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Abstract: The continuous transformation from biodiverse natural forests and mixed-use farms into
monoculture rubber plantations may lead to a series of hazards, such as natural forest habitats
fragmentation, biodiversity loss, as well as drought and water shortage. Therefore, understanding the
spatial distribution of rubber plantations is crucial to regional ecological security and a sustainable
economy. However, the spectral characteristics of rubber tree is easily mixed with other vegetation
such as natural forests, tea plantations, orchards and shrubs, which brings difficulty and uncertainty
to regional scale identification. In this paper, we proposed a classification method combines multi-
source phenology characteristics and random forest algorithm. On the basis of optimization of input
samples and features, phenological spectrum, brightness, greenness, wetness, fractional vegetation
cover, topography and other features of rubber were extracted. Five classification schemes were
constructed for comparison, and the one with the highest classification accuracy was used to identify
the spatial pattern of rubber plantations in 2014, 2016, 2018 and 2020 in Xishuangbanna. The results
show that: (1) the identification results are in consistent with field survey and rubber plantations
area generally shows a first increasing and then decreasing trend; (2) the Overall Accuracy (OA)
and Kappa coefficient of the proposed method are 90.0% and 0.86, respectively, with a Producer’s
Accuracy (PA) and User’s Accuracy (UA) of 95.2% and 88.8%, respectively; (3) cross-validation was
employed to analyze the accuracy evaluation indexes of the identification results: both PA and UA
of the rubber plantations stay stable over 85%, with the minimum fluctuation and best stability of
UA value. The OA value and Kappa coefficient were stable in the range of 0.88–0.90 and 0.84–0.86,
respectively. The method proposed provides reliable results on spatial distribution of rubber, and
is potentially transferable to other mountainous areas as a robust approach for rapid monitoring of
rubber plantations.

Keywords: Google Earth Engine (GEE); identification; phenology windows; rubber plantations;
random forest algorithm; sample optimization

1. Introduction

Rubber, a tropical evergreen broad-leaved vegetation, originates from the Amazon
basin forest of South America. As the only renewable green energy material among the
four major industrial raw materials, rubber is known for its economic values and carbon
sequestration potential [1,2]. With the increasing demand for rubber in national defense
and latex production, the planting area of artificial rubber plantations has shown a trend of
substantial growth and continuous expansion in tropical rainforest areas worldwide [3–6].
As of June 2022, the Association of Natural Rubber Producing Countries (ANRPC) reported
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that the global natural rubber production is 1.113 million tons, with an increase of 3.8%
over the same period in 2021, while global consumption is expected to grow at a faster
pace of 5.8% over the same period, to 1.206 million tons. Driven by market demand and
the economy, rubber planting areas have been transplanted from traditional growing areas
to and is now cultivated in almost all tropical zones (Malaysia, Laos, Myanmar, Thailand,
Vietnam, Cambodia, etc.) in the past 20 years, with a transplanting area over 1 million
square hectares [7–9].

Xishuangbanna Dai Autonomous Prefecture (XSBN) lies in the core area of the “One
Belt and One Road” policy, and its strategic location has constantly drawn attention.
Moreover, short-term economic incentives, weak enforcement of regulations and suitable
climate of rainy and hot conditions make XSBN the most important rubber cultivation
area in China. Meanwhile, the Sloping Land Conversion Program (SLCP) in China clearly
banned slope shifting cultivation and encouraged planting of trees, which also accelerated
the replacement of shifting cultivation with rubber plantations from the valleys onto
progressively higher and steeper slopes, and even into the Nature Reserves. During the
last decades, the rubber plantation area ratio in XSBN has climbed from 1.3% in 1976
to 22.14% in 2014, and has become the most dominant land use type in the region [10].
Compared with natural forests, commercial monoculture rubber plantations on steep
highlands have many characteristics conducive to land degradation and environmental
problems. First, it is more difficult for newly reclaimed rubber plantations on slopes to
achieve long-term vegetation cover stability; since rubber has only one species and a simple
vegetation structure, the interception of rainfall by covers becomes weak, leading to high
soil erosion risk and reduced soil productivity. Second, the low water keeping capacity
of the soil makes it vulnerable to climate change and human activities. Third, exotic
monoculture rubber plantations are ’forests’ indeed, but are intensively managed, treated
with fertilizers, herbicides and fungicides and negative to biodiversity [11–13]. Despite the
fact that cultivation of rubber could act as a carbon sink by sequestering carbon in biomass
and indirectly in soils; however, for most cases, the sharp growth of rubber and the drastic
land use change process (mainly from natural forests to rubber plantations) also resulted
in a series of ecological and environmental problems, such as the weakening ecosystem
deforestation, fragmentation of the remaining forest, land degradation and biodiversity
loss [14,15]. Therefore, it is of great significance to acquire accurate information on the
dynamic expansion process and spatial-temporal distribution pattern on rubber plantations
to achieve a sustainable development goal.

