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Abstract: The light use efficiency (LUE) model has been widely used in regional and global terrestrial
gross primary productivity (GPP) estimation due to its simple structure, few input parameters, and
particular theoretical basis. As a key input parameter of the LUE model, the maximum LUE (Emax) is
crucial for the accurate estimation of GPP and to the interpretability of the LUE model. Currently,
most studies have assumed Emax as a universal constant or constants depending on vegetation
type, which means that the spatiotemporal dynamics of Emax were ignored, leading to obvious
uncertainties in LUE-based GPP estimation. Using quality-screened daily data from the FLUXNET
2015 dataset, this paper proposed a photosynthetically active radiation (PAR)-regulated dynamic
Emax (PAR-Emax, corresponding model named PAR-LUE) by considering the nonlinear response of
vegetation photosynthesis to solar radiation. The PAR-LUE was compared with static Emax-based
(MODIS and EC-LUE) and spatial dynamics Emax-based (D-VPM) models at 171 flux sites. Validation
results showed that (1) R2 and RMSE between PAR-LUE GPP and observed GPP were 0.65 (0.44) and
2.55 (1.82) g C m−2 MJ−1 d−1 at the 8-day (annual) scale, respectively; (2) GPP estimation accuracy
of PAR-LUE was higher than that of other LUE-based models (MODIS, EC-LUE, and D-VPM),
specifically, R2 increased by 29.41%, 2.33%, and 12.82%, and RMSE decreased by 0.36, 0.14, and 0.34 g
C m−2 MJ−1 d−1 at the annual scale; and (3) specifically, compared to the static Emax-based model
(MODIS and EC-LUE), PAR-LUE effectively relieved the underestimation of high GPP. Overall, the
newly developed PAR-Emax provided an estimation method utilizing a spatiotemporal dynamic
Emax, which effectively reduced the uncertainty of GPP estimation and provided a new option for
the optimization of Emax in the LUE model.

Keywords: gross primary production (GPP); light use efficiency (LUE); photosynthetically active
radiation (PAR); dynamic maximum LUE

1. Introduction

As the largest component of the terrestrial carbon cycle [1–3], the accurate estimation
of terrestrial gross primary productivity (GPP) is vital for understanding global carbon cycle
processes, climate changes, and ecosystem services [1,4–6]. To date, GPP estimation is difficult,
as no direct measures are available at regional and global scales. The eddy covariance flux
tower provides a direct measure of carbon dioxide (CO2) between the land surface and the
atmosphere that can be used for indirect GPP estimation [7]. Flux-based GPP has been widely
used as reference data for calibrating and validating GPP models [8–12]. With the development
of GPP estimation theories and methods in recent decades, researchers have developed many
remote sensing models for GPP estimation [3,13,14].

Light use efficiency (LUE) models have been widely used to estimate terrestrial GPP
at regional and global scales due to their theoretical basis, few parameters, and high
practicality [15]. Since Monteith [16] proposed the concept of LUE, following the theoretical
basis of LUE [17], researchers have optimized the input parameters for calculating LUE
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and developed dozens of LUE models [2]. As a key parameter of the LUE model, the
maximum LUE (LUEmax, same as Emax) is crucial for the accurate estimation of GPP and
for the interpretability of the LUE model. The Emax in existing LUE models can be roughly
divided into three main categories: (1) global constant Emax, such as the constant Emax
used in C-Fix [18] and EC-LUE [12]; (2) constant Emax for each type, such as the constant
Emax varying from vegetation types in MOD17 [17] and VPRM [19], the constant Emax for
C3 and C4 in VPM [10,20,21] and TEC [22], the constant Emax for sunlit and shaded leaves
in TL-LUE [23] and DTEC [24], and the constant Emax for different phenological stages
in TS-LUE [25]; and (3) dynamic Emax, such as the cloudiness index-regulated dynamic
Emax in CFlux [26], CI-LUE [27], and CI-EF [28], and the spatial dynamic Emax based on
the enhanced vegetation index (EVI) and visible albedo [29].

