholdsig) are found by traversing to the left and right
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with the indexmax, and the signal width (widthsig) is calculated. If the valuemax is greater
than the thresholdsig and the widthsig is greater than the thresholdwidth, the signal centroid
in this row can be calculated as (posstart + posend)/2. Otherwise, no signal exists in this row.

Algorithm 1: Signal centroid extraction

Input: Extracted echo signal I ∈ R500×1000

Output: Echo streak centroid O ∈ R500

1. function calc_line(line_data, thresholdsig, thresholdwidth):
2. indexmax ← argmax(line_data)
3. valuemax ←max(line_data)
4. indexstart ← 0
5. indexend ← 1000
6. for index = indexmax to indexstart do
7. if line_data[index] > thresholdsig then
8. posstart = index
9. else
10. break
11. end if
12. end for
13. for index = indexmax to indexend +1 do
14. if line_data[index] > thresholdsig then
15. posend = index
16. else
17. break
18. end if
19. end for
20. widthsig = posend − posstart + 1
21. if valuemax > thresholdsig and widthsig > thresholdwidth then
22. out_x = (posstart + posend)/2
23. return out_x
24. end if
25. function main(I, thresholdsig, thresholdwidth):
26. O← [ ]
27. foreach line_data ∈ I do
28. O.append(calc_line(line_data, thresholdsig, thresholdwidth))
29. end foreach
30. return O

3.2.2. Calibration

Due to the structural characteristics of STIU, the signal it collects is distorted. In
application scenarios, it is necessary to use a calibration matrix to reduce the errors intro-
duced by the distortion. The implementation details of calibration are as Equation (15).
Here, Icali ∈ Rι×2 is the input matrix, Ocali ∈ Rι×2 is the corresponding output matrix,
ι ∈ [0, 500). Acali_x, Acali_y ∈ R500×1000 are the horizontal and vertical calibration matrices,
respectively. Ai,j denotes the i, j elements of matrix A, and Ai,: denotes the i-th row of
matrix A.

Ocali
ϕ,: =


(

Acali_y
index , Acali_x

index

) ⌈
Icali
ϕ,1

⌉
=
⌊

Icali
ϕ,1

⌋(
Acali_y

index , lerp(Icali
ϕ,: , Acali_x)

) ⌈
Icali
ϕ,1

⌉
6=
⌊

Icali
ϕ,1

⌋
index = Icali

ϕ,:

(15)

lerp((j, i), A) = Aj,bic + (Aj,die − Aj,bic) ·
i− bic
die − bic (16)
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3.2.3. Data Fusion

Data fusion refers to the operation of fusing echo signals with global positioning
system (GPS), inertial measurement unit (IMU), and scan angle data. This information is
an indispensable part of the point cloud inversion. However, these data originate from
devices with different acquisition frequencies. In this experiment, the acquisition frequency
of GPS and IMU is 200 Hz, and the counterpart of ASTIL is 1000 Hz. For the data fusion,
POS were interpolated to coincide with the ASTIL acquisition frequency. The POS data
acquired per second can be expressed as:

D =
(
dt0 , · · · dt99

)T, D ∈ R200×7

dt = (t, dlongitude
t , dlatitude

t , daltitude
t , droll

t , dpitch
t , dyaw

t )

where t indicates the acquisition moment and the meanings of other variables are shown
in the superscripts. The interpolation method is as in Equation (17). Here, techo is the
acquisition moment of the echo signal, Dϕ,i denotes the i-th element of the ϕ-th element in
D. The relationship between techo, Dϕ, and Dϕ+1 is as in Equation (18).

lerppos(Dϕ, Dϕ+1, techo) =
techo −Dϕ,0

Dϕ+1,0 −Dϕ,0
·
(

Dϕ+1 −Dϕ

)
+ Dϕ (17)

techo ∈
[
Dϕ,0, Dϕ+1,0

)
(18)

4. Experiment and Results

The ASTIL echo signal fast-processing system was implemented with Python, PyTorch,
OpenCV, NumPy, and Open3D. The experimental platform configuration is Windows 10,
AMD Ryzen 5 5600G, 32 GB of RAM, and Nvidia RTX A4000.