Traditional monitoring approaches for rubber plantations are mainly based on field
investigation, which are expensive and time-consuming, and continuous monitoring is
difficult to achieve due to the poor timeliness of the data [16]. Remote sensing is a science
and technology that detects, analyzes and studies the earth’s resources and environment
based on the interaction between electromagnetic waves and the earth’s surface materials,
and reveals the spatial distribution and dynamic change characteristics of various elements
on the earth’s surface [17]. Due to the advantages of strong timeliness and little human
interference, it has been frequently employed in research such as LUCC, crop identification
and vegetation phenology monitoring [18–24]. Although remote sensing technology has
become a widespread approach in rubber plantations mapping [25], the majority of studies
are still in the exploratory stage and the following obstacles remain unsolved: (1) Rubber
is an evergreen broad-leaved vegetation, the spectral characteristics of which are easily
mixed with other vegetation types such as natural forests, tea plantations, orchards and
shrubs [26], and both supervised and unsupervised classification methods rely on spectral
characteristics, which are fraught with uncertainty [7,27]. (2) It has been demonstrated
that for rubber in the tropical northern fringe area, south of the Tropic of Cancer, a unique
phenomenon of leaf fall will take place under low temperature environment during the
dry season [28–30]. The emergence of this phenology feature provides a new idea for
the effective identification of rubber plantations. Relevant studies have been conducted
and many results have been achieved based on phenology characteristics of MODIS time
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series data [31–33]. However, the coarse spatial resolution (250 m–1000 m) of MODIS data
has great limitations in plateau mountainous areas with complex terrain fragmentation,
and difficult to identify rubber plantations with scattered distribution [34,35]. (3) The
appearance of medium and high spatial resolution remote sensing images provides a
new way to identify rubber plantations. Although Landsat series images were used to
establish time series data for rubber information acquisition in some studies [30,36–38], still,
frequent cloudy and rainy weather greatly reduces the availability of images since most
rubber plantations are distributed in tropical or subtropical rainforest areas with mixed
vegetation [29,35,39]. It is unrealistic to establish long time series data only through optical
images of a single sensor.

Compared with optical images, Synthetic Aperture Radar (SAR) is not affected by
cloud and fog weather, possesses the properties of penetration and anti-interference, and
can gather efficient ground observation data all day long [40]. Some scholars extracted
forests distribution according to different polarization modes of HH (horizontal emission
and horizontal reception) and HV (horizontal emission and vertical reception) between
forests and other vegetation types [19,28,41–44], confirming that SAR data have significant
advantages in identifying tropical forests.

At present, the emergence of the cloud computing platform represented by Google
Earth Engine (GEE) breaks the traditional way of remote sensing data acquisition and
preprocessing. GEE has a powerful parallel computing ability and massive online remote
sensing datasets, making it possible to conduct remote sensing research of large area, long
time series and high spatial-temporal resolutions [45].

Low spatial resolution remote sensing images have obvious limitations in mountain-
ous regions with fragmented and complex terrain, making it difficult to identify rubber
plantations with small planting area. Besides, affected by cloudy and rainy weather, a
single satellite sensor cannot establish complete time series data. In this paper, we aim to
address the above challenges of mapping rubber plantation areas in topographically and
climatically complex settings. The specific objectives of this study are twofold: (1) Creating
a rubber plantation map with a spatial resolution of 10 m using a pixel-based classification
method integrated with phenology windows; (2) By combining the data with SAR, we hope
to improve the mixing of different height vegetation (such as tea plantations and rubber
plantations) and provide a reference for high-precision mapping and ecological protection
of rubber plantations in southwestern China and Southeast Asian countries.

2. Materials and Methods
2.1. Study Area

Xishuangbanna Dai Autonomous Prefecture (XSBN) lies in Yunnan Province, south-
western China, 21◦08′–22◦36′ N, 99◦56′–101◦50′ E, bordering Laos in the southeast and
Myanmar in the southwest, with a national border of 996.3 km long. The Lancang-Mekong
River flows through XSBN from north to south, and high mountains and deep valleys char-
acterize the whole territory [26], forming a landscape tilting from the north to the south [46].
The highest altitude is 2429 m, the lowest altitude is 477 m and the relative height difference
is close to 2000 m (Figure 1). With the Lancang River as boundary, the landform structure
in the eastern region is dominated by middle and low mountains and plateaus, and the
remnants of the Nu Mountain Range in the west, mostly basin landforms [47].

XSBN is located on the northern border of the tropics, south of the Tropic of Cancer,
and has a humid monsoon climate typical of the northern tropics. Due to the staggered
influence of terrain and monsoons, the climate is divided into two distinct dry and wet
seasons, but no clear four seasons. The wet season extends from late May to late October,
and the dry season last from late October to late May of the following year [48–50]. The
average annual rainfall ranges from 1138.6 to 2431.5 mm, with more than 80% of rainfall
occurring during the rainy season [51], and the average annual temperature is between
18.9–23.5 ◦C.
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The study area is rich in biodiversity; as one of the few tropical regions in China, XSBN
comprises only 0.2% of China’s land area, but harbors nearly 16% of plant species, 36.2%
of birds, 22% of mammals and 15% of amphibian and reptiles found in the country [52].
Distributed with the largest coverage area and the most abundant types of tropical seasonal
rainforests and tropical mountainous rainforests, XSBN is also the region with the most
complete preservation of tropical ecosystems in China [53]. With a total administrative
area of 19,124.5 km2, the state consists of one metropolis, two counties and three districts.
There are 13 ethnic minorities that make up 77.9% of the state’s total population, totaling
792,800 inhabitants [46].

