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Abstract: Ground filtering (GF) is a fundamental step for airborne laser scanning (ALS) data process-
ing. The advent of deep learning techniques provides new solutions to this problem. Existing deep-
learning-based methods utilize a segmentation or classification framework to extract ground/non-
ground points, which suffers from a dilemma in keeping high spatial resolution while acquiring rich
contextual information when dealing with large-scale ALS data due to the computing resource limits.
To this end, we propose SeqGP, a novel deep-learning-based GF pipeline that explicitly converts the
GF task into an iterative sequential ground prediction (SeqGP) problem using points-profiles. The
proposed SeqGP utilizes deep reinforcement learning (DRL) to optimize the prediction sequence and
retrieve the bare terrain gradually. The 3D sparse convolution is integrated with the SeqGP strategy
to generate high-precision classification results with memory efficiency. Extensive experiments on
two challenging test sets demonstrate the state-of-the-art filtering performance and universality of
the proposed method in dealing with large-scale ALS data.

Keywords: airborne laser scanning; ground filtering; deep reinforcement learning; sparse convolutional
neural network

1. Introduction

High-quality Digital Elevation Model (DEM) generation is a prerequisite for a variety
of environmental applications, including forest wildfire fuel consumption estimation [1], for-
est inventory [2], archaeological surveying [3], landslide detection [4], and so on. Airborne
Laser Scanning (ALS) has unique advantages in producing high-quality DEM, accounting
for its penetration capability and efficiency in acquiring high-density large-scale point
clouds with complex terrain details. The critical step to generating DEM from ALS data is
separating point clouds into ground and non-ground points, often called ground filtering
(GF). Nevertheless, such a task remains challenging due to the variations in the geometric
structure in both terrain surface and multitudinous land covers [5]. The vast intra-class
variance and inter-class similarities make it overly difficult to distinguish between ground
points and non-ground points accurately [6].

Traditional GF methods are based on geometric rules and can be roughly categorized
into slope-based, morphology-based, and surface-based methods. The slope-based meth-
ods [7,8] analyze the slope value in a local context and distinguish non-ground points by
setting a threshold. The morphology-based methods [9,10] apply the mathematical mor-
phology operation accordingly to remove non-ground points. The surface-based methods
progressively select points from the raw point clouds to fit a ground surface, which can be
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achieved by the Triangulated Irregular Network (TIN) [11] or interpolation [12,13]. The
Cloth Simulation Filter (CSF) [14] is another representative GF method in recent years,
which utilizes a physical procedure to simulate a virtual cloth deforming into a ground sur-
face. While performing well in specific scenarios, these rule-based methods may produce
unsatisfactory results in complex scenes [15] and require experiential parameter-tuning [16].

To increase the robustness and automation level, many classical machine learning
algorithms have been introduced to the point cloud classification problem, such as Sup-
port Vector Machine (SVM) [17], random forest (RF) [18], and Conditional Random Field
(CRF) [19]. Kang et al. [20] propose combining the geometric features calculated from the
point cloud and the spectral features from images and conducting point cloud classification
by a Bayesian network. Zhang et al. [21] propose classifying point clouds of urban areas by
utilizing a support vector machine. In the meantime, several studies use CRF to mine spatial
contextual information and achieve good classification results [22,23]. Niemeyer et al. [24]
combines the RF with CRF to conduct point cloud classification. However, the classical
machine learning classifiers mainly rely on hand-crafted features, which may lack the
generalization and representation ability [16].

In the past few years, deep learning methods have been thriving in the context of
point cloud processing [25]. Depending on the data representation of the network’s in-
puts, these processing pipelines can be roughly grouped into three categories, namely,
image-based, voxel-based, and point-based methods. Image-based methods map points
into images and utilize proven 2D convolutional neural networks to conduct classifica-
tion [26] or segmentation [27]. In early investigations on tackling GF problems with deep
learning, Hu and Yuan [28] propose to project each point into a three-channel image by
calculating the difference of elevation in a local context, then apply a 2D CNN to classify
ground and non-ground points. Rizaldy et al. [29] calculate the pixel value based on the
lowest or highest point within each cell and apply a Fully Convolution Network (FCN) to
conduct ground filtering or multi-class classification. Yang et al. [30] brings up a new way
to map a point into an image by calculating geometric features. Wang et al. [31] utilize the
multi-scale strategy and attention mechanism to improve the classification performance.
These image-based methods are effective in many situations but also suffer from inher-
ent information loss to geometric structures during 3D–2D rendering [32,33] and may be
problematic in forest areas [34]. Point-based methods process unordered point clouds
directly, thus the original geometric structure is preserved. Pioneered by PointNet [35]
and PointNet++ [36], numerous studies have been putting effort into point-based meth-
ods recently and various networks emerged. PointCNN [37] learns a transformation that
benefits the weighting of point features and the permutation of points into canonical order.
Wang et al. [38] use a dynamic graph for feature aggregation, which fully explores the local
and global information. The KPConv [39] uses a point-based convolution kernel for feature
learning and achieved great performance. Hu et al. [40] bring up a lightweight feature ag-
gregation module and use random sampling to improve efficiency, which makes it possible
to deal with outdoor point clouds on a large scale. Janssens-Coron and Guilbert [41] made
a preliminary attempt to conduct ground filtering based on PointNet [35]. Jin et al. [32]
propose a point-based FCN for ground filtering. Zhang et al. [34] propose a novel Tin-
EdgeConv for ground filtering in forest areas. Li et al. [33] utilize the KPConv operator
with the self-attention mechanism for ground filtering of Unmanned Aerial Vehicles (UAV)
point clouds. Fareed et al. [42] use PointCNN [37] to tackle the ground filtering of UAV
point clouds in agricultural fields and prove that the PointCNN is superior to several
frequently used GF algorithms in classification accuracy and transferability. Currently,
the point-based methods have made a lot of progress in the ground filtering of mountain
areas [9,32,33]; however, their application in a hybrid scenario with a large scale is restricted
by the sampling extent since the number of input points is limited. This situation limits the
generality of such methods because they may not correctly handle the large-scale object
in urban areas [6,43,44]. Voxel-based methods regularize point clouds with a 3D grid,
which is the 3D counterpart of pixels. This makes it possible to extend the full-fledged
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2D convolutional neural networks into 3D space, but the computational expense grows
exponentially at the same time. Yotsumata et al. [45] use voxel representation on each point
with its local context and conduct ground filtering by classifying each voxelized input
using a 3D CNN. However, the dense voxel representation cannot capture large semantic
context with fine details due to the huge memory burden. Fortunately, the progress in
sparse convolution [46–49] may alleviate this problem by exploiting the intrinsic sparsity
of point cloud data. Schmohl and Sörgel [50] use submanifold convolutional networks [48]
for the semantic segmentation task of ALS data, but a high voxel resolution still limited
the sampling extent of spatial context. The sparse convolutional network has been widely
applied to many 3D vision tasks and achieved great performance, including but not lim-
ited to indoor scene recognition [51], 3D object detection [52,53], semantic and instance
segmentation [53,54]. However, its application in large-scale ALS point cloud processing is
relatively rare to our best knowledge. Similar to the point-based method, the most impor-
tant reason is that the huge amount of data limits either the spatial resolution or contextual
information[32]. To sum up, the recent deep-learning-based GF methods perform well in
specific scenes but lack universality when dealing with a complex situation because of the
conflict between the spatial resolution and range of context. How to keep high enough
spatial resolution for distinguishing terrain details and near-ground points while obtaining
a large context for identifying large-scale objects is still a question to answer.

