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Abstract: Genetic variation among populations within plant species can have huge impact on
canopy biochemistry and structure across broad spatial scales. Since canopy spectral reflectance
is determined largely by canopy biochemistry and structure, spectral reflectance can be used as
a means to capture the variability of th genetic characteristics of plant species. In this study, we
used spectral measurements of Bermuda grass [Cynodon dactylon (L.) Pers.] at both the leaf and
canopy levels to characterize the variability of plant traits pertinent to phylogeographic variation
along the longitudinal and latitudinal gradients. An integration of airborne multispectral and
hyperspectral data allows for the exploitation of spectral variations to discriminate between the five
different genotypic groups using ANOVA and RF models. We evaluated the spectral variability
among high-latitude genotypic groups and other groups along the latitudinal gradients and assessed
spectral variability along longitudinal gradients. Spectral difference was observed between genetic
groups from the northern regions and those from other regions along the latitudinal gradient, which
indicated the usefulness of spectral signatures for discriminating between genetic groups. The
canopy spectral reflectance was better suited to discriminate between genotypes of Bermuda grass
across multiple scales than leaf spectral data, as assessed using random forest models. The use of
spectral reflectance, derived from remote sensing, for studying genetic variability across landscapes is
becoming an emerging research topic, with the potential to monitor and forecast phenology, evolution
and biodiversity.

Keywords: multispectral data; hyperspectral data; genetic differentiation; populations; grass

1. Introduction

Leaf and canopy biochemical, physiological, and structural properties influence how
electromagnetic energy is reflected, transmitted, and absorbed [1–4]. Leaf biochemical
properties can affect light absorption in various spectral regions, while leaf and canopy
structures determine light scattering processes inside the leaves and among canopy compo-
nents [5]. Spectral signatures have the potential to reveal the differences in biochemical and
structural composition among plant populations distributed over different geographical
regions and at different levels of the phylogeny. Several vegetation functional traits at
different organizational levels have been assessed using multispectral and hyperspectral re-
mote sensing data [2,6,7]. Spectral vegetation indices, derived from optical remote sensing
data, are sensitive to vegetation photosynthetic capacity and bio-chemical properties [8,9],
which can be used to quantify functional and biological diversity of leaves and canopies.
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The emergence of functional biogeography provides a way of studying the relation-
ship between functional identity and the geographical distribution of individuals within
vegetation species. Environmental and climatic conditions have considerable influence
on biodiversity. They are important for understanding the evolution patterns among
populations and predicting plant biological variation across spatial scales [10]. Different
biochemical pathways may be associated with differences in genetics and genotypes. Ge-
netic variation drives phenotypic variation in order to adapt to different environmental
conditions, which leads to successful genotypes [11]. Genetic diversity could promote plant
populations to adapt to new environments, and the selection, mutation, gene flow, and
drift may cause different allele frequencies in populations under climate change condi-
tions [12,13]. Some traditional quantitative genetic models are only used for the artificial
selection of traits in domesticated species, with limited molecular mechanisms being stud-
ied. Some molecular genetic datasets could be used for predictive modeling of Arabidopsis
spp responses to different environmental factors [14]. Ecological genome niche model-
ing has been established to predict the distribution of genetic variation among adaptive
variants [15].