XSBN’s unique climate and geographical environment provide favorable circum-
stances for the development of rubber plantations. As the economic value of rubber has
increased over the past decade, its cultivation area has expanded, and rubber has become
the predominant land use and land cover (LULC) type and economic pillar industry in the
region [26].

2.2. Data Sources and Preprocessing

The GEE platform was applied to acquire and pre-process the remote sensing data that
were used in the study. Due to the low availability of images caused by cloudy and rainy
conditions in the highland mountains, two data sources, multispectral (MSI) and synthetic
aperture radar (SAR), were used to combine the advantages of various sensors in terms
of temporal and spatial resolution to obtain complete time-series data. MSI data products
include Landsat-7/ETM+ surface reflectance (L7_SR), Landsat-8/OLI surface reflectance
(L8_SR) and Sentinel-2 MSI surface reflectance (S2_SR).

L7_SR and L8_SR are 2A-level data products obtained by LEDAPS (Landsat Ecosystem
Disturbance Adaptive Processing System) and LaSRC (Landsat Surface Reflectance Code)
algorithms after atmospheric correction. With a resolution of 30 m, a revisit time of 16 d,
and an amplitude of 185 km, the SR data products include the whole visible (VIS), near
infrared (NIR) and shortwave infrared (SWIR) spectrum. Both sets of data extend from
1999 to the present, making it possible to conduct large-scale, long-term studies for LULC
classification and vegetation phenology monitoring.

S2_SR is a 2A-level SR data product obtained after atmospheric and orthographic
correction, including 13 spectral bands from VIS, NIR to SWIR, and the wavelength range
is from 442.3 nm to 2202.4 nm. The spatial resolution is 10 m, 20 m and 60 m, the revisit
period of one satellite is 10 d, the two satellites are complementary and the revisit period is
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5 d. Because of its superiority in time, spatial and spectral resolution, Sentinel-2 imagery
has been broadly applied for LULC classification and other vegetation identification [23].

Benefiting from the calculation and data management mechanism of the GEE platform,
the resolution matching between different data sources too much can be achieved [40]. In
this study, the spatial resolution of the Landsat data is 30 m, and the GEE platform can
automatically sample to 10 m to match this resolution. At the same time, the coordinate
system is unified through the embedded algorithm, so that each pixel can accurately
represent the same range on the ground.

In order to obtain images that can cover the entire study area, the quantity and
availability of pixels in three multispectral datasets were evaluated. Specifically, (i) spatial
filtering: a 10 km buffer was generated first, and all images intersecting the buffer were
filtered; (ii) temporal filtering: the image availability of Landsat-7/ETM+, Landsat-8/OLI
and Sentinel-2, was considered and the time period was set from 2014 to 2020; (iii) attribute
filtering: based on cloudy pixels percentage and the QA60 de-clouding band, the cloud
mask function was used to eliminate cloud-influenced pixels from each image, and those
with acceptable quality were used in the subsequent surface parameter computation. For
the three data products, the final number of accessible images (Table 1), the total number of
observed pixels and the number of valid pixels (Figure 2) were determined.

Table 1. Total available images of Landsat-7/ETM+, Landsat-8/OLI and Sentinel-1/2 in this study.

Year
Dataset

S1_GRD L7_SR L8_SR S2_SR Total Size

2014 45 81 107 0 233
2015 168 81 106 0 355
2016 198 86 109 0 393
2017 227 83 105 0 415
2018 301 78 90 39 508
2019 329 87 112 736 1264
2020 347 75 105 742 1269
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The SAR data employed are the Sentinel-1 SAR Ground Range Detected (S1_GRD)
product, which is a first-level image dataset after Doppler Centroid Estimation, Single-
Looking Composite (SLC) focusing and post-processing. There are four bands in each
image, corresponding to four polarization combinations: horizontal transmit/horizontal
receive (HH), horizontal transmit/vertical receive (HV), vertical transmit/vertical receive
(VV) and vertical transmit/horizontal receive (VH), with a resolution of 10 m. Although
SAR data were unaffected by rain and cloud cover, noise has a significant influence on
data quality. We utilized the Sentinel-1 toolkit to further pre-process each scene image for
speckle filtering, thermal noise removal, terrain correction and radiometric calibration [54],
with ALOS 12.5 m DEM data used for the terrain correction step. The rectified images were
used to generate year-by-year time series data from 2014 to 2020, with the details of each
data product listed in Table 2.

Table 2. Detailed information of multi-sources remote sensing data used in this study.