We noticed that in the GF problem, the bare terrain is a two-dimensional manifold
embedded into 3D space. In this case, the ground points located on the terrain surface share
similar geometric structures in a local range, and the classification results of the adjacent
points are highly correlated, which indicates that the ground points can be retrieved
gradually in a sequential manner. Based on this observation, we formulate the GF problem
into a sequential prediction task using points-profiles, retrieving the ground points in each
points-profile iteratively. In summary, we propose a novel GF pipeline named sequential
ground prediction (SeqGP), which can acquire high spatial resolution and large contextual
information simultaneously. The main contributions of this paper are as follows:

• A novel deep-learning-based GF pipeline is proposed by converting the GF problem
into a sequential ground prediction task based on points-profiles, which keeps high
spatial resolution while acquiring a large context.

• An HCF module is proposed to capture large-scale contextual information efficiently
and facilitate the recognition of large-scale artificial objects.

• The extensive experiments demonstrate that the SeqGP achieves state-of-the-art GF
performance and universality in dealing with large-scale objects and mountain ar-
eas simultaneously.

The remainder of this paper is organized as follows. Section 2 introduces the materials
used in this study and presents the formulation of the SeqGP in detail. Section 3 presents
the comprehensive experimental results and analysis to demonstrate the effectiveness of
the proposed method. In Section 4, we discuss certain advantages and limitations of the
proposed method and present several aspects for future research. Finally, Section 5 draws
the conclusions.

2. Materials and Methods

In this section, we introduce the formulation of the proposed GF pipeline. First,
the description of the datasets used in our study and the techniques correlated to the
proposed method is presented in Section 2.1. The SeqGP is described in Section 2.2.
Finally, the Sections 2.3 and 2.4 present the implementation details and the evaluation
metrics, respectively.

2.1. Materials
2.1.1. Datasets

OpenGF. OpenGF (https://github.com/Nathan-UW/OpenGF, accessed on 15 April
2021) is the first public large-scale GF dataset [6]. The dataset collects diverse terrain scenes

https://github.com/Nathan-UW/OpenGF
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from 4 countries and covers approximately 47.7 km2 with more than 542 million points. The
test set contains hybrid terrain scenes with various land covers, which are quite challenging for
existing deep-learning-based GF algorithms. Test Site I covers about 6.6 km2, which contains
villages, small cities, and mountains. Test Site II is a metropolitan area covering about 1.1 km2,
which contains a variety of non-ground objects with large-scale variation. The two test sites
are illustrated in Figure 1, some statistical information can be seen in Table 1.

Test Site II

Test Site I
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Figure 1. The test sites of OpenGF dataset and Southern China dataset.

Southern China dataset. We also utilize a challenging testing set introduced by
Zhang et al. [34] for further analysis of the generalization ability of the proposed method.
The testing set contains six areas collected from southern China with different terrain con-
ditions. The average points density of six areas ranged from 0.7 points/m2 to 37 points/m2.
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The six test areas are illustrated in Figure 1, some statistical information can be seen
in Table 1.

We use the public OpenGF dataset [6] to demonstrate the effectiveness of our method
to filter out large buildings while keeping terrain details in mountain areas. The exper-
iment on the Southern China dataset [34] shows the good generalization ability of the
proposed method.

Table 1. Statistical information about the test sites of OpenGF dataset and Southern China dataset.

OpenGF Southern China

Test Site I Test Site II Area 1 Area 2 Area 3 Area 4 Area 5 Area 6

Area (km2) 6.60 1.10 0.80 1.00 0.07 1.00 0.07 0.06
Number of
points (M) 46.00 6.22 0.62 3.30 2.53 3.24 2.57 1.25

Density
(points/m2) 6.97 5.65 0.78 3.30 36.24 3.24 36.71 20.8

2.1.2. Relevant Concepts

In this section, we introduce some concepts relevant to the proposed method and
provide a review of them briefly.

Profile-based point cloud analysis. The profile-based partitioning is computationally
efficient and has been widely used in point cloud processing. The profile has the ability to
represent manifold-like structures including but not limited to power-line [55], curves [56],
and tunnels [57], as well as the bare terrain [58]. Inspired by this, we proposed to incor-
porate the profile representation with deep learning to alleviate the conflict between high
spatial resolution and large context for the existing deep-learning-based GF method, which
has not been investigated before. In the meantime, the correlation between the adjacent
profiles is learned by the neural network in the proposed SeqGP, rather than explicitly
constructed by geometric rules or statistical analysis.

Deep Reinforcement Learning. The core problem that Reinforcement Learning (RL)
deals with is sequential decision-making, which has two major characteristics. On the one
hand, the adjacent decisions are highly correlated and new decisions are made based on
previous ones. On the other hand, the RL agent aims to maximize the total rewards, which
accumulate until the last decision is made.

DRL is introduced by deep Q-network (DQN) [59], which integrated neural networks
with Q-learning [60]. A growing number of DRL algorithms have been proposed and many
of them are applied to 3D computer vision tasks. 3DCNN-DQN-RNN [61] utilizes DQN for
eye window localization and improved the efficiency of indoor point cloud parsing. IteR-
MRL [62] investigates a multi-agent RL framework for 3D medical image segmentation by
interactively refining the segmentation probability. RL-GAN-Net [63] tackles the problem
of the point cloud shape completion by applying an RL agent trained by Deep Deterministic
Policy Gradient (DDPG) [64] to manipulate the latent vector of the Generative Adversarial
Network (GAN) with continuous action. Although demonstrating its practicality in many
3D vision tasks, applying DRL to GF tasks is not yet been fully explored.