Optical spectral characteristics are related to functional and taxonomic diversity, and
evolutionary processes can affect the relationship between taxonomic diversity and spec-
tral variability [16–18]. Remote sensing could provide rapid measurements of genotypic
variation related to genetic diversity and plant structure. Quaking aspen genotypes have
been discriminated using airborne spectral data [19–21]. Imaging spectroscopy data have
recently been used to map the within-species population genetic variation of trembling
aspen Populus tremuloides in two ecoregions of the USA [21]. In addition, imaging spec-
troscopy fingerprints have been used to detect different populations of Quercus oleoides
under randomized common garden conditions [22]. Using remote sensing data, genetic
variation could be characterized for the detection of within-species population variation
across varying geographical locations. Some studies have revealed that leaf spectra can be
measured to investigate evolutionary relationships within species [21–23]. More recently,
remote sensing has been frequently used for retrieving plant biophysical and biochemi-
cal variables such as plant height, LAI, biomass and productivity [24–27]. The variables
measured using remote sensing can be used to study ecosystem functioning or community
composition and diversity (such as phylogenetic and taxonomic diversity, phenology, and
habitat structure), which can help to predict the responses of plant communities to different
environments at large spatial scales (continental) [28]. Many spectral indices offer new
ways to explore the relationships between remote sensing and species diversity, functional
diversity, and genetic diversity across a range of spatial scales from sub-meter to kilometer
resolutions [29]. With more remote sensing data providing different and complementary
information, there has been a rapid development in data processing technique and infor-
mation analysis methodology. Among many remote sensing methods, machine learning
approaches tend to provide higher accuracy than traditional parametric classifiers, and
they can deal with complex data that have high-dimensional feature space [30].

Bermuda grass [Cynodon dactylon (L.) Pers.] is distributed mostly in the temperate and
tropical zones between latitudes of 45◦N and 45◦S in the world. The species has a high eco-
logical service value and is widely used for pasture, turf grass, and soil stabilization [31,32].
Bermuda grass is a genetically and morphologically diverse warm-season turf grass that
grows in spatially extensive clones. A lot of genetic analysis methods, such as microsatellite
analysis and genotyping-by-sequencing, have been used to investigate the genetic variation
and phylogeography of Bermuda grass in a biogeographical context [33–35]. Different
environmental conditions including climate, geologic substrate, and soils along longitudi-
nal and latitudinal gradients could create diversity among different populations [36–39].
Some studies have been conducted to link spectral data to taxonomic hierarchies of plant
species, but fewer attempts have been made to study phylogenetic relationships among
populations and the association between environment and the spectroscopy. Despite the
environmental effects on spectral variations of different populations at their geographic
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origins, spectral characteristics were dominated by phylogeny among populations grown in
a garden experiment. Therefore, spectral variation has the potential to differentiate between
taxa because genetically-driven variation dominates environmentally-driven variation.

In this study, we used UAV-based multispectral optical image data and hyperspectral
data to address two aspects of questions related to the genotypic recognition for 28 popula-
tions of Bermuda grass along longitudinal and latitudinal gradients, asking the following
questions: (1) Are spectral signals able to differentiate genetic variations among popula-
tions and genotypic groups of Bermuda grass along longitudinal and latitudinal gradients?
(2) Whether spectral data has great accuracy in detecting phylogeographic difference of
Bermuda grass. We analyzed the spectral differences in respect to genetic variation in
Bermuda grass along the longitudinal and latitudinal gradient using a combination of
genetic and remote sensing data.

2. Materials and Methods
2.1. Study Area and Sample Collection

Plants were collected from 28 geographic regions in southeastern China along both
longitudinal and latitudinal gradients (105◦E to 119◦E and 22◦N to 36◦N) in 2015 (Figure 1).
Approximately 20 individual plants were randomly chosen in each of the 28 geographic
regions, with a distance of at least 50 m between neighboring plant sample locations, far
away from home lawns, public parks, golf courses, and sports fields. Each plant sample
consisted of both roots and stems. All 560 samples were later planted at an experimental
farm at Yangzhou University, Yangzhou, Jiangsu Province, China. Excluding plants that
did not survive, a total of 209 plants over 12 sites along the longitudinal gradient and
246 plants from 16 different sites along the latitudinal gradient were used to conduct the
study. There were 455 plots in total within a 500 m2 area at the experimental farm and each
plot had a ground area of 20 cm in radius. The shortest distance between two neighboring
plots was 1 m. All plots were managed with the same practices.