Sensors Landsat-7/ETM+ Landsat-8/OLI Sentinel-2 A/B MSI Sentinel-1 C-SAR

L7_SR L8_SR S2_SR S1_GRD

Description

Blue/450–520 nm/30 m Blue/452–512 nm/30 m Blue/496.6(S2A)/492.1(S2B)
nm/10 m HH/5.405 GHz/10 m

Green/520–600 nm/30 m Green/533–590 nm/30 m Green/560(S2A)/559(S2B)
nm/10 m HV/5.405 GHz/10 m

Red/630–690 nm/30 m Red/636–673 nm/30 m Red/664.5(S2A)/665(S2B)
nm/10 m VV/5.405 GHz/10 m

NIR/770–900 nm/30 m NIR/851–879 nm/30 m NIR/835.1(S2A)/833(S2B)
nm/10 m VH/5.405 GHz/10 m

SWIR1/1550–1750 nm/30 m SWIR1/1566–1651 nm/30 m SWIR1/1613.7(S2A)/1610.4(S2B)
nm/20 m —

SWIR2/2080–2350 nm/30 m SWIR2/2107–2294 nm/30 m SWIR2/2202.4(S2A)/2185.7(S2B)
nm/20 m —

ALOS 12.5 m DEM data (https://search.earthdata.nasa.gov/search (accessed on 1
June 2022)) are collected from the ALOS (Advanced Land Observing Satellite) satellite
equipped with PALSAR sensors and a horizontal/vertical accuracy of 12.5 m that may be
used for all-weather, all-day land observation. The data were uploaded to the GEE platform
as one of the key features for the acquisition of information on the spatial distribution of
rubber plantations in our study.

Three non-homologous LULC products were prepared including: (1) ESA_2020_10m
data product jointly produced by European Space Agency produced in collaboration with
a number of global research institutions, (2) ESRI_Land_Cover_2020_10m data product
produced using deep learning methods by Environmental Systems Research Institute and
(3) Google’s near real-time 10 m resolution global LULC dataset Dynamic World generated
from Tensorflow deep learning framework using GEE and AI platform, based on Sentinel-2
MSI image. The above three sets of products are used to determine the input sample type
of the Random Forest classification algorithm, and the detailed information of each product
is shown in Table 3.

Table 3. The three non-homologous LULC data products used.

Name Spatial Resolution Categories Mapping Time Mapping Range Mapping Accuracy

ESA_2020_10m 10 m 11 2020 global 74.4%
Esri_2020_10m 10 m 10 2020 global 85%
Dynamic World 10 m 9 2020 global —

The sample data for training and validation was selected based on field investigation,
Google Earth high-resolution remote sensing images, as well as the mentioned three LULC
datasets. By using an integrated method of “stratified sampling + non-homogenous data
voting” with visual interpretation, 6569 sample points were finally obtained, including

https://search.earthdata.nasa.gov/search
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1051 natural forests, 843 cultivated land, 1000 tea plantations, 216 water bodies (rivers, lakes,
reservoirs, etc.), 459 impervious surfaces (building lands, highways, etc.) and 3000 rubber
plantations samples (Figure 3 shows a part of the sample data). All the sample points
that satisfied the requirements were randomly divided into 70% training sample data and
30% validation sample data for the Random Forest classification algorithm.
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Figure 3. The spatial distribution of six types of training and validation samples, including (S1) tea
plantations, (S2) water bodies, (S3) impervious surfaces, (S4) natural forests, (S5) cultivated land and
(S6) rubber plantations, are shown in this figure. S1–S6 are the sample points collecting areas and
high-resolution Google Earth remote sensing images corresponding to those areas.

The overall workflow used for rubber plantations distribution identification in XSBN
is presented in Figure 4, and it consists of the following steps: (1) sample selection opti-
mization; (2) determination of key phenology windows of rubber plantations; (3) input
feature optimization; (4) classification schemes design; (5) Random Forest classification and
validation; (6) accuracy assessment; (7) classification post-processing.
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2.3. Sample Selection Optimization

In order to accurately identify the spatial distribution information of rubber plantations
in XSBN, we optimized the method for selecting input samples. According to the actual
situation of the study area, land use and land cover types were divided into six classes:
natural forests, cultivated land, tea plantations, water bodies (river, lake, reservoir, etc.),
impervious surfaces (construction land, road, etc.) and rubber plantations.

Non-rubber plantations sample points (with exception of tea plantations) were selected
using a combination of “stratified sampling + non-homogeneous data voting” (Figure 5),
with pure image pixels of natural forests, cultivated land, tea plantations, water bodies,
impervious surfaces and rubber plantations classification consistent across the three data
products as the selection range (that is, all three non-homologous data products considered
which as the same type). We randomly generated sample points within the range.

To avoid localized clustering of sample points, the study area was gridded in blocks
of 10 km × 10 km based on the GEE platform’s online editing code. A fixed number of
sample points were then randomly generated within each grid to ensure that the sample
points were evenly distributed in the study area, and ineligible sample points within the
grid were removed through visual interpretation.