In fact, there are several ways to tackle sequence labeling tasks, including but not
limited to using the LSTM-based recurrent network [65], Transformer [66], and DRL [67].
All of these methods apply to our task. Considering that the iterative retrieval of bare
terrain mainly relies on modeling the relationship between the adjacent points-profiles,
while the RL method has the characteristics of exploration and exploitation, involving
DRL may lead the network to find more implicit relations between them. Furthermore,
the training data of DRL are state-action pairs stored in the replay memory rather than
the whole sequence [59], which has two major benefits for our implementation. First, the
dependencies of the training data are decoupled and thus helping the network on learning
the transition between the adjacent states. Second, the input state is represented by a
profile-stack, thus alleviating the memory burden and allowing high-resolution voxels.
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Based on the above considerations, we employ DRL algorithms in this paper to tackle the
sequence labeling of ground points from ALS point clouds.

2.2. Methods

The proposed method tackles the GF problem by labeling the points-profile iteratively.
There are two main advantages of this formulation. First, the data volume of the network’s
inputs is reduced significantly, thus guaranteeing a large semantic context while satisfying
high spatial resolution under limited GPU memory. Second, the prediction of each points-
profile is considered in subsequent steps, thus preserving the continuity of the bare terrain
to some extent. To implement the above idea, we partition the point clouds into a sequence
of points-profiles. Afterward, each time the current points-profile and the previous ground
information are fed into a semantic segmentation model to classify the ground points in the
current step. Since we use voxel representation in our method, the large spatial context with
high voxel resolution leads to a large spatial size of the input voxels. We further propose a
High-Level Context Fusion (HCF) module to increase the receptive field and incorporate
large-scale contextual information. In the meantime, the sequential prediction procedure
is considered a Markov Decision Process (MDP) and optimized by a Deep Reinforcement
Learning (DRL) framework. The pipeline of the proposed method can be seen in Figure 2.

Input data 
Points-profile 

generation 
Sequential ground 

prediction 

Probability W
eighting 

Output data

Figure 2. Overview of the proposed framework for the digital elevation model (DEM) extraction
from large-scale airborne laser scanning (ALS) point cloud (The TIN-based DSM and DEM are used
for visualization).

2.2.1. Points-Profiles Generation

The input point clouds are first partitioned into many points-profiles along a cer-
tain horizontal direction, in which the thickness of each profile is controlled by a hyper-
parameter d. We illustrate the details of points-profiles generation by taking the x-axis
as an example. Given a point set P = {p1, p2 . . . , pn} with pi = (xi, yi, zi), points in P are
split into profiles by their spatial coordinates in x-axis. Suppose that the points in P are
located in the range [xmin, xmax] in the x-axis. Then, the point pi is assigned to the kth slice,
where k = f loor((xi − xmin)/d) and xi is pi’s coordinate in the x-axis. Eventually, N slices
are generated in total, where N = ceil((xmax − xmin)/d). The f loor and ceil represent the
round down and round up operation, respectively. After the slicing process, all points in P
are grouped into N slices, wherein each slice also forms a point set χi, then the input point
clouds are divided into N ordered sets of points X = {χ1, χ2, . . . , χN}, where χi denotes
the set of points that belong to ith slice, and the minimum x coordinate value in χ1 equal
xmin, the maximum x coordinate value in χN equal xmax. We define χi as a points-profile,
the illustration of the points-profile can be seen in Figure 3.
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(a)

(b)

(c)

(d)

(e)

Figure 3. Illustration of Points-profile and Profile-stack: (a) Points-profile and Profile-stack in patch
data (with DSM), where blue points denote areas that have been classified and yellow points de-
note areas that have not been classified, green points denote profile-stack and red points denote
points-profile; (b) Points-profile; (c) Ground truth in points-profile; (d) Profile-stack; (e) Profile-stack
containing both classified and unclassified areas.

2.2.2. Sequential Ground Prediction

After the points-profiles set X is generated, our goal is to retrieve every ground point
in each points-profile from χ1 to χN . The overview of the sequential ground prediction
(SeqGP) can be seen in Figure 4. Each time, the semantic segmentation model observes
the previous ground information and classifies the ground points in the current points-
profile. The agent aims to find a prediction sequence (pred1, pred2, . . . , predN), in which
each prediction predi assigns semantic labels to every point in χi. Once χi is labeled, the
classification results are applied to the environment and the agent makes the next prediction
of χi+1 based on a new observation of the environment. This procedure is formulated as
a Markov decision process composed of a state space S, an action space A, and a reward
function R. Detailed descriptions are given next.

整体流程图

��

����
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��−r+1

��−�

��+�

��+�+1

MinkowskiUnet-based 
Actor Network

��

Cross Entropy based 
Reward

Softmax Function
�����

Ground Truth

…
…

…
…

…
…
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Figure 4. Overview of sequential ground prediction based on deep reinforcement learning. The S, A,
χ, and φ denote the state, action, points-profile, and profile-stack, respectively.

State. The state carries the information about the environment that the agent can
acquire. We define a profile stack Φi that includes profile χi and its adjacent profiles,
Φi = [χi−r, χi−r+1, . . . , χi, . . . , χi+r−1, χi+r], where r controls the number of profiles the
agent can observe in each time step as shown in Figure 4. At time step t, the state St

i is
defined as a sparse tensor generated by all points in Φi with their corresponding feature
vector f = [1, g], where g is a ground point indicator that indicates whether a point has been
labeled as a ground point or not by previous predictions. We set 1 for an extra dimension
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of the points’ feature vector because the input of the Minkowski network is defined to be
a non-zero vector. For the points that have been classified by the agent, g is obtained by
applying the softmax function to the agent’s previous actions, where the other unclassified
points are initialized with g = −1. The definition of classified and unclassified areas are as
shown in Figure 3e.

g =

{
−1 Unclassi f ied

so f tmax(a) Classi f ied
(1)

Hence, the input state encodes the retrieved ground surface information along with
the geometric structures of the original point cloud. This formulation enables the agent to
act based on previous predictions. The illustration of the points-profile and profile-stack
are shown in Figure 3.