2.2. Genotypic Analysis

A molecular phylogeny for the populations was generated using three chloroplast
DNA (cpDNA) sequences in order to explore the evolutionary patterns. The cpDNA
sequences for all individuals were aligned using MUSCLE [40] implemented in MEGA
7.0.21 (Auckland, New Zealand) [41]. Haplotypes and genetic diversity indices were then
determined by using DNASP version 5.10 [42]. Maximum likelihood (ML) analysis with
default parameters was conducted using MEGA 7.0 [43] to analyze individual Bermuda
grass from 28 different geographic sites and to generate phylogenetic trees and different
genotypic groups.

2.3. Multispectral Image Acquisition and Processing

Multispectral images were obtained using a snapshot multispectral camera (RedEdge-
MX, MicaSense, Seattle, DC, USA) on a gimbal mount. The Micasense RedEdge MX sensor
includes five spectral bands: blue (475 ± 20 nm), green (560 ± 20 nm), red (668 ± 21 nm),
red edge (717 ± 10 nm), and near-infrared (840 ± 40 nm) simulated with 3.6 Megapixel (MP)
(Table 1). Image resolution was about 8 cm at the altitude of 120 m above the ground. UAV
Flights were carried out under clear sky conditions between 11:00 and 13:00 local time on
17 May and 1 June 2021, at an altitude of 90–120 m above-ground level. Immediately before
and after each flight, reference images were taken over a calibrated grey reflectance panel
placed on the ground (Micasense, Calibrated Reflectance Panel). These were then used
to convert target images from digital numbers into reflectance using empirical line (EL)
calibration [44]. Geometric correction was achieved by positioning and marking ground
control points (GCPs) for the multispectral images present throughout the experimental
field.

The multispectral images were mosaicked together using the PhotoScan Software
(Agisoft LLC, ST, St. Petersburg, Russia) and then saved in Tagged Image Format (TIF).



Remote Sens. 2023, 15, 896 4 of 16

Pixel values were transformed into reflectance using measured down-welling radiation and
references from the grey reference panel. For each plot, pixels inside a circle of 20 cm radius
in the images were tagged with the plot identifier for subsequent analysis. Soil background
effects were removed by creating a segmentation mask containing only plant pixels of
NDVI > 0.2, while all other parts were considered to be soil and excluded from subsequent
analysis [45,46]. Selected spectral vegetation indices (VIs) were used to characterize the
growth conditions of Bermuda grass and investigate the influence of different genotypes
on spectral traits. The indices include the normalized difference vegetation index (NDVI),
ratio spectral index (RSI), difference spectral index (DSI), red edge chlorophyll index (CI
red edge), MERIS terrestrial chlorophyll index (MTCI), enhanced vegetation index (EVI),
and optimized soil-adjusted vegetation index (OSAVI) (Table 2).
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Table 1. Details of hyperspectral and multispectral data acquisition.

Spectral Data Number of Genetic Samples

Total Group 1 Group 2 Group 3 Group 4 Group 5 Wavelength Range Spatial Resolution

Hyperspectral leaf
data 446 58 66 118 115 89 400 to 2500 nm

Hyperspectral
canopy data 310 39 47 78 83 63 410 to 1300 nm

Field of view (FOV) of
25◦ at approximately

30–40 cm height

Multispectral day 1 445 57 66 118 115 89 475 nm, 560 nm, 668 nm,
717 nm and 840 nm 8 cm (3.1in) per pixel

Multispectral day 2 438 57 65 115 114 87 476 nm, 560 nm, 668 nm,
717 nm and 840 nm 8 cm (3.1in) per pixel

Table 2. Vegetation indices calculated from spectral data in this study. R679, R796 and R719 indicated
the spectral bands at 679, 796 and 719 nm wavelength, respectively.