As none of the above-mentioned three sets of products partitioned the tea plantations,
the sample points of the tea plantations and rubber plantations were selected point-by-point
in combination with Google Earth high-resolution, long time series remote sensing images
as an auxiliary.

2.4. Determination of Key Phenological Windows of Rubber Plantations

We chose the Normalized Difference Vegetation Index (NDVI), which can effectively
reflect the density and intensity of the vegetation growth process using the calculation
between NIR band and Red band [55]; the Enhanced Vegetation Index (EVI) is an optimized
vegetation index that increases the sensitivity to high vegetation cover areas and enhances
the ability to monitor vegetation canopy changes at the same time [55,56]; the Land Surface
Water Index (LSWI) can effectively reflect plant canopy changes, soil moisture and soil
surface water content status [57], whereas the NDI_VV is extremely sensitive to vegetation
canopy orientation, structural changes and leaf water content [58,59]. NDI_VV, for instance,
can successfully distinguish vegetation, bare ground and building land; the particular
formula and explanation of each index are provided in Table 4.
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Figure 5. Combining stratified sampling with non-homogenous data voting, with (S1–S6) repre-
senting sampling areas for water bodies, cultivated land, impervious surfaces, natural forests, tea
plantations and rubber plantations, respectively.

Table 4. Calculation formulas of each spectral index and phenology window period of rubber plantations.

Indices Expressions Time Windows Phenology Stages

NDVI NDVI = ρnir−ρred
ρnir+ρred

01/09–02/09 Defoliation stage I
02/09–02/15 Defoliation stage II
02/15–03/01 Foliation stage I
03/01–03/15 Foliation stage II

EVI EVI = 2.5× ρnir−ρred
ρnir+6.0ρred−7.5ρblue+1

05/01–05/15 Vigorous growth stage I
05/15–06/01 Vigorous growth stage II
06/01–06/15 Vigorous growth stage III

LSWI LSWI = ρnir−ρswir2
ρnir+ρswir2

01/09–02/09 Defoliation stage I
02/09–02/15 Defoliation stage II
02/15–03/01 Foliation stage I
03/01–03/15 Foliation stage II

NDI_VV NDI_VV = VV−VH
VV+VH

02/15–03/07 Foliation stage I
03/07–03/15 Foliation stage II

FVC FVC = NDVI−NDVImin
NDVImax−NDVImin

01/09–02/09 Defoliation stage I
02/09–02/15 Defoliation stage II

TCT — 01/09–02/09 Defoliation stage I
02/09–02/15 Defoliation stage II

On the basis of three sets of non-homologous LULC classification datasets and high-
resolution Google Earth remote sensing images, 74 sampling areas were selected in the
study area (Figure 6), which contains 6 of the above land use and land cover classes.
Since XSBN is located in a tropical rainforest with mixed vegetation and easily affected
by cloud and rain, resulting in a low number of available images in the area, it is even
more difficult to ensure the quality of remote sensing images during the rainy season (the
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vigorous vegetation growing season) from May to October. In order to solve the problem
of incomplete multi-spectral coverage of the perennial time series data in the plateau and
mountain areas, the three datasets L7_SR, L8_SR and S2_SR were reconstructed (Figure 7a)
and the time series curves of NDVI, EVI and LSWI were reconstructed by a Harmonic
Analysis of Time Series (HANTS) [60] (Figure 7b).
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Figure 6. Construction process of time series curves for natural forests, cultivated land, tea plantations,
water bodies, impervious surfaces and rubber plantations: (a) selection of 74 sampling areas within
the study area; (b) collection of sample points with high-resolution images from Google Earth.

2.5. Feature Selection Optimization

Figure 7b shows the annual dynamic changes of rubber plantation and other land use
and land cover types in the four indexes of NDVI, EVI, LSWI and NDI_VV. Throughout
the year, both natural forests and rubber plantations have high NDVI values, and their
intra-annual curve variations are almost similar, showing a process of first a decline,
then a rise and then a slow decline. The NDVI of natural forests dropped to the lowest
value around July, and rose to the highest value around October. The NDVI values of
rubber plantations, however, are second only to natural forests, and have obvious seasonal
fluctuation characteristics. During the local rainy season, which lasts from late May to late
October, the rubber grows vigorously and has a stable and high NDVI value; during the dry
season, from November to May, the rubber enters a slow growth period and the NDVI value
decreases gradually; during the dry and hot period, from early January to early February,
the rubber experiences concentrated defoliation and the NDVI reaches its lowest value.
From early February to mid-March, the rubber entered the new leaf germination stage, and
the NDVI value began to rise. The EVI time series curves indicate that rubber has greater
EVI values than natural forests throughout the year. From late January to late March, the
spectral features of the two time series curves are similar; however, from late March to late
December, the spectral features of the two time series curves differ significantly; this time
period can be used to distinguish rubber from natural forests. The different intra-annual
variability patterns of the LSWI time series curves of rubber plantations and natural forests
may be utilized as an essential indication to distinguish between the two. The NDI_VV
curves reveal that the natural forests curves basically do not fluctuate throughout the
year, whereas the rubber and tea plantations, cultivated land and natural forests curves
vary significantly from January to March. This time period can be used to differentiate
between tea plantations, cultivated land and rubber plantations. The four time series
curves all reflect that the spectral curves of water bodies and impervious surfaces are
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significantly different from those of other land types. The spectral curves of tea plantations
and cultivated land have certain distinguishability with rubber plantations in different
time periods.
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To sum up, natural forests are the vegetation type that is most easily to be mixed
with rubber, but the vegetation index of rubber in the defoliation and foliation period are
significantly different from that of natural forests. Composite images of key phenological
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window periods of rubber were used as input features for the Random Forest classification
algorithm to avoid the influence of feature redundancy on the classification results. With the
help of GEE platform, the phenological period was further subdivided by median synthesis
(Table 4), while rubber defoliation during dry-hot periods in the dry season accounted for
73.87% of the annual defoliation [26]. Therefore, FVC [61] and Tasseled Cap Transformation
(TCT) are added to the study to obtain the brightness (TCT-BRI), greenness (TCT-GRE) and
wetness (TCT-WET) components [62–64] to highlight the leaf fall characteristics during this
period. Table 5 displays the transformation coefficients [65] used in our study.