With the development of LUE models, an increasing number of researchers have con-
sidered Emax as a dynamic value rather than a constant. Dynamic Emax is more consistent
with vegetation physiology, and studies have proven that in their own study area, dynamic
Emax performed better than static Emax in GPP estimation [30,31]. Although researchers
have proposed methods to estimate dynamic Emax, the nonlinear response of vegetation
photosynthesis to solar radiation variation was rarely considered in these studies. As
the energy source of vegetation photosynthesis, solar radiation variation directly regu-
lated the vegetation Emax. Most LUE models implied a linear relationship between GPP
and PAR, which apparently ignored the saturation of vegetation photosynthesis to solar
radiation under high solar radiation. In fact, vegetation photosynthesis varies with the
dynamics of solar radiation [32]. For the low radiation situation, especially when vegetation
photosynthesis is limited only by radiation, photosynthesis would increase linearly with
increasing radiation. For the high radiation situation (plentiful radiation), photosynthesis
would become radiation-saturated and no longer respond to the changes in radiation
supply [32–36].

Considering the nonlinear response of vegetation photosynthesis to solar radiation [37],
this paper proposed a photosynthetically active radiation (PAR)-regulated dynamic Emax
(PAR-Emax, corresponding model named PAR-LUE) by using the quality-screened daily
GPP and PAR data from the FLUXNET 2015 dataset. The performances of PAR-LUE in
GPP estimation were evaluated based on the observed GPP and other LUE-based GPP
estimation results.

2. Data and Preprocessing
2.1. FLUXNET Data

The FLUXNET 2015 dataset (https://fluxnet.fluxdata.org/data/FLUXNET2015-dataset/
(accessed on 1 August 2022)) includes multiple temporal scales (e.g., half-hourly, hourly, daily,
weekly, monthly, and yearly) of observations, which contains the flux data of carbon, wa-
ter, and energy collected from 212 sites around the globe. Data were quality-controlled and
processed using uniform methods to improve the consistency and intercomparability across
sites [38,39]. In this paper, a total of 171 sites (1104 site-years) with high quality data (“NEE_QC”
> 0.75) were selected from the FLUXNET 2015 dataset (Figure 1), and the variables of the
daily “GPP_NT_VUT_MEAN” and ” SW_IN_F” were selected as the reference daily GPP
(g C m−2 d−1) and shortwave radiation (SR; W m−2). In addition, the daily PAR was
calculated using the site observed shortwave radiation according to the empirical formula
(i.e., PAR = 0.45× SR× 0.0864; MJ m−2). More details about the FLUXNET 2015 dataset can be
found in Pastorello, Trotta [38].

https://fluxnet.fluxdata.org/data/FLUXNET2015-dataset/
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Figure 1. Spatial distribution of selected FLUXNET 2015 sites. (Background is the map of the
MCD12Q1 in 2014; CRO: cropland (19 sites), CSH: closed shrub (2 sites), DBF: deciduous broadleaf
forest (22 sites), DNF: deciduous needleleaf forests (0 site), EBF: evergreen broad-leaf forest (11 sites),
ENF: evergreen needleleaf forest (44 sites), MF: mixed forest (8 sites), GRA: grassland (30 sites), OSH:
open shrub (11 sites), SAV: savanna (7 sites), WSA: woody savanna (6 sites), WET: wetland (11 sites)).

2.2. MODIS Data

Daily MODIS surface reflectance products (MCD43A4 Version 6) and 8-day composite
MODIS GPP products (MOD17A2H Version 6) with 500 m resolution were used in this
study. The MCD43A4 and MOD17A2H for each carbon flux site were downloaded from
the NASA MODIS/VIIRS Land Product Subsets (https://modis.ornl.gov/globalsubset/
(accessed on 1 August 2022)). All MODIS data were filtered according to their quality
label. MOD17A2H was used as one of the comparison data to evaluate the performance of
PAR-LUE in GPP estimation, and MCD43A4 was used to calculate visible albedo, EVI, and
land surface water index (LSWI). Albedo, EVI, and LSWI were calculated as follows:

Albedovisible = 0.331RRed + 0.424RBlue + 0.246RGreen (1)

EVI = 2.5 × RNIR − RRed
RNIR+6RRed − 7.5RBlue+1

(2)

LSWI =
RNIR − RSWIR
RNIR + RSWIR

(3)

where RBlue, RRed, RNIR, and RSWIR are the reflectances of the blue, red, near infrared (NIR),
and shortwave infrared (SWIR) bands, respectively.