Vegetation Index Reference

Indices calculated from multispectral data
DSI = NIR − Red [47]

RSI = NIR/Red [48]
NDVI = (NIR − Red)/(NIR + Red) [49]
CI red edge = (NIR/Rededge) −1 [50]

MTCI = (NIR − Rededge)/(Rededge − Red) [51]
EVI = 2.5 × (NIR − Red)/(NIR+2.4 × Red + 1) [52]

OSAVI = 1.16 × (NIR − Red)/(NIR + Red + 0.16) [53]
Indices calculated from hyperspectral data

DSI = R796 − R679
[47]

RSI = R796 / R679 [48]
NDVI = (R796 − R679)/(R796 + R679) [49]

CI red edge = R796/R719 − 1 [50]
MTCI = (R796 − R719)/(R719 + R679) [51]

EVI = 2.5 × (R796 − R679)/(R796 + 2.4 × R679 + 1) [52]
OSAVI = 1.16 × (R796 − R679)/(R796 + R679 + 0.16) [53]

2.4. Hyperspectral Data Acquisition

Leaf reflectance was measured in situ using a handheld field spectrometer (PSR+3500,
Spectral evolution, Inc., Haverhill, MA, USA, with a leaf clip and internal light source)
covering the spectral range 400–2500 nm, with spectral resolution of 2.8 nm at 700 nm
(FWHM), 8 nm at 1500 nm, and 6 nm at 2100 nm. Measurements were made at leaf
adaxial surface, avoiding the main vein. A minimum of ten scans were taken for each
leaf measurement, and three leaves were measured for each individual plant. The mean
reflectance spectrum was then calculated by averaging the spectral data for each individual
plant. Target spectral measurements were calibrated using a white and a black reference
measured before each leaf measurement. Canopy and soil spectral reflectance were also
collected in the field in the same wavelength range, with three spectral replicates per
sample. The reflectance spectra of the Bermuda grass canopy were measured by the
handheld field spectrometer at a field-of-view (FOV) of 25◦, with the fiber-optic probe
placed approximately 30–40 cm above the canopy. The FOV is smaller than the area of
the plot, so spectral data captured only the plant information without the bare-soil buffers
among different plots. As the plants were very dense, there was no background soil exposed
within each plot; hence, the effect of background soil is negligible. We used reflectance
data in the 410–1300 nm wavelength range due to high signal-to-noise ratio and further
smoothed this signal with a Savitzky–Golay filter [54].

2.5. Data Analysis and Model Development

Principal component analysis (PCA) was conducted on the spectral data, and analysis
of variance (ANOVA) was used to assess differences among different populations and
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genotypic groups for each principal component (PC) using the SPSS Statistics software
(version 20.0, IBM Corporation, Armonk, NY, USA). Metric multidimensional scaling
analysis (MDS) was performed for all populations distinguished by genotypic groups,
a judgement based on reflectance spectra for both the hyperspectral and multispectral
datasets. We conducted MDS analyses to summarize spectral variation using the “vegan”
package 2.6–4 in R [55].

The random forest (RF) classifier was used to predict different genotypic groups based
on hyperspectral and multispectral data. All samples were randomly partitioned into
calibration (70%) and validation sets (30%). A total of 10 random forest models were
built in each analysis, and each was constructed after resampling data to the same num-
ber of observations for different genotypic group due to unbalanced samples among the
groups. Classification accuracy was assessed by summarizing three types of statistics
across 10 random forest model replicates: F1 score (the harmonic mean of precision and
recall) [56], Cohen’s kappa (the improvement in the model relative to the null expectation
of random guessing) [57], and classification error rate (the predictive accuracy in out-of-bag
predictions). All analyses (statistical, image, and GIS) were conducted in R (R 3.5.1, R Foun-
dation for Statistical Computing, Vienna, Austria). Random forest models and classification
statistics were, respectively, implemented in the random forest (4.6–14) package and caret
(6.0–80) package in R using default parameters. The overall workflow of the data analysis
is shown in Figure 2.
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3. Results
3.1. Spectral Variability among Populations at the Phylogeographic Level