4.1. Network Training Strategy
4.1.1. Autofocus SSD

The base network for the Autofocus SSD accepts the MobileNetV2 loaded with pre-
trained weights provided by PyTorch. Unlike original SSD, no data augmentation tech-
niques were used during training. Two default boxes were set per feature layer. Specifically,
default boxes sizes in the first feature layer are (30, 32) and (49, 49), and the second layer
are (56, 75) and (96, 67), the third layer are (63, 111) and (123, 101), and the fourth layer are
(83, 302) and (71, 174). The training was divided into two stages. First, the base network
and extra feature layers were frozen, and the SREU branch was trained for 10 epochs. At
this time, the loss is only the LSREU component in (11). After that, the branch SREU, base
network, and extra feature layers were trained for 50 epochs. The total loss at this stage is
(11). At each stage, the Autofocus SSD was trained end-to-end using the stochastic gradient
descent algorithm with a batch size of 32. The momentum was fixed to 0.9, and the weight
decay was selected to be 0.0005. The initial learning rate is set to 0.005, and learning rate
becomes half of the original after every five epochs.

4.1.2. Other Networks

For Faster RCNN, original SSD and YOLOV5s, the training batch was set to 16, and the
size of the fed image was (3, 500, 1000). Their backbones adopted all feature extraction layers
in MobileNetV2. The learning rate decreasing schedule was consistent with Autofocus SSD.
Data augmentation and other hyperparameter configurations were left as-were.

4.1.3. Evaluation Metrics

Some evaluation metrics were adopted to analyze the extraction performance of the
proposed system: mean average precision (mAP), frames per second (FPS), multiply-
accumulate computations (MACs), and precision of SREU (precisionSREU). mAPIoU=δ
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represents the mAP of the network when the IoU between the predicted bounding box and
the ground truth is greater than δ as the positive sample. MACs consist of one multiplication
operation and one addition operation, which is approximately equal to two floating point
operations [30]. In this paper, we employ it to evaluate the computational cost of the model.
precisionSREU is defined as follows:

precisionSREU =

∣∣{xi
∣∣IoU(Ŝi, Si) > 0.85

}∣∣
|χ| (19)

where χ = {x1, x1, · · · xm} is the validation set, Ŝi and Si are the predicted signal region and
the ground truth signal region of xi. | · | represents the number of elements in a set.

4.2. Echo Signal Detection Result

The ASTIL echo signals were predicted using the Autofocus SSD we proposed, and the
results are shown in Figure 7. From a visual perspective, this model is able to detect objects
effectively. It’s mAPIoU=0.5 on the validation set is 0.832 and the FPS is 84.54 (Table 4).
precisionSREU is 0.933, indicating that SREU can accurately extract the signal region. The
parameter quantity of this model is only 2.36% of the original SSD, and the FPS is 317.94%
of the original SSD.
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Table 4. Network performance comparison.

Method mAPIoU=0.5 Params FPS precisionSREU

Faster RCNN 0.827 82.32 M 45.35 –
SSD 0.842 13.57 M 26.59 –

YOLOV5s 0.787 2.92 M 87.72 –
Autofocus SSD 0.832 0.32 M 84.54 0.933

4.3. Autofocus SSD Analysis
4.3.1. Compared with Baseline Methods

Some state-of-the-art object detection networks and the network we propose were
tested, as shown in Table 4. It can be seen here that among these networks, although
YOLOV5s has the fastest prediction speed, its mAP is the worst. The SSD has the best mAP,
but the FPS is only 26.59. Faster RCNN also has a satisfactory detection result, with a mAP
of 0.827. However, the parameters of the model are enormous, with params of 82.32 M.
Combining the trade-off between prediction speed and prediction accuracy, Autofocus SSD
is the optimal framework. Its prediction accuracy is only 1% lower than the original SSD,
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but it has as high as 84.54 FPS, which is comparable to the prediction speed of YOLOV5s.
In addition, its parameter size is 0.32 M, only about one tenth of YOLOV5s counterpart,
which is more conducive to its deployment on many mobile and embedded applications. It
is important to note here that the speed of inference for the first three models in Table 4
is not consistent with our common sense. It is well known that we always think that the
prediction speed of one-stage networks is always faster than that of two-stage networks.
However, the prediction speed of Faster RCNN is higher than that of SSD, mainly due to
the following reasons:

1. The feature extraction networks of these models were replaced with the same networks;
2. The input image sizes for these models were all set to (3, 500, 1000);
3. The data enhancement techniques for these models were retained and were not set to

be identical;
4. ASTIL has fewer foreground targets, and Faster RCNN extracted only a small number

of proposals, reducing its prediction elapsed time.

4.3.2. Ablation Study

Table 5 shows the ablation studies of Autofocus SSD. Depth indicates how deep the
MobileNetV2 framework is used as the base network. The maximum depth of the feature
extraction section in the MobileNetV2 network is 19. The study shows that under the same
base network conditions, the SREU module can improve mAP by 5.7% with reducing the
computational cost by 62.35%. In the circumstance that both have SREU modules, the
depth of the base network will also have an impact on the network prediction performance.
The mAP at network depth 11 is 9.2% higher than that at depth 19. The parameters and
computing cost of the former are only 12.85% and 88.28% of the latter, respectively, and the
FPS from the former is 16.48% higher than the latter.

Table 5. Ablation study of Autofocus SSD.

Components SREU × X X
Depth 19 19 11

Metrics

mAPIoU=0.5 0.683 0.740 0.832
mAPIoU=0.75 0.148 0.205 0.364

Params 2.99 M 2.49 M 0.32 M
FPS 72.93 74.10 86.31

MACs 3.40 G 1.28 G 1.13 G

4.3.3. Base Network Structure Selection

Here we conduct two groups of controlled experiments to explore the effects of
network depth and feature map size on model prediction performance. The first group
maintains a consistent feature map size by adjusting the stride of the second convolutional
layer of the 7th and 14th inverse residual blocks of MobileNetV2 to 1. These models are
called Modified MobileNetV2. The second group does not change any parameters in the
original MobileNetV2, they are called original MobileNetV2. Their specific details are
shown in Tables 6 and 7.

Figure 8 shows the relationship between the depth of the base network and the
prediction performance of Autofocus SSD. In terms of Modified MobileNetV2, it can be
seen that both mAPIoU=0.5 and mAPIoU=0.75 have been improved as the network depth
increases, and the performance reaches saturation when the network depth is 11. Naturally,
FPS tends to decrease with the network depth increasing. Comparing the two groups
of data, Modified MobileNetV2 and Original MobileNetV2, the latter’s mAPIoU=0.5 and
mAPIoU=0.75 are both lower than the former. In the case where the weight parameters are
not changed (Figure 8c), the main factor of performance degradation is the reduction in
the feature map size from the (63, 38) to (32, 19). This performance degradation is even
more pronounced when the depth is 15, when the feature map size is scaled from (32, 19) to
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(16, 10). In terms of prediction speed, when the network depth is greater than 10, the FPS
of the two groups of models is roughly the same.

Table 6. Relationship between depth and Autofocus SSD prediction performance in Modified
MobileNetV2 group.

Network
Depth mApIoU=0.5 mApIoU=0.75 Feature Map

Size Params (M) FPS

5 0.658 0.184

(63, 38),
(32, 19),
(16, 10),
(14, 8),

0.098 82.61
6 0.733 0.241 0.113 95.57
7 0.781 0.292 0.128 90.57
8 0.811 0.316 0.154 88.38
9 0.821 0.338 0.209 87.25
10 0.831 0.350 0.263 86.45

Autofocus SSD 0.832 0.364 0.317 86.31
12 0.831 0.358 0.389 83.74
13 0.836 0.365 0.507 82.82
14 0.835 0.358 0.625 80.64
15 0.813 0.324 0.791 80.08
16 0.824 0.340 1.110 79.20

Table 7. Relationship between depth and Autofocus SSD prediction performance in Original Mo-
bileNetV2 group.