Action. The agent acts similarly to a conventional segmentation network and outputs
segmentation probability. At time step t, the action A(t)

i is defined as follows:

A(t)
i = [a(t)i−r, a(t)i−r+1, . . . a(t)i , . . . , a(t)i+r−1, a(t)i+r] (2)

which gives a segmentation probability to each profile in Φi.
Reward. The reward indicates how much profit the agent can receive by taking a

certain action. Because we aim to obtain a classification result at each time step t, we utilize
cross-entropy and subtract it as the reward. yi denotes the ground truth of χi.

R(t)
i = yilog(a(t)i ) + (1− yi)log(1− a(t)i ) (3)

During the inference stage, the binary segmentation result on each profile χi is obtained
sequentially as described in Algorithm 1.

Algorithm 1 Sequential ground prediction algorithm
Input: Points-profile set X = {χ1, χ2, ..., χN}
Output: prediction sequence (pred1, pred2, ..., predN)

1: Initialize i = 1
2: while i <= N do
3: generate state Si with Φi and all points’ f
4: obtain Ai
5: obtain predi = so f tmax(ai) . ai ∈ Ai
6: update points feature vector f in χi
7: i++
8: return (pred1, pred2, ..., predN)

2.2.3. Training

To perform sequential prediction and retrieve the bare terrain gradually, we utilize the
DDPG algorithm, in which an actor network and a critic network are present. The actor
network learns a mapping from state S to action A, which is named policy π(S). The critic
Q(S, A) estimates the amount of reward that the agent may get when adopting a policy.
The critic is optimized by the Bellman equation [60] and the replay memory is used for
random sampling of training data:

Q(S(t)
i , A(t)

i ) = R(t)
i + γQ(S(t+1)

i+1 , π(t+1)) (4)

Here, R(t)
i is a reward that the agent may gain when taking a certain action A(t)

i based

on state S(t)
i at time step t. Based on the points-profile formulation, we also have:

Q(t)
i = [q(t)i−r, q(t)i−r+1, . . . q(t)i , . . . , q(t)i+r−1, q(t)i+r] (5)
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By maximizing the critic’s estimation of Q, the actor π is optimized. Specifically, the
actor would decide which points belong to the ground category in each points-profile
and the critic gives a prediction on the reward. As mentioned in Section 2.2.2, the action
a(t)i ∈ A(t)

i at state S(t)
i provides the prediction result on χi ∈ Φi. In the next step, we also

have χi ∈ Φi+1 based on the formulation of the profile-stack. Thus, the action A(t+1)
i+1 at

time step t + 1 contains a(t+1)
i which gives a segmentation probability of χi at time step

t + 1. During the one-step look-ahead training process in RL, Q(t+1) is obtained by

Q(S(t+1)
i+1 , π(t+1)) = q(t+1)

i + R(t+1)
i+1 (6)

where q(t+1)
i ∈ Q(t+1)

i+1 and R(t+1)
i+1 is the reward of the next action based on S(t+1)

i+1 . This
formulation forces the critic to estimate the expected reward under the constraint that
the next classification result on χi+1 is sufficient and guarantees the compatibility of the
adjacent prediction and the smoothness of the retrieved ground surface.

2.2.4. Network Architecture

The actor network aims to assign predictions to each point in the points-profile, which
is a binary-segmentation task. We utilize the Minkowski U-net architecture and further
integrate the proposed HCF module for increasing the receptive field and capturing a large
context. The original Minkowski U-net [49] comprises four-level down-sampling blocks
and corresponding up-sampling blocks with the same tensor stride. The HCF module
is stacked to the bottom of the U-net and contains one strided sparse convolution and
corresponding strided sparse transpose convolution, which between them is two residual
convolution blocks, with each block containing two sparse convolution layers with a kernel
size of 3 × 3 × 1 and dilation factor of 2 and 3 for enlarging the receptive field.

Notably, rather than using regular sparse convolution, which has the same tensor
stride in all three axes, we only use the 3 × 3 × 1 convolution kernel in the HCF module,
which based on the observation that the large-scale ALS point clouds usually requires a
different degree of down-sampling on the z-axis and the x–y plane. At the bottom level
of the network, the receptive field along the z-axis is already enough and further down-
sampling is cumbersome in some way. These are the main differences from simply making
the network deeper, we conduct an experiment and demonstrate that naively deepening
the network may not produce satisfactory results. The network architecture is depicted
in Figure 5.

2.3. Implementation Details

The training and testing sets are partitioned into patches by a sliding window with
overlap, the window size is determined by the voxel size and input size of the network,
and the overlap is a quarter of the window size. Only the prediction result without overlap
is used as the final result during the testing phase for avoiding the edge effect. Random
rotation around the z-axis is applied in the training stage for data augmentation. Hyper-
parameters r and d which control the number of points-profiles in each profile-stack and
the thickness of each points-profile are set to 1.0 m and 6, respectively, for training and
testing. We only select Test Site II without outliers in OpenGF for comparison because
the outliers have limited influences on the deep-learning-based GF method according to
Qin et al. [6].

The whole experiment is conducted on Ubuntu 18.04 with Pytorch 1.7.1. Adam [68] is
used for optimization with a batch size of 4. The actor and the critic network are updated
in turn at each iteration. The size of the repay memory is set to 3200. It takes about 72 h for
60,000 iterations on an Intel 6700HQ CPU and an NVIDIA RTX3090 GPU.
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Figure 5. Network Architecture. Where /2 and ×2 denote down-sampling and up-sampling, respec-
tively, with tensor stride size of 2, d2 and d3 denote dilation factor of 2 and 3, respectively, for sparse
dilated convolution.

2.4. Evaluation Metrics

The Overall Accuracy (OA), Intersection over Union (IoU), Root Mean Square Error
(RMSE), Matthews Correlation Coefficient (MCC), and Kappa Coefficient (KC) are adopted
for evaluation [6]. Let TP1/FP1 be the number of non-ground points with correct/incorrect
classification, TP2 and FP2 are similarly defined for ground points. The calculations are
as follows:

OA =
TP1 + TP2

TP1 + FP1 + TP2 + FP2
(7)

RMSE =

√
∑N

i=1(Ei − Ri)2

N
(8)

IoU1 =
TP1

TP1 + FP1 + FP2
(9)

IoU2 =
TP2

TP2 + FP2 + FP1
(10)

MCC =
TP1 ∗ TP2 − FP1 ∗ FP2√

(TP1 + FP1) ∗ (TP1 + FP2) ∗ (TP2 + FP1) ∗ (TP2 + FP2)
(11)

Pe =
(TP1 + FP2) ∗ (TP1 + FP1) + (TP2 + FP1) ∗ (TP2 + FP2)

(TP1 + FP1 + TP2 + FP2)2 (12)

KC =
OA− Pe

1− Pe
(13)
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IoU1 and IoU2 denote the intersection over the union of the non-ground class and
ground class. N denotes the number of pixels while Ei and Ri denote the corresponding
elevation value in the generated and ground truth DEM.