Based on their genetic background differences (Figure S1), all Bermuda grass samples
collected from 28 different locations were divided into five genotypic groups: Group 1 at
low latitude (Zhongshan, Guangzhou, Yingde, Renhua, Guidong), Group 2 at mid latitude
(Youxian, Liuyang, Linxiang, Xiantao), Group 3 at high latitude (Xiao-chang, Xinyang,
Zhumadian, Xuchang, Zhengzhou, Huixian, Cixian), and Group 4 (Tianshui, Baoji, Fufeng,
Jingyang, Luoyang, Shanxian, Lianyungang) and Group 5 (Tongguan, Sanmenxia, Lankao,
Zaozhuang and Tancheng,) along the longitudinal gradient. There is a phylogeographic
relationship among the five different genotypic groups. Genetic variation occurred mainly
among three clusters along the latitudinal gradient due to environmental variation and
geographical isolation (Dabieshan and Nanling Mountains). According to the result of PCA,
vegetation indices, including RSI and MTCI, contribute a large part of variability to leaf and
canopy spectral differentiation, which may indicate that the canopy or leaf features such
as chlorophyll, LAI, plant height have genetic variations. Each spectral dataset showed
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capability of discriminating genotypic variation of populations. For the hyperspectral
dataset, variation in leaf reflectance was obvious among different genotypic groups in
different spectral regions (Figure 3a), and variation in the near-infrared region was the
most apparent. However, the lowest spectral variation between Groups 4 and 5 along
longitudinal gradient was observed in the visible spectral range. The difference was most
apparent between Groups 1, 2 (Hubei, Hunan and Guangdong provinces) and Groups
3, 4, and 5 (Henan, Hebei, Shandong and Shanxi provinces). Among all groups, Group
1 (Guangdong) had the lowest reflectance in the SWIR2 and NIR range. The standard
deviation of leaf spectral reflectance showed the highest within-group spectral variation
in the NIR region and the lowest in the visible region. The great canopy hyperspectral
reflectance variability among the genotypic groups 1, 2 and 3 was also observed in the VIS
region, followed by variation between Group 3 and the two other latitudinal groups in the
NIR regions (Figure 3b). Populations in Group 5 had the highest NIR reflectance, and the
spectral variances in the NIR were highest between Groups 4 and 5 along the longitudinal
gradient.
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For the multispectral dataset, variation of reflectance among the five genotypic groups
was the largest in Band 5 (NIR), followed by Band 3 (red) (Figure 4a,b).

According to the principal component analysis results shown in Table S1, the first
component consists of the dominant spectral variability; thus, it was used in ANOVA
analysis among the population groups and the genotypic groups. According to the ANOVA
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results for the first PC (Table 3), spectral variability was observed for both the hyperspectral
and the multispectral dataset among the 28 population groups and the five genotypic
groups. Thus, PC 1 could be used in differentiating between the genotypic groups. For the
first PC of the hyperspectral dataset, DSI and RSI contribute a large part of the variability
of PC 1, while RSI and MTCI play an important role in canopy spectral differentiation.

The leaf hyperspectral dataset showed that Group 3 overlapped with a portion of
the spectral space held by Groups 4 and 5, and so there was a high spectral confusion
among different genotypic groups (Figure 5a) as canopy hyperspectral datasets and the
longitudinal groups (Groups 4, 5) were separable from latitudinal groups (Groups 1, 2
and 3) (Figure 5b). According to the multispectral measurements, the separability was
higher among the 5 genotypic groups, although Group 5 appeared to occupy a subset of
the spectral space of Group 4 (Figure 5c,d).
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Figure 5. Metric multidimensional scaling analysis (MDS) of the spectral data for (a) leaf hyperspectral
measurement, (b) canopy hyperspectral measurement, (c) early multispectral measurement and
(d) late multispectral measurement (via metric dimensional scaling into k = 5 dimensions), with
boundaries indicating the use of alpha hulls.
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Table 3. Analysis of variance (ANOVA) for the 28 population groups and the 5 genotypic groups of
Bermuda grass based on hyperspectral, early (17 May) and late (1 June) multispectral datasets, with
the first PC of the PCA as a response variable. The F value is the ratio of between-group variation
and within-group variation for both the population groups and the genotypic groups.