Table 5. Multispectral imagery Tasseled Cap Transformation (TCT) coefficients.

Features
Bands

Blue Green Red NIR SWIR 1 SWIR 2

TCT-BRI 0.0822 0.1360 0.2611 0.3895 0.3882 0.1366
TCT-GRE −0.1128 −0.1680 −0.3480 0.3165 −0.4578 −0.4064
TCT-WET 0.1363 0.2802 0.3072 −0.0807 −0.4064 −0.5602

2.6. Random Forest (RF) Algorithm

Random Forest algorithm is a machine learning algorithm that can predict hundreds
of explanatory variables, and it employs decision trees as units to aggregate numerous
decision trees for classification, allowing for the categorization of vast quantities of higher-
dimensional data [66]. Compared with other classification algorithms, Random Forest
algorithm has the advantage of efficient training and less prone to overfitting. Furthermore,
the algorithm implicitly includes discriminant weights for the classification effect of each
metric to highlight features those are advantageous for classification [40].

2.7. Accuracy Assessment

On the basis of validation sample data (Figure 3), a confusion matrix was utilized
to compute OA, PA, UA and Kappa [67]. The four evaluation indexes were utilized to
examine the outcomes of rubber plantations identification. The OA and Kappa indices
were used to assess the overall score accuracy, while PA and UA were used to assess the
misclassification and omission errors among the LULC types [68], which were computed
as follows:

PA =
nii
n•i
× 100% (1)

UA =
nii
ni•
× 100% (2)

OA =

m
∑

i=1
nii

n
× 100% (3)

Kappa = p0−pe
1−pe

(p0 = OA , pe =

q
∑

i=1
ni•×n•i

n2 )

(4)

where i refers to the pixels; nii is the total number of pixels; m is the total number of
diagonal pixels of the confusion matrix; q is the number of classes in the confusion matrix;
ni• is the sum of row pixels of a class in the confusion matrix; n•i is the sum of column
pixels of a class in the confusion matrix.

2.8. Post-Classification Processing

The Random Forest classification algorithm is based on pixel-by-pixel classification;
hence, the ’Salt and Pepper’ phenomenon is difficult to avoid (when the pixels within a
single land type are identified as other classes) [69]. In order to reduce the influence of
noise on the classification results, we adopted the neighborhood mean filter algorithm,
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and sets a 3 × 3 median filter kernel to smooth and denoise the final rubber plantations
identification results to eliminate the impact.

3. Results
3.1. Phenological Characteristics of Rubber Plantations in XSBN

Rubber originally grew in evergreen broad-leaved forests in tropical areas; when it
was transplanted to XSBN, China, in order to adapt to the low temperature in winter
in this area, a unique phenomenon of leaf fall occurred. The spectral information of
rubber plantations and other LULC classes during defoliation and foliation stages differed
significantly (Figure 8).
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Figure 8. False color composite images of (a) Landsat-7/ETM+ (R/G/B = SR_B5/B4/B3), (b) Landsat-
8/OLI (R/G/B = B6/B5/B4) and (c) Sentinel-2 MSI (R/G/B = B11/B8/B4) in the defoliation, foliation
and vigorous growth stage of rubber plantations. As can be seen from the small area images,
the spectral characteristics of the rubber plantations in the defoliation and foliation stages were
significantly different from those of other land use/cover types, and the rubber plantations and
the natural forests were easily mixed in the vigorous growth stage. (A) Natural forests, (B) rubber
plantations, (C) impervious surfaces, (D) water bodies, (E) cultivated land are marked on the images.
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Figure 8 shows, from left to right, the three-band false-color composite images of
(a) Landsat-7/ETM+, (b) Landsat-8/OLI and (c) Sentinel-2 MSI, in the defoliation, foliation
and growth stages of the rubber plantations. Rubber plantations in the defoliation stage
seem shading yellow and may be distinguished from the deep green of natural forests, but
both natural forests and rubber plantations in the foliation stage are green but vary in tone.
The most difficult period to distinguish them is the period of vigorous growth; since both
are shown in dark green, it is difficult to distinguish them only by spectral characteristics.
Therefore, spectral reflectance differences in different phenology periods are critical in
distinguishing rubber plantations from other easily mixed LULC types.