Depth mApIoU=0.5 mApIoU=0.75 Feature Map Size Params
(M) FPS

9 0.799 0.297 (32, 19), (16, 10), (8, 5), (6, 3) 0.209 93.13
11 0.804 0.300 (32, 19), (16, 10), (8, 5), (6, 3) 0.317 87.91
13 0.799 0.295 (32, 19), (16, 10), (8, 5), (6, 3) 0.507 84.18
15 0.725 0.191 (16, 10), (8, 5), (4, 3), (2, 1) 0.791 80.69
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Therefore, according to the above results, the network with a depth of 11 in the
Modified MobileNetV2 group is the optimal base network for the Autofocus SSD.

4.4. ASTIL Fast-Processing System Evaluation

In this section we used the framework shown in Figure 4 to process ASTIL raw echo
signals. We employed nine processes to accelerate the data processing and applied Open3D
to display the data in real time.

We tested the system on the test set and the results are shown in Figure 9. Two regions
((a), (d)) were tested, and it is evident that the system is able to roughly extract targets from
a visual perspective. Comparing (a) and (b), it can be seen that the system can even extract
the rough outlines of trees under complex scene conditions. However, the extraction of
buildings is not satisfactory. It can be seen from (c) and (f) that there are some interstices in
the extraction results of buildings, which may be partly due to incomplete echo signals of
ASTIL, and partly due to insufficient representation of the training set.
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and the building extraction result for the area (a), respectively. (e,f) are the tree extraction result and
the building extraction result for the area (d), respectively.

See Table 8 for more statistical information. The gap between the mAPIoU=0.5 obtained
on the test set and that obtained on the validation set is within an acceptable range,
indicating that the model, Autofocus SSD, has good generalization ability. However, the
system FPS is lower than the model FPS, which is only 40.34% to 45.44% of the model,
mainly because part of the time overhead is spent on the post-processing. In addition, the
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extraction efficiency of the system for different targets is also different, which is mainly due
to the difference in the number of ground objects in the measured area, and the prediction
rate is higher with fewer ground objects.

Table 8. ASTIL fast processing system performance evaluation.

Sys mAPIoU=0.5 Sys mAPIoU=0.75 Model FPS
Sys FPS

Building Tree

0.812 0.295 86.31 34.82 39.22

5. Conclusions

In this paper, we propose a fast-processing system for the novel LiDAR ASTIL. This
system has the advantage of only depending on a single echo and a single data source to
achieve fast ground target extraction, which contributes to ASTIL having the potential for
real-time ground target extraction.

The system mainly includes two modules: object detection and post-processing. For
object detection, in order to achieve the purpose of fast extracting echo signals, we have
carried out structural optimization on the SSD, and proposed an Autofocus SSD, which
can achieve mAPIoU=0.5 up to 0.832 and FPS up to 84.54. The prediction speed is more than
three times faster than the original SSD. For post-processing, we show in detail how to
process ASTIL echo signals into point clouds for real-time display.

The system is tested on the test set, system mAPIoU=0.5 is 0.812, system FPS is greater
than 34, which shows that the system can satisfactorily achieve fast ground target extraction
from ASTIL echo signals.

Nevertheless, there are still some potential improvements that can be made. First,
for network prediction, we have not adopted any hardware optimization techniques,
such as ONNX Runtime inference accelerator, TensorRT inference optimizer. Second, for
the implementation of the system, we only enabled multi-process acceleration, but the
utilization rate of each CPU is only about 10%, and there is still a lot of potential for
improvement. Consequently, in our future work, we are going to apply the above two
techniques to accelerate our system for real-time processing of ASTIL echo signals.
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