3. Experimental Results

In this section, we first make a comparison with the Minkowski sparse convolutional
neural network in Section 3.1 to illustrate the conflict between the spatial resolution and
contextual information and demonstrate the advantages of the SeqGP to acquire high
resolution with large context. In Section 3.2, we make comparisons to the baseline methods
of the OpenGF dataset, and further add the Dynamic graph CNN (DGCNN) [38] and
SCF-Net [69] for comparison. Section 3.3 includes the ablation studies. Finally, we examine
the generalization ability of the proposed methods in Section 3.4.

3.1. Comparisons with the Baseline Methods

We conduct an experiment based on MinkowUnet34C under different settings to
demonstrate its efficiency and drawbacks when dealing with the GF problem. We set the
spatial resolution (voxel-size) at 0.5 m, 1.0 m, and 1.5 m, and the corresponding spatial
context of 128 m, 256 m, and 384 m. Thus, the maximum size of the input sparse tensor is
fixed at 2563.

As shown in Figure 6, the network with the highest spatial resolution (0.5 m) produces
a fine result on Test site I; however, the large building roof, which spans more than 300 m,
has not been removed properly due to the lack of contextual information. As contextual
information increases, the large building roofs are correctly identified, but the incorrect
classification close to the ground surface increases at the same time. In theory, we could
set the high spatial resolution and large contextual information simultaneously (e.g., 0.5 m
voxel-size with 384 m contexts), but the memory footprint may rise unacceptably, as shown
in Figure 7. We set batch size 1 for a single forward pass and gain more than 20 Gb
maximum GPU memory consumption on Test Site II. On Test Site I, 24 Gb GPU memory is
insufficient to complete the whole prediction procedure when set at a spatial resolution
(voxel-size) of 0.5 m and 0.75 m with 384 m contextual information. Due to the intrinsic
characteristics of the sparse convolutional neural networks, GPU memory usage fluctuates
with data sparsity. Thus, we only consider the maximum value.

The quantitative comparison is shown in Table 2, our method obtains the highest OA
and lowest RMSE on both sites. The proposed method also obtains higher MCC and KC
compared with the baselines, which indicates a better classification result. The performance
is on par with the MinkowUnet with 0.5 m voxel size on Test Site I, which is mainly covered
by vegetation and small buildings. In this situation, a small scale of contextual information
(e.g., 128 m) is enough to determine non-ground objects. Notably, the proposed method
surpasses the baseline methods on Test Site II significantly on OA, RMSE, MCC, and KC.
Since an overly large context is required to remove large-scale objects (e.g., metropolitan
buildings). The proposed method shows superiority in dealing with a hybrid scenario due
to the ability to acquire high-resolution and large contextual information simultaneously
under limited computational resources.

Table 2. Comparison with MinkowUnet-based segmentation methods under different settings.

Method
Test Site I Test Site II

OA RMSE IoU1 IoU2 MCC KC OA RMSE IoU1 IoU2 MCC KC

MinkowUnet (0.5) 96.45 0.27 93.84 92.28 92.82 92.81 92.31 3.26 84.85 86.49 85.38 84.62
MinkowUnet (1.0) 93.84 0.27 89.62 86.86 87.49 87.49 93.15 1.47 86.70 87.63 86.64 86.31
MinkowUnet (1.5) 90.33 0.34 84.76 79.09 80.59 80.13 91.74 0.55 84.11 85.32 83.87 83.49

Ours 96.52 0.23 94.12 92.15 93.05 92.90 95.20 0.32 90.90 90.78 90.40 90.40
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Figure 6. Visualization of MinkowUnet34C-based segmentation methods under different settings.
(a) DSM, (b) 0.5 m voxel-size, (c) 1.0 m voxel-size, (d) 1.5 m voxel-size, (e) Ours (0.5 m voxel-size);
Points in red and blue denote the misclassified non-ground and ground points, respectively.
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Figure 7. Maximum memory usage of MinkowUnet34C-based segmentation method on the test set,
with a batch size of 1 and a coverage of 384 m for one forward pass.

3.2. Comparisons with State-of-the-Art Methods

We compare the deep-learning-based baseline of the OpenGF dataset, which include
PointNet++ [36], KPConv [39] and RandLA-Net [40]. We further conduct an experiment on
MinkowUnet34C [49] follow the configurations in [6], the voxel size for down-sampling is
set to 1.0 m. The Dynamic graph CNN (DGCNN) [38] and SCF-Net [69] are further added
for comparison. As shown in Figure 8, these methods produce the wrong classifications
on the large building roofs in Test Site II except SCF-Net. The KPConv, PointNet++, and
DGCNN fail to remove the large-scale man-made object due to the small sampling region
(contextual information) with a 1.0 m grid size, while RandLA-Net and MinkowUnet
produce relatively better results with fewer errors on large building roofs. The SCF-Net can
properly remove the large building, but the performance on Test Site I are relatively lower
than other baseline methods, the proposed method achieves lower RMSE than SCF-Net on
the two test sites. Notably, the proposed method obtained the best result on Test Site II with
large building roofs correctly removed. The quantitative results can be seen in Table 3. In
Test Site II, the proposed method outperforms the others, while the RMSE is ahead of theirs
significantly, demonstrating the advantages of the proposed method in dealing with large-
scale man-made objects while keeping terrain details. In Test Site I, our method surpasses
DGCNN, RandLA-Net, SCF-Net, and MinkowUnet34C on all the evaluation metrics but
is a little bit lower than the best result produced by KPConv. The main reason is that
KPConv obtains high spatial resolution with point-based representation, while sacrificing
the contextual information, which is caught in the dilemma mentioned in Section 1, and
thus produces obvious errors in Test Site II on building roofs, which deteriorates the final
DEM results.