3. Methods
3.1. PAR-LUE

The common structure of the LUE model can be formulated as follows:

GPP = PAR × FPAR × Emax × f (Ts) × f (Ws) (4)

where PAR is photosynthetically active radiation, FPAR is the fraction of absorbed PAR,
Emax is maximal light use efficiency, and f (Ts) and f (Ws) are the scaled environmental
stress indices of temperature and water on LUE, respectively.

Referring to the existing research results [10,21], FPAR, f (Ts), and f (Ws) were calcu-
lated as follows:

FPAR = (EVI − 0.1) × 1.25 (5)

https://modis.ornl.gov/globalsubset/
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TS =
(T − Tmin)(T − Tmax

)
(T − Tmin)(T − Tmax) − (T − Topt

)2 (6)

WS =
1 + LSWI

1 + LSWImax
(7)

where T is the daily temperature; Tmin, Tmax, and Topt are 0 ◦C, 40 ◦C, and 20 ◦C, respectively;
and LSWImax is the maximal LSWI in the growing season. Here, the growing season is
defined according to the date of 75 days before and after the date of maximal EVI (i.e.,
[date_EVImax–75, date_EVImax + 75]).

In the PAR-LUE model, we proposed a PAR-based method to calculate dynamic Emax
(i.e., PAR-Emax, and PAR-Emax = f (PAR)). Considering the nonlinear response of vegetation
photosynthesis to PAR, we developed the PAR-LUE model based on two hypothesises. First,
under the ideal condition that vegetation was only related to the PAR and unconstrained
by other biotic and abiotic conditions (i.e., FPAR, f (Ts), and f (Ws) are equal to 1), GPPi can
be represented as the product of PAR and Emax (8). Under the optimal temperature and
water conditions (i.e., T = Topt, LSWI = LSWImax), the f (Ts) and f (Ws) are equal to 1. For
the FPAR, the maximum value of measured [40] and remotely sensed FPAR (e.g., for the
formula (5), FPAR = 1 when EVI ≥ 0.9) are close or equal to 1. Second, the maximum GPP
(GPPmax) under different levels of PAR meets the ideal conditions (i.e., GPPi = GPPmax).

Using the quality-screened daily GPP and PAR data from the FLUXNET 2015 dataset,
the maximum value of GPP corresponding to PAR (PAR was sampled with a step of
1 MJ m−2) was sampled within the subrange of 1 ± 0.25 MJ m−2. Then, the sampled PAR
and GPPmax were fitted using cubic polynomial (9). Finally, combining Formulas (8) and (9),
PAR-Emax was calculated with Formula (10), and the corresponding model was named
PAR-LUE.

GPPi = PAR × Emax = PAR × f (PAR) (8)

GPPmax = a × PAR3 + b × PAR2 + c × PAR (9)

PAR-Emax= a × PAR2 + b × PAR + c (10)

where GPPi is the GPP under ideal conditions, and a, b, and c are fitting parameters of the
cubic polynomial.

As shown in Figure 2, the orange fit curve indicated the vegetation GPPmax under
different PAR levels, and the points below the fit curve indicated the true GPP constrained
by vegetation physiology and environmental factors. It is important to note that PAR-Emax
is the Emax of all vegetation in the ideal condition. For the differences in Emax among
vegetation types, it is expected that the EVI-based FPAR can regulate those differences
under the framework of the LUE model.

3.2. Reference LUE Model

In this paper, static Emax- and spatial dynamic Emax-based LUE models were built as
reference models (named EC-LUE and D-VPM, respectively) to examine the performances
of the newly developed PAR-Emax-based model (PAR-LUE) under the same LUE model
framework. Among those models, only Emax is different. Specifically, the static Emax is
2.14 g C m−2 MJ−1 [12], while the spatial dynamic Emax (named RS-Emax) is calculated
according to the EVI and albedo [29]:{

Emax= exp(1.428MaxE − 6.295MinVa − 1.211) , MaxE > 0.07
Emax = 0, MaxE ≤ 0.07

(11)
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where MaxE and MinVa are the maximal EVI and minimal visible albedo in the growing
season, respectively.