Level Data Df Sum of
Squares

Mean of
Squares F Value p Value

Among
populations

Leaf hyperspectral data 27 23.056 0.854 4.111 0.000
Canopy hyperspectral data 27 431.623 15.986 2.832 0.000

Early multispectral data (17 May) 27 7.014 0.260 3.109 0.000
Late multispectral data (1 June) 27 5.876 0.218 2.900 0.000

Among groups

Leaf hyperspectral data 4 7.960 1.990 8.611 0.000
Canopy hyperspectral data 4 107.027 26.757 4.258 0.002

Early multispectral data (17 May) 4 1.598 0.399 4.366 0.002
Late multispectral data (1 June) 4 2.490 0.622 7.640 0.000

Note: Df denotes Degree of freedom.

3.2. Classification of Major Genetic Groups Using Spectral Reflectance

We calculated the variable importance of multispectral and hyperspectral data for
discriminating between the genotype groups using the random forest algorithm and per-
formed genotype classification using the remote sensing data. Satisfactory results were
achieved in discriminating between the genotype groups. However, the classification
results among the five different genotypic groups using the important variables were the
same as those obtained using all hyperspectral and multispectral reflectance and vegeta-
tion indices. Using the leaf and canopy hyperspectral dataset, the classifier showed high
classification error rates for all five genotypic groups (Table 4), and the F1 scores and the
Cohen’s kappa scores were both low. Classification of genotypic groups using airborne
multispectral canopy reflectance had a better performance than the hyperspectral data us-
ing the RF model. With lower predictive error rates for each genotypic group, the F1 scores
and the Cohen’s kappa were higher for all five genotypic groups. Thus, the five genotypic
groups can be classified from canopy spectral reflectance using the RF classifiers, which
suggests that canopy spectral reflectance has the potential to reveal genetic variations.

Table 4. Classification performance of random forest models based on different spectral dataset.

Classification Error
Rates: Mean (SD)

F1 Scores:
Mean (SD)

Cohen’s Kappa
Scores: Mean (SD)

Leaf hyperspectral
dataset

Among 5 groups 0.45 (0.02) 0.52 (0.03) 0.45 (0.04)
Between longitude and latitude 0.19 (0.01) 0.81 (0.04) 0.62 (0.08)
Among 2 groups at longitude 0.18 (0.01) 0.80 (0.03) 0.58 (0.08)
Among 3 groups at latitude 0.32 (0.03) 0.61 (0.07) 0.47 (0.09)

Canopy hyperspectral
dataset

Among 5 groups 0.69 (0.02) 0.31 (0.06) 0.16 (0.07)
Between longitude and latitude 0.27 (0.02) 0.72 (0.05) 0.43 (0.10)

Among 2groups at longitude 0.26 (0.03) 0.74 (0.04) 0.48 (0.08)
Among 3groups at latitude 0.57 (0.05) 0.42 (0.04) 0.14 (0.05)

Early multispectral
dataset (May 17)

Among 5 groups 0.04 (0.02) 0.96 (0.02) 0.95 (0.03)
Late multispectral

dataset (June 1)
Among 5 groups 0.03 (0.02) 0.97 (0.02) 0.96 (0.03)

Note: SD denotes standard deviation.

Using the leaf hyperspectral dataset, the longitudinal groups (Group 4, 5) and the
latitudinal groups (Group 1, 2, 3) can be discriminated with the F1 scores of 0.81 ± 0.04
(Mean ± SD) and Cohen’s kappa scores of 0.62 ± 0.08 (Table 4). The classifier showed F1
scores of 0.80 ± 0.03 and Cohen’s kappa scores of 0.58 ± 0.08 for discriminating between the
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two longitudinal groups. The classifier produced low classification error rates of 0.32 ± 0.03
for discriminating between the three genotypic groups along latitudinal gradients. The F1
score was 0.61 ± 0.07, and the Cohen’s kappa score was 0.47 ± 0.09 for Group 1, 2, and 3.
Using canopy hyperspectral dataset, the results for discriminating between longitudinal
groups and latitudinal groups were F1 scores of 0.72 ± 0.05 and Cohen’s kappa scores
of 0.43 ± 0.10 for longitude and latitude. Results showed that the hyperspectral dataset
produced high classification accuracy and failed to discriminate the five different genotypic
groups.