Table 3. Comparison with the baseline methods of OpenGF.

Method
Test Site I Test Site II

OA RMSE IoU1 IoU2 OA RMSE IoU1 IoU2

PointNet++ 97.58 0.25 95.75 94.68 87.38 4.89 75.19 79.63
DGCNN 96.34 0.41 93.78 91.81 93.86 3.59 88.16 88.68
KPConv 97.79 0.20 96.10 95.17 91.09 3.87 82.44 84.67

RandLA-Net 96.29 0.29 93.74 91.65 94.96 1.20 90.38 90.42
SCF-Net 95.92 0.83 92.97 91.14 95.21 0.95 90.66 91.04

MinkowUnet 93.84 0.27 89.62 86.86 93.15 1.47 86.70 87.63
Ours 96.52 0.23 94.12 92.15 95.20 0.32 90.90 90.78
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Figure 8. Comparison with the baseline methods of the dataset; Points in red/blue denote the
misclassified non-ground/ground points, respectively; Results of these baseline methods are provided
along with the OpenGF project [6].
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3.3. Ablation Study
3.3.1. Module Effectiveness

We further study how the HCF module and the SeqGP strategy may affect the filtering
result. We integrate the MinkowUnet34C segmentation method described in Section 3.1
with the proposed HCF module and SegGP strategy and evaluate the performance of
the OpenGF dataset. As shown in Table 4, the iterative SeqGP strategy brings a 2.11
and 1.13 percentage improvement to the OA on Test Site I and Test Site II, which gives
credit for the memory efficiency of SeqGP, making it possible to obtain a high spatial
resolution with large contextual information, the detailed comparison with MinkowUnet
based segmentation methods are given in Section 3.1. The HCF module further increases
the OA by 0.57 and 0.92 percent, which is due to the HCF module bringing a larger receptive
field at the bottom of the network and leading to better awareness of contextual information.

Table 4. Ablation studies of the proposed algorithm.

Network
OA(%)

Test Site I Test Site II

MinkowUnet34C 93.84 93.15
MinkowUnet34C + SeqGP 95.95 94.28

MinkowUnet34C + HCF + SeqGP 96.52 95.20

3.3.2. Further Comparison of Different Network Architectures

We integrate the proposed SeqGP with different network architectures and demon-
strate the effectiveness of the HCF module. First, we extend the MinkowUnet34C, which
has four levels of residual convolution blocks to a deeper analog, which has one more
down-sampling operation and comprises five levels of residual convolution blocks. The
feature dimension in the fifth level is set to 512, which is doubled as it is in the fourth
level. This is the simplest way to make the network deeper and obtain a larger receptive
field. Second, we replace the fifth level of residual convolution blocks with the proposed
HCF module. The performances of the above networks are evaluated and the original
MinkowUnet34C stands as a baseline.

As shown in Figure 9, the proposed HCF module facilitates the removal of the large
building roof significantly. The explanations are that, when dealing with a large-scale ALS
point cloud, the points span at a larger range on the x–y plane, rather than on the z-axis,
which means that the effective down-sampling ratio is different for the z-axis and x/y-axis.
Especially at the bottom level of the network, the receptive field along the z-axis is sufficient.
In this situation, down-sampling is redundant and is likely to result in misclassifications
on flat terrains and large building roofs for the similarity of these two classes. Thus, the
proposed HCF module, which only conducts the down-sampling operation on the x-axis
and y-axis by a 3 × 3 × 1 convolution kernel with dilation, produces better results. Notably,
the number of parameters in the model with the HCF module is 237 M, which is almost
half of the five-level MinkowUnet34C (408 M).

3.3.3. Hyper-Parameters

Hyper-parameters r and d control the number of points-profiles in each profile-stack
and the thickness of each points-profile, respectively. The width of the profile-stack is
calculated as

Wp = (2r + 1) ∗ d (14)

We fix d and Wp to evaluate the influence of different r as shown in Table 5. On the
one hand, when fixing d to 1.0 m, a different value of r changes the contextual information
contained in the profile-stack, the best OA on Test Site I and Test Site II is achieved by
r = 4 and r = 8, which indicates that the optimal range of the context might change
according to different scenes. However, when setting r to 2, which leads to a relatively
small context, the performance degrades on Test Site I and Test Site II, while the other
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settings only cause small fluctuations on OA. This indicates that the contextual information
needs to be sufficient along the slicing direction (Wp ≥ 9 m). For a fair comparison, we set
r = 6, which is between r = 4 (best for Test Site I) and r = 8 (best for Test Site II), in the
other experiments. When the r is set to 6, the Wp is fixed to 13 m, which we believe may
produce fine results in most cases.DSM GT PMF CSF Ours

A
re

a 
4

A
re

a 
2

Ground TruthMinkowUnet34C MinkowUnet34C
(5-Levels)

MinkowUnet34C
+HCF(Ours)

DSM

Figure 9. Some visualized results on large buildings in Test Site II of different network architectures.
Points in red and blue denote the misclassified non-ground and ground points, respectively.

Table 5. Influence of number of points-profiles in profile-stack r with fixed width of the profile-stack
Wp to 13 m.

Number of
Points-Profiles

OA(%)

d = 1.0 m Wp = 13.0 m

Test Site I Test Site II Test Site I Test Site II

r = 2 94.89 88.76 96.77 95.75
r = 4 96.62 95.08 96.64 95.39
r = 6 96.52 95.20 96.52 95.20
r = 8 96.52 95.45 96.67 95.38

r = 10 96.53 95.29 96.64 95.39

On the other hand, when fixing Wp to 13 m, a different value of r may affect the
thickness of the points-profile, and may lead to a different number of iterations for the
sequential ground prediction process. The thicker the points-profile is, the fewer iterations
would be needed to retrieve all ground points because more points are classified in one
prediction step. The best OA on Test Site I and Test Site II are both achieved by r = 2,
which indicates that thicker points-profile even led to better performance. No significant
reduction has emerged in OA with different settings. Therefore, we set r = 6, which
produces relatively lower OA on both test sites than other settings, in the other experiments
to demonstrate the effectiveness of SeqGP.

The experiments demonstrate the robustness of the proposed method. With sufficient
contextual information (Wp ≥ 9 m), the larger d of points-profile thickness (smaller r) will
improve the efficiency without performance losses.
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3.4. Generalization Ability

We evaluate the proposed method on six testing areas in [34]. These areas are collected
from southern China while the OpenGF is collected from four different countries. Thus,
the test set shares a great domain gap with OpenGF on both terrain situations and the
point density.