Figure 2. Schematic of PAR-Emax based on the relationship between daily observed GPP and PAR.
(The color from purple to yellow indicates that the point density increases gradually. The orange
fit curve indicates the vegetation GPPmax at different PAR levels, and the dashed curves from
top to bottom are fitted curves at the 99th, 98th, 95th, and 90th percentiles of GPPmax. The fitted
curve indicates the unconstrained ideal GPP, while the points below the curve indicate the true GPP
constrained by vegetation physiology and environmental factors.)

3.3. Accuracy Evaluation

Two criteria were used here to evaluate model performance, including the determi-
nation coefficient (R2) and root mean square error (RMSE). In addition to the validation
with observed GPP from FLUXNET sites, the performances of the PAR-LUE model in
GPP estimation were compared with that of the MOD17 algorithm, EC-LUE and D-VPM
from multiple dimensions, such as overall accuracy (8-day and annual), accuracy of each
vegetation type and the seasonal dynamics in typical sites.

4. Results
4.1. Comparison of Different Emax

Different PAR-Emax calculated usingthe different GPPmax sample percentiles have
similar performances in GPP estimation (Table 1). With the decrease in the GPPmax sam-
ple percentile, the R2 between the PAR-LUE-estimated GPP and observed GPP slightly
increased, while the RMSE obviously increased (hereafter, PAR-Emax was calculated ac-
cording to GPPmax). At all selected flux sites, the spatiotemporal dynamic ranges of daily
PAR-Emax and RS-Emax were 1.86–3.85 g C m−2 MJ−1 and 0.73–4.39 g C m−2 MJ−1, re-
spectively (Figure 3). Obviously, the variation range of RS-Emax was larger than that of
PAR-Emax, and both dynamic Emax contained a constant value of 2.14 g C m−2 MJ−1.

PAR-Emax showed significant seasonal dynamics, which presented as a “U” shaped
variation in a natural year (Figure 4). The seasonal trends of PAR-Emax were relatively
similar at the 10 typical vegetation sites, and their annual minimal PAR-Emax values were
close to 2.14 g C m−2 MJ−1. However, although RS-Emax showed spatial and interannual
variations, there was no seasonal dynamic.
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Table 1. PAR-Emax estimation coefficients and GPP estimation accuracy under different sampling percentiles.

Percentile a b c R2 RMSE

100th 0.00030 −0.12376 3.84951 0.61202 2.8979
99th −0.00039 −0.06768 2.59194 0.61019 2.9812
98th 0.00052 −0.09087 2.52062 0.61343 3.1780
95th 0.00073 −0.09035 2.24867 0.61492 3.4993
90th 0.00033 −0.07156 1.91375 0.61463 3.7946

Figure 3. Variation range comparison of three daily Emax at all selected flux sites. (The top and
bottom edges of the box are the 75% and 25% quartiles, respectively; the short horizontal line and the
small square in the middle of the box are the median and mean, respectively; the shape of the violin
displays frequencies of values.)

Figure 4. Seasonal dynamics comparison of three Emax at typical sites. Ten sites from different
vegetation types were selected and shown in two adjacent years (2011–2012) to exhibit the differences
in seasonal variation among the three Emax.
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4.2. Comparison of GPP Estimation

The overall estimation accuracy of PAR-LUE GPP was better than that of MODIS
GPP, EC-LUE GPP, and D-VPM GPP (Figure 5). Compared with MODIS GPP, EC-LUE
GPP, and D-VPM GPP at the 8-day scale, the R2 between PAR-LUE GPP and observed
GPP increased by 12.07%, 1.56%, and 8.33%, and the RMSE decreased by 0.18, 0.09, and
0.41 g C m−2 MJ−1 d−1, respectively. At the annual scale, R2 increased by 29.41%, 2.33%,
and 12.82%, and the RMSE decreased by 0.36, 0.14, and 0.34 g C m−2 MJ−1 d−1, respectively.
Although the GPP estimation accuracies of PAR-LUE and EC-LUE were closer in R2 and
RMSE, EC-LUE obviously underestimated the high GPP. Overall, PAR-LUE showed better
performances than the reference LUE models in GPP estimation, especially in reducing the
underestimation of high GPP. From the performances of LUE models in different vegetation
types (Figure 6), the GPP estimation accuracy of PAR-LUE was generally comparable to
that of EC-LUE and D-VPM in most types.