4. Discussions

The results from our study indicate that hyperspectral and multispectral dataset both
have the potential capability to detect and map different Bermuda grass genotypic classes
across the landscapes along the longitudinal and latitudinal gradients. Multiple leaf traits
can influence spectral variations in a complex way, e.g., different spectral regions respond
to different traits with various sensitivities [58–60]. Leaf spectral variation in the NIR
and SWIR regions is sensitive to variations in leaf water and dry matter content and leaf
structure [58]. For canopy spectral data, canopy hyperspectral variation is apparent in
the VIS spectral range for Bermuda grass along longitudinal and latitudinal gradients.
Canopy multispectral variation among genotypic groups is more apparent in the red and
near-infrared bands. Spectral reflectance in the 700–900 nm range is sensitive to plant cell
structure and biochemistry. A few vegetation indices (VIs) combining reflectance in the
visible, red edge, or NIR spectral ranges can be used to assess the structural and biochemical
characteristics of vegetation [61,62].

The spectral variability of genetic patterns remains strong in Bermuda grass along
both the longitudinal and latitudinal gradients. The spectral variation is pronounced
for genotypic variation because genetic variation can lead to phenotypic variation in the
functional traits of plant tissues adapted to different geographic regions [20]. It is clear
from our data that variations along the latitudinal gradients were captured well by certain
spectral features, while spectral variation along the longitudinal gradients was low. Group
3, at a high latitude, showed larger spectral differences from other groups (Group 1 and 2)
at low and mid-latitude conditions. These results are consistent with genetic divergence of
populations at high latitude reported in our previous work [63], and so spectral variation
of populations of Bermuda grass may increase with increasing genetic divergence along
the latitudinal gradients. Populations at high latitudes could adapt to low temperatures
due to genetic diversity among different genotypic groups, and local adaptation to low
temperature conditions may affect the spectral variation of populations at high latitudes,
which promotes evolutionary diversification [64]. Populations in Group 3, 4, and 5 all
adapted to the arid environments, a change which may cause different populations at
different geographic sites to have similar reflectance spectra. Regions having similar
spectra along the longitudinal gradients may have been under slow rates of evolution [18].
Remote sensing for large-scale monitoring can be used to detect prevalent rapid evolution
of different populations within species in natural different environments [65].

Random forests, an ensemble learning method, could be used to assemble a large
set of decision trees using random subsets of training data and then make predictions
based on votes of classification from a set of decision trees [66]. Lawrence and Moran
(2015) found that RF had the highest average classification accuracy based on a study using
30 different datasets to compare the performance of many machine learning classification
algorithms [67]. In this study, the RF classifier had great potential to discriminate between
genotypic groups among the population of a single species. Leaf spectral data are promising
for classifying genotypic groups at the population level within a species. The classification
error based on canopy hyperspectral data was about 27%, with F1 values close to 0.72
between longitudinal groups and latitudinal groups. This was better than the results of the
classification from perusing leaf hyperspectral data. Both the two multispectral datasets
had good predictive ability to classify populations among the five genotypic groups along
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longitudinal and latitudinal gradients with a lower error rate, with high values of F1 and
Cohen’s kappa. It is worth noting that we can achieve a much higher accuracy in classifying
genotypic groups by using canopy multispectral data than using leaf hyperspectral data. A
study also reported that ground-based leaf spectra classification of aspen by ploidy level
is poorer than that performed with airborne canopy spectra [67]. We linked plant optical
properties with phylogeographic and genetic information under experimental conditions
where environmental variation is controlled. The possible explanation is that, though the
canopy data are limited by ground pixels and other issues, NDVI with a threshold of 0.2 is
used to extract canopy pixels for multispectral image, while there is no image to guide the
selection for hyperspectral data. In addition, variability is more apparent at the canopy level
than at the leaf level. While healthy mature leaves are collected, the hyperspectral leaf data
may include more undesired and unavoidable variation. Multispectral data collection was
carried out at a flight altitude of 90–120 m above ground level. However, the hyperspectral
data of the Bermuda grass canopy were measured by the portable spectral radiometer at a
field of view (FOV) of 25◦m, with the fiber-optic probe placed at approximately 15–20 cm
above the canopy. For the other interpretation, spectral variation in genotypic group with
phylogeographic pattern was captured by reflectance in red and NIR regions, showing that
genetic variation may have an influence on spectral properties in the red and NIR regions.
Using a small number of spectral features in the red and NIR regions is better for achieving
a good classification performance than using the whole wavelength. A small number of
spectral features may provide better performance in discriminating genotypical groups
due to the information redundancy of additional features and limited number of training
data. This result is supported by the similar performance of classification models using
important variables and all available spectral reflectance. Therefore, future applications
for phylogeographic classification may depend on airborne canopy data rather than leaf
hyperspectral data. It may be anticipated airborne multispectral image will soon be used
for mapping the geographical distribution of genotype of plants over larger spatial regions.