3.2. Accuracy Comparison of Different Classification Schemes

Accuracy of the five classification schemes are shown in Table 6. The table demon-
strates that the classification accuracy derived from different feature combinations vary
a lot. In CS 1, the composite images of NDVI and EVI were used as input features for
classification. In CS 2, LSWI, elevation and slope were added on the basis of CS 1. In CS 3,
brightness, greenness and wetness are added on the basis of CS 2. In CS 4 and CS 5, FVC
and NDVI_VV index are gradually added on the basis of the previous classification scheme.

Table 6. Accuracy statistics of different classification schemes (%).

Water
Bodies

Impervious
Surfaces

Tea
Plantations

Cultivated
Land

Natural
Forests

Rubber
Plantations OA Kappa

CS 1
PA 100 92.0 61.1 94.1 87.5 92.4

87.4 0.82UA 100 94.8 76.3 88.2 87.5 88.0

CS 2
PA 100 91.3 61.4 96.5 87.3 93.9

88.4 0.83UA 100 93.3 79.2 94.2 87.3 88.0

CS 3
PA 100 94.2 60.0 96.9 88.2 93.9

88.5 0.84UA 98.4 92.9 79.1 95.3 86.3 88.2

CS 4
PA 100 94.2 60.0 96.4 88.5 95.1

89.0 0.84UA 98.4 92.9 83.7 95.0 87.1 88.0

CS 5
PA 100 94.9 62.7 96.5 89.1 95.2

90.0 0.86UA 98.4 92.9 84.4 95.3 88.2 88.8

Compared with the other four classification schemes, the OA and Kappa of CS 1 are
the lowest, which shows that the rubber plantations cannot be effectively identified only by
describing the two spectral index features of NDVI and EVI. After adding LSWI and Slope
based on CS 2, the OA and Kappa coefficient of CS 3 increased by 1% and 0.01, respectively,
compared with CS 1, and the PA of the rubber plantations increased by 1.5%, indicating
that LSWI can reduce the mix-classification between rubber plantations and other land
types. After we added FVC, TCT-BRI, TCT-GRE and TCT-WET features to CS 3, the OA and
Kappa coefficient of CS 4 increased by 1.6% and 0.02, respectively, and the PA of the rubber
plantations increased by 1.2% compared with CS 2; UA has not changed. CS 5 had the most
input features included in the classification and the best final classification accuracy, with
OA and Kappa coefficient values of 90% and 0.86, respectively.

By comparing CS 3, CS 4 and CS 5 (Figure 9), CS 3 has poor recognition results,
with mixed classification between rubber plantations and impervious surfaces, cultivated
land and natural forests. Meanwhile, it is easy to generate sporadic and fragmented
patches, which is quite different from the real distribution of ground objects. The optimal
combination of CS 5 (Type1 + Type2 + Type3 + Type4 + Type5) with the addition of
NDI_VV index provides the most accurate classification results and efficiently reduces
misclassification and omission between different categories.
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Figure 9. The classification results for CS 3, CS 4 and CS 5 rubber plantations are shown on a
comparison map. The green portion is the rubber plantations identification result, whereas the
bottom image is a high-resolution remote sensing image from Google Earth.

3.3. Accuracy Evaluation of Optimal Classification Scenarios

Table 7 shows the CS 5 accuracy evaluation confusion matrix, from which we can
see that: (i) there is a mixed classification phenomenon between rubber plantations and
tea plantations, cultivated land and natural forests, and the classification accuracy of
tea plantations is relatively low, mainly because the spectral and textural features of tea
plantations and rubber plantations are very similar. Although the phenology period
obtained based on the time series curve can effectively distinguish most tea plantations,
the broken terrain and mixed vegetation situation increases the difficulty and uncertainty
of identification. (ii) With the exception of tea plantations, the PA and UA values for
all LULC types are greater than 88%, with the PA values for water bodies, impervious
surfaces, cultivated land and rubber plantations above 94%, which could achieve better
classification results. (iii) For CS 5, the OA is 90.0%, Kappa coefficient is 0.86 and the PA
and UA of rubber plantations exceed 85%, which satisfies the spatial analysis and practical
application requirements.

Table 7. CS 5 accuracy evaluation confusion matrix (2020).