Figure 5. Accuracy comparison of GPP estimated from different LUE models. (a–d) show the 8 daily
results, and (e–h) show the yearly results.

Figure 6. Accuracy comparison of GPP estimated from different LUE models in different vegeta-
tion types. (a) Comparison of RMSE at the 8-day scale, (b) comparison of R2 at the 8-day scale,
(c) comparison of RMSE at the yearly scale, and (d) comparison of R2 at the yearly scale.
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The comparison at typical sites in the Northern Hemisphere showed that PAR-LUE,
EC-LUE, and D-VPM were all in good agreement with the observed GPP in characterizing
seasonal dynamics (Figure 7). In the majority of vegetation types, the PAR-LUE GPP was
in better agreement with the observed GPP, which is evidenced by a smaller RMSE and a
closer regression slope to 1. For example, at the evergreen coniferous forest site (Figure 7c),
although the GPP estimated using the three LUE models showed very high agreement with
the observed GPP (R2 ≥ 0.93), the PAR-LUE-estimated GPP was closer to the observed
GPP throughout the growing season (smaller RMSE and closer slope to 1); at the closed
shrub site (Figure 7g), the PAR-LUE GPP was closer to the observed GPP during the rising
and falling phases of the growing season.

Figure 7. Comparison of GPP seasonal variation at typical sites. Eight site-year samples ((a–h), Lat:
latitude; Lon: longitude; see Figure 1 for vegetation types) with similar or concurrently higher R2 values
were selected to exhibit the better performance of the PAR-LUE model in further reducing the RMSE.
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5. Discussion

As the direct energy source for vegetation photosynthesis, solar radiation directly de-
termines the light use efficiency of vegetation. Therefore, Emax should have corresponding
spatiotemporal dynamics to the background of spatiotemporal solar radiation variation.
The spatiotemporal dynamics of Emax were the result of the long-term adaptation of vegeta-
tion to variations in solar radiation (especially seasonal variations), and vegetation usually
has different Emax values under different radiation conditions. The seasonal dynamics of
PAR-Emax presented in this paper show a “U”-shaped trend, with a large value in spring
and autumn and a small value in summer. During vegetation green-up, vegetation has a
large Emax to make full use of the limited PAR and thus promote vegetation growth and
development. However, during the peak growing season, solar radiation is more abundant,
and vegetation photosynthesis tends to be saturated (high solar radiation will even reduce
photosynthesis) and has a relatively small Emax. There were similar explanations in the
studies of Chapin and Matson [32] and Mõttus and Sulev [34]. The study of Propastin and
Ibrom [41] in a tropical rainforest found that the LUE model would overestimate vegetation
GPP under high radiation conditions if the saturation effect of vegetation photosynthesis on
solar radiation is not considered. In addition, some studies showed that Emax was different
in clear and cloudy skies [37], as well as in sunlit and shaded leaves [31], which partly
explains the influence of PAR on Emax. Some cloudiness indices that regulate Emax used in
CFlux [26], CI-LUE [27], and CI-EF [28] can also be considered a sort of radiation-regulated
Emax because the cloudiness index was calculated based on PAR [42].

In this paper, a cubic polynomial function was used to calculate PAR-Emax, which
is simple to calculate and easy to fit. The fitted curve can effectively characterize the
relationship between PAR and GPP in the actual range of PAR variation, and the shape of the
fitted curve is consistent with existing studies [32–34,36]. The Emax can be estimated based
on different data and methods, and there are differences in their physical meanings [43].
Some studies estimated Emax based on the flux data observed during the peak growing
season [44–46], which obtained the specific Emax under radiation saturation. In terms of the
full growing season, Emax of the peak growing season is only a special case of its seasonal
dynamic changes. For example, the specific constant Emax used in the EC-LUE model was
comparable to the seasonal minimum of PAR-Emax (Figure 3). In the comparison of Emax
defined by different studies, extra attention needs to be paid to their essential meanings.
For example, the study of Zhang and Xiao [43] indicated that the daily Emax exhibits less
variation across biome types and seasons, which contradicts the spatiotemporal dynamics
of PAR-Emax. It is important to note that the Emax defined by Zhang and Xiao [43] contains
the FPAR, while the FPAR in PAR-Emax is assumed to be 1. In terms of seasonal trends,
PAR-Emax was consistent with the reference LUE in the study of Zhang and Xiao [43].