In our study, we used both hyperspectral and multispectral data to study the spectral
variation among different genotypic groups. We investigated the relationships between
spectral variation and genetic diversity, which can translate into processes and mechanisms
in the evolution history of different populations. While remote sensing studies can provide
plant functional traits across different spatial regions [68,69], it is still challenging to reveal
the mechanistic basis of biodiversity. Imaging spectroscopy data could be used to map geno-
types and to identify geographic regions of genetic diversity [21]. Leaf spectral reflectance
data have the potential to determine the phylogenetic patterns of biochemical traits when
adapted to different environmental conditions [70]. Integrating remote sensing techniques
with genomic analysis may help to monitor large-scale biodiversity at different levels
and map the dynamics of ecological systems [71]. In addition, several optical vegetation
indices can be selected to estimate spatial variability of some phenotypic traits, including
plant area index (PAI) and leaf chlorophyll content in Northern Ontario [72,73]. Spectral
signature databases have been established in the literature [74–76]. A similar database can
be established to support the study of plant genetic diversity. However, there are still a
number of challenges in respect to a full understanding of the relationships between plant
or canopy properties and spectral signatures, and spectral data collection and processing
protocols. Statistical analysis of spectral data collected in a typical experiment allows for
identifying spectral signatures in characterization of genetic diversity and for discrimi-
nation of different genetic groups. This could lead to the establishment of knowledge or
databases in this new area of research. The integration of spectral libraries for species
mapping could be a future effort.

5. Conclusions

Spectroscopy could provide richer information than traditional field and laboratory
methods for studying intraspecific genotypic diversity over large spatial scales. As demon-
strated in this study, spectral variation existing among the five genotypic groups could be
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due to structural or biochemical characteristics associated with different genotypes along
longitudinal and latitudinal gradients. Besides similarities in the spatial distribution of
spectral diversity along the longitudinal gradient, there are also apparent spectral differ-
ences between a genotypic group at high latitude and other groups along the latitudinal
gradient. The large spectral variation of different genotypes along the latitudinal gradient
indicates that an evolutionary basis for spectral delineation of phylogeography may be
possible. Genotypic groups can be classified using canopy spectral reflectance at a higher
degree of accuracy than leaf spectral reflectance. The study shows the need for the next
step of studying to better understand how well genotype can be classified spectrally for
phylogeography when estimated using the whole genome sequence. Remotely sensed
optical properties have great potential to assess a wide range of biological attributes, which
is valuable for biodiversity conservation and management over large areas repeatedly.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15040896/s1, Figure S1: Maximum likelihood (ML) phylogenetic
tree inferred from longitude and latitude data for 283 Bermuda grass individuals and two outgroups
(Typha latifolia L. and Anomochloa marantoidea). Numbers on branches are bootstrap frequency values
for 1000 bootstrap replicates. Table S1: Proportion of variance of the first ten principle components
using PCA analysis in Bermuda grass.
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