The comparison is made with two classic GF methods to demonstrate the generaliz-
ability of the proposed SeqGP, including PMF [9] and CSF [14]. The implementation of PMF
in PDAL (https://pdal.io, accessed on 28 June 2021) and that of CSF in CloudCompare
(https://www.cloudcompare.org, accessed on 30 March 2022) are adopted, while several
combinations of parameters are evaluated to obtain the best results. For PMF, we tune the
maximum window size (10, 20) with slope parameters (0.1, 0.5, 1.0) and cell size (0.5, 1.0,
2.0). For CSF, we set the scene choice of Steep slope or Relief with the corresponding cloth
resolution (0.5, 1.0, 2.0). The best results on OA are selected for comparison. As shown
in Table 6, the proposed method achieves the best performance, which demonstrates its
generalizability to some extent. Some visualized results are shown in Figure 10.

DSM GT PMF CSF Ours

A
re

a 
4

A
re

a 
2

Ground TruthMinkowUnet34C MinkowUnet34C
(5-Levels)

MinkowUnet34C
+HCF(Ours)

DSM

Figure 10. Some visualized results on Southern China dataset. Points in red and blue denote the
misclassified non-ground and ground points, respectively. GT denotes the Ground Truth while PMF
and CSF denote the Progressive Morphological Filter and the Cloth Simulation Filter, respectively.

Table 6. Comparison with rule-based methods on the Southern China dataset.

Methods
OA(%)

Area1 Area2 Area3 Area4 Area5 Area6

PMF 88.67 90.06 85.77 91.66 81.38 70.45
CSF 89.23 87.84 82.00 90.56 81.94 73.36
Ours 92.9 93.78 85.68 95.49 87.84 77.55

4. Discussion
4.1. Memory Efficiency

In order to deal with large-scale buildings while keeping high spatial resolution for
details of the bare terrain, a large spatial context with a great number of points needs to
be fed into the deep network in a forward pass. As shown in Section 3.1, for the sparse-
convolution-based baseline, a compromised choice of voxel resolution and spatial context
lacks universality. A high voxel resolution (e.g., 0.5 m) leads to a better performance in
mountain areas while sacrificing spatial context, thus performing poorly in areas containing
large buildings. Meanwhile, a large spatial context (e.g., 384 m) leads to coarse voxels under

https://pdal.io
https://www.cloudcompare.org
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limited GPU memory as shown in Figure 7, thus resulting in more misclassifications in the
mountain areas. The best performance achieved by the baseline method is based on the
settings of 1.0 m voxel size with 256 m spatial context, which is a compromised choice and
demonstrates the conflict between the spatial resolution and the contextual information.
For the point-based methods, the KPConv [39] and RandLA-Net [40] perform spatial grid
sub-sampling to reduce the data volume. Similar to voxel-based methods, a large grid size
of sub-sampling may lose geometric information, and the grid size is set to 1.0 m for the
baseline methods of the OpenGF dataset [6]. Comparatively, the proposed GF pipeline
takes points-profile as feature extraction inputs and reduces the memory consumption
significantly, which makes it possible to process 384 m spatial context with 0.5 m voxel size
under limited GPU memory.

4.2. Slicing Direction

Theoretically, the points-profiles can be sliced along any horizontal direction, but in
practice, the large-scale ALS data is partitioned into square patches along x and y directions
in most cases. Thus, we only consider the x and y directions for points-profile generation
in this study. Throughout the whole experiment, the sequential ground prediction is
conducted in both x and y directions and the final result is obtained by equally weighting
the prediction probability of two directions. The influence of the slicing direction is shown
in Table 7. The different slicing direction causes small fluctuations in OA, which indicates
that the proposed method is not sensitive to the slicing direction and demonstrates the
robustness of SeqGP to some extent.

A more reasonable way to slice the points-profile is by considering the scan-line
information. However, the scanning direction is not always available in practice and
multiple scanning directions are commonly present. The scan-line information is not
provided in the datasets used in our study, thus we only use the x and y axis for points-
profile generation.

Table 7. Influence of slicing directions.

Slicing Direction
OA(%)

Test Site I Test Site II

x 95.80 94.33
y 95.86 94.50

x + y 96.52 95.20

4.3. Filtering Performance

Compared with the sparse-convolution-based baseline, the proposed GF pipeline
achieves the best performance on the evaluation metrics of OA and RMSE. The OA and
RMSE of the proposed method surpass that of the baseline method with 0.5 m voxel size
on Test Site I slightly, which indicate that though the original point clouds are partitioned
into points-profile, the correlation of adjacent profiles is recovered by the SegGP strategy;
thus, the classification performance under high spatial resolution is preserved. Meanwhile,
the proposed method outperforms the baselines significantly on Test Site II, which is
contributed to the ability of the proposed method for handling large spatial contexts with
high voxel resolution.

Compared with the baselines of OpenGF, the proposed SeqGP achieves state-of-
the-art performance on Test Site II, the RMSE of the proposed method surpasses that of
KPConv [39] and RandLA-Net [40] by 3.55% and 0.88%, respectively. Since the RMSE metric
measures the difference between the final DEM produced by GF and the ground truth,
it can evaluate the filtering performance more fairly than the OA metric. The proposed
method keeps the RMSE under 1% on Test Site II for the first time, which demonstrates the
advantage of the proposed method when dealing with large-scale ALS data. On Test Site I,
the RMSE of the proposed method (0.23%) ranks second, slightly below that of KPConv by



Remote Sens. 2023, 15, 961 19 of 23

0.03%, which indicates that the quality of the final DEM produced by the two methods is
about the same.

4.4. Network Architecture

A large spatial context with high voxel resolution leads to a large spatial size of the
input sparse voxels, on which a large receptive field is required for the neural network to
obtain global information. One simple approach is to extend the existing network structure
and build a deeper network. However, as shown in Section 3.3.2, directly extending the
MinkowUnet34C to a deeper analog may not obtain a satisfactory result. When it comes
to large-scale ALS point clouds, the spatial range of the horizontal direction mostly spans
larger than that of the vertical direction, which means that the effective down-sampling
ratio is different for the horizontal and vertical directions. In the meantime, to recognize
large buildings, the size of the required receptive field is larger in the horizontal direction
than in the vertical one. The proposed HCF module is motivated by the above observations,
the down-sampling operations in the HCF module are only performed horizontally, which
enlarges the receptive field along the horizontal direction while avoiding the information
losses in the vertical direction. The HCF module is stacked to the bottom of the network
because the down-sampling along both horizontal and vertical directions is necessary for
the early stage, the HCF module is only supposed to acquire a large receptive field along
the horizontal direction at the deepest level of the network. As can be seen from Figure 9,
the large buildings are properly recognized with the help of the HCF module.