Dynamic Emax-based PAR-LUE performed better in GPP estimation than that of
constant Emax-based MODIS GPP and EC-LUE. In terms of GPP estimation accuracy alone
(R2 and RMSE), EC-LUE was comparable to PAR-LUE in GPP estimation. However, the
PAR-LUE mitigated the underestimation of high GPP, which is a nonnegligible contribution
to an accurate estimate of total annual GPP. The constant Emax in the EC-LUE model, as a
special case of dynamic Emax, is one of the reasons for its comparable ability to estimate
GPP (especially R2) with the PAR-LUE model. On the one hand, the GPP values at the
beginning and end of the growing season were relatively small, so only a minor difference
existed between the GPP estimated by the constant and dynamic Emax. For example, in the
comparison of the seasonal variation in GPP at typical sites in the Northern Hemisphere
(Figure 7), EC-LUE and PAR-LUE showed similar R2 values, but the seasonal dynamics
of PAR-LUE GPP were closer to the observed GPP. On the other hand, the accuracy of
other input parameters in the LUE model may inhibit the ability of dynamic Emax to
improve the accuracy of GPP estimation. In addition, compared with the spatial dynamics
of Emax-based D-VPM, PAR-LUE has two advantages in addition to the improvement
in precision. First, PAR drives vegetation photosynthesis more directly than albedo, the
Emax constructed by PAR is more theoretical than that of albedo, and PAR-Emax has both
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spatial and temporal dynamic characteristics. Second, the estimation of spatial dynamic RS-
Emax requires remote sensing data in a whole growing season (it requires the maximum
EVI and minimum albedo of the whole growing season), which limits its application in
near-real-time GPP estimation, while PAR-Emax is not affected by this.

The accuracy validation results showed the reasonableness and reliability of PAR-
Emax. However, PAR-LUE still has room for improvement. First, the accurate estimation
of PAR-Emax requires a large number of high-quality observations. Limited by site rep-
resentativeness and data quality, PAR-Emax may have some errors in the specific values.
A large number of high-quality observations will help to improve the performance of
the PAR-LUE model. Second, PAR-Emax characterizes the Emax of all vegetation, and it
was thought that the EVI-based FPAR could constrain the differences in PAR-Emax across
vegetation types in the PAR-LUE model. However, from the performances of PAR-LUE in
estimating vegetation GPP (Figures 5–7), FPAR was able to partly characterize differences
in vegetation types, but its ability to constrain PAR-Emax was still limited. Obviously, the
PAR-Emax of different vegetation types can be obtained based on vegetation type data, but
it will be limited by the quality of vegetation type data, and it is difficult to characterize
the spatially continuous variation in terrestrial vegetation with vegetation type data. It
is hoped that further research can introduce a factor that can characterize the spatially
continuous variation in vegetation photosynthetic capacity in PAR-LUE to improve the
theory of the PAR-LUE model and the accuracy of GPP estimation. Finally, the effect of
other input parameters of the LUE model on the accuracy of GPP estimation needs to be
further analyzed to reduce the interference from other input parameters on the contribution
of Emax parameter optimization to the improvement of GPP estimation.

6. Conclusions

Considering the nonlinear response of vegetation photosynthesis to solar radiation,
we proposed a new Emax with spatiotemporal dynamics (PAR-Emax, model denoted PAR-
LUE), with using the daily PAR and GPP data observed from the flux tower, based on the
assumption that GPP is only determined by PAR and Emax under ideal conditions. Flux
data-based validation results showed that the accuracy of PAR-LUE-estimated GPP was
better than that of constant and spatially varied Emax-based models. The PAR-LUE was
suitable for remote sensing based GPP estimation of most vegetation types at regional and
global scales. Overall, the newly developed PAR-Emax provided an estimation method of
spatiotemporal dynamic Emax, which effectively reduced the uncertainty of GPP estimation
and provided a new option for the optimization and development of dynamic Emax in the
LUE model.
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