4.5. Performances in Different Land Use Classes

We further analyze the performances of SeqGP in various land use classes. Since the
land cover annotations are absent in OpenGF, we manually collect three classes from the
test sites for discussion, including forests (steep areas), grasslands, and croplands. There
are ten samples in each class of forest and grassland, while the cropland class contains six.
The quantitative results, which are calculated by averaging across samples in each class, can
be seen in Table 8. On the whole, the SeqGP performs well in most situations. In croplands,
the SeqGP achieved an MCC of 91.81% and KC of 91.71%, which indicates the classification
result is good enough in this class. The main reason is that the croplands are relatively
more structured with fewer complex terrain situations than the other land use classes, and
thus easier for the network to distinguish. In grasslands, the IoU1 is lower than the other
classes. Since these areas are mainly covered by sparse and low vegetation, the amount
of ground points is much larger than that of non-ground points in these areas. Therefore,
the wrong classifications in non-ground points may cause obvious fluctuations of IoU1.
Some near-ground points of low vegetation are easy to be misclassified since the voxel size
is 0.5 m in our experiments. Further increasing the spatial resolution may alleviate this
problem. In steep forested areas, the GF performances degrade to some extent. Because
these areas are mainly covered by dense forests, the ground points are relatively sparse. In
this situation, the SeqGP are more sensitive to the direction of points-profile, using multiple
slicing directions and assembling prediction strategy may improve the performance.

Table 8. Performances in different land use classes.

Land Cover OA (%) RMSE IoU1(%) IoU2(%) MCC (%) KC (%)

Forests 96.26 0.19 95.13 79.03 86.21 85.64
Grasslands 95.08 0.05 85.11 92.32 88.29 87.58
Croplands 96.21 0.02 90.38 93.78 91.81 91.71

The per-sample evaluations are illustrated in Figure 11, in which we can observe
more variance in each metric in the steep forested areas than in the other two classes. It
demonstrates that the SeqGF is more robust in grasslands and croplands. Meanwhile,
the performance in steep forested areas is relatively weak. However, please note that
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the highest RMSE among the ten forest samples is around 0.2, which indicates a fine
performance according to the result of Tables 2 and 3.
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Figure 11. Per-sample performances in different land use classes.

4.6. Limitations and Future Work

Overall, the proposed SeqGP achieved competitive performance of ground filtering
on large-scale ALS point clouds. The extensive experiments demonstrate the universality
of the SeqGP when dealing with various scenes. However, there are still some limitations
of our study that can be improved in future research. First, the sparse voxel representation
has a unique advantage in dealing with large data volumes, but the voxelization process
may lose geometric details. In the meantime, the point-based methods can preserve the
original geometric information but have more limited spatial coverage. Incorporating
the advantages of the voxel and point representation is a promising direction for future
research on large-scale ALS point cloud processing. Second, as mentioned in Section 4.2,
the scan-line direction may be valuable information for points-profile partition, we plan to
examine this issue in more detail in future research.

5. Conclusions

A deep-learning-based GF framework dedicated to large-scale ALS point clouds is
investigated in this paper. We propose an iterative SeqGP strategy that utilizes DRL
algorithms to retrieve ground points based on the points-profile data organization. The
proposed method achieves state-of-the-art performance on the challenging test set of
OpenGF and shows good generalization ability on the Southern China dataset.

The proposed framework brings a novel solution to the large-scale GF problem. Under
limited computational resources, the proposed SeqGP alleviates the conflict between keep-
ing high spatial resolution and acquiring a large semantic context. Incorporating with the
HCF module, the proposed framework can remove large-scale man-made objects properly
while preserving sharp details of the bare terrain.
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2. Stereńczak, K.; Kraszewski, B.; Mielcarek, M.; Piasecka, Ż.; Lisiewicz, M.; Heurich, M. Mapping individual trees with airborne
laser scanning data in an European lowland forest using a self-calibration algorithm. Int. J. Appl. Earth Obs. Geoinf. 2020,
93, 102191.

3. Doneus, M.; Mandlburger, G.; Doneus, N. Archaeological ground point filtering of airborne laser scan derived point-clouds in a
difficult mediterranean environment. J. Comput. Appl. Archaeol. 2020, 3, 92–108.

4. Mezaal, M.R.; Pradhan, B.; Rizeei, H.M. Improving landslide detection from airborne laser scanning data using optimized
Dempster–Shafer. Remote Sens. 2018, 10, 1029.

5. Nie, S.; Wang, C.; Dong, P.; Xi, X.; Luo, S.; Qin, H. A revised progressive TIN densification for filtering airborne LiDAR data.
Measurement 2017, 104, 70–77. [CrossRef]

6. Qin, N.; Tan, W.; Ma, L.; Zhang, D.; Li, J. OpenGF: An Ultra-Large-Scale Ground Filtering Dataset Built Upon Open ALS Point
Clouds Around the World. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville,
TN, USA, 19–25 June 2021; pp. 1082–1091.

7. Vosselman, G. Slope based filtering of laser altimetry data. Int. Arch. Photogramm. Remote Sens. 2000, 33, 935–942.
8. Wang, C.; Tseng, Y. DEM gemeration from airborne lidar data by an adaptive dualdirectional slope filter. Int. Arch. Photogramm.

Remote Sens. Spat. Inf. Sci. 2010, 38, 628–632.
9. Zhang, K.; Chen, S.C.; Whitman, D.; Shyu, M.L.; Yan, J.; Zhang, C. A progressive morphological filter for removing nonground

measurements from airborne LIDAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 872–882.
10. Chen, Q.; Gong, P.; Baldocchi, D.; Xie, G. Filtering airborne laser scanning data with morphological methods. Photogramm. Eng.

Remote Sens. 2007, 73, 175–185.
11. Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogramm. Remote Sens. 2000,

33, 110–117.
12. Kraus, K.; Pfeifer, N. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J. Photogramm.

Remote Sens. 1998, 53, 193–203.
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