True Value
Predicted Value

Water Bodies Impervious
Surfaces

Tea
Plantations

Cultivated
Land

Natural
Forests

Rubber
Plantations

Water bodies 61 0 0 0 0 0
Impervious surfaces 0 131 1 0 0 0

Tea plantations 0 3 178 3 27 73
Cultivated land 1 5 0 245 0 3
Natural forests 0 0 6 0 285 29

Rubber plantations 0 2 26 3 11 835
PA (%) 100 94.9 62.7 96.5 89.1 95.2
UA (%) 98.4 92.9 84.4 95.3 88.2 88.8
OA (%) 90.0 Kappa 0.86

In order to further verify the stability of the accuracy of the CS 5, the sample data
were randomly divided into 10 sections, with 7 sections used to train the model and



Remote Sens. 2023, 15, 1228 16 of 22

3 sections used to test the accuracy after classification. The cross-validation was repeated
10 times to obtain the UA, PA (Figure 10), OA and Kappa (Figure 11) for rubber plantations
identification in 2014, 2016, 2018 and 2020.
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Figure 10 shows that after 40 cross-validations, the PA and UA of water bodies, im-
pervious surfaces, cultivated land, natural forests and rubber plantations can be stabilized
at more than 85%, with the UA values varying the least and being the most stable. The
values of PA and UA in tea plantations were lower (over 60% and 80%, respectively), and
the fluctuation was shape. Figure 11 shows that the OA and Kappa coefficient values
fluctuate between 0.82–0.94 and 0.82–0.88, respectively. The OA value is stable in the range
of 0.88–0.90 and the Kappa coefficient in the range of 0.84–0.86, which indicates the stability
and dependability of the CS 5.

Figure 12 shows the spatial distribution of XSBN rubber plantations in 2014, 2016,
2018 and 2020 obtained by CS 5. The total area of which are 4601.52 km2, 4691.50 km2,
4527.75 km2 and 4199.28 km2, respectively, showing a trend of increasing first and then
decreasing. The identification results in 2018 are consistent with the Third National Land
Resource Survey (sub-meter image combined with manual visual interpretation). As can
be seen from the figure, the rubber plantations are mainly distributed in Jinghong and
Mengla in the central and eastern regions, and relatively less in Menghai in the west. In this
study, three typical rubber plantations planting areas were randomly selected according to
different geomorphological characteristics and compared with Google Earth high-resolution
remote sensing images. The comparison results show that the rubber plantations in these
three areas can be accurately identified, and the identified boundary information is in good
agreement with the image, confirming the accuracy and effectiveness of the method.
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4. Discussion
4.1. Characteristics of the “Stratified Sampling + Non-Homogenous Data Voting” Method of
Sample Selection

How to effectively obtain accurate and reliable sample data has been one of the diffi-
culties and challenges in land use and land cover classification [70], especially for plateau
mountainous tropical rainforest areas with broken terrain and mixed vegetation (such as
XSBN). In this study, we proposed a method of “stratified sampling + non-homogenous
data voting” by using open, free and available 10 m spatial resolution LULC datasets. After
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obtaining the categories existing in the non-homologous dataset, the selected range of the
final sample points was determined by voting, which effectively reduced the error and
uncertainty of determining sample points from a single data source. Compared with the
traditional way of collecting samples in the field, this method is not only efficient and
convenient, but also objective and not affected by human. However, the limitation of this
method is that for tropical areas that do not have the characteristics of mountainous vertical
zones, the recognition accuracy of rubber forests will be greatly limited because of the
absence of the defoliation phenomenon.

From the identification results of rubber plantations and the research results of local
experts, the method proposed in this study provides reliable results for the spatial distri-
bution pattern of rubber plantations and is potentially transferable to other mountainous
areas as a robust approach for rapid monitoring of rubber plantations.

4.2. Uncertainty

Using the GEE platform, based on the Random Forest classification algorithm, the
spatial distribution information maps of rubber plantations in XSBN in 2014, 2016, 2018
and 2020 were drawn for the first time on a regional scale with a spatial resolution of
10 m. We have improved the spatial resolution and mapping accuracy to a certain extent,
and can capture more fine-grained ground object information. However, there are some
uncertainties due to data quality and availability, subtle differences in phenological periods
for different vegetation cover types and the designed algorithm. First, affected by geo-
graphic location and climate conditions, the availability of L7_SR, L8_SR and S2_SR is the
key to accurately identify rubber plantations. Although the GEE platform has embedded
cloud removal algorithms for various datasets, each algorithm is different in different
regions. Mistakes and omissions still occur and how to design appropriate cloud removal
algorithms for different terrains and areas with dense cloud cover needs further discussion
and research. Besides, although high classification accuracy can be obtained for rubber
plantations identification, there are still planting patterns of intercropping rubber planta-
tions and cash crops (rice, corn, pineapple or banana) in the study area, which will cause
remote sensing identification results to overestimate or underestimate the real planting
area of rubber plantations [34]. Third, there are obvious differences in spectral character-
istics between XSBN rubber plantations and other land types in defoliation and foliation
period by remote sensing images, which was consistent with the conclusions of previous
local studies [29,34,35,71,72]. However, through on-the-spot investigation, we find that
the phenology periods of rubber plantations in different years were slightly different, and
the phenology periods of different locations in the same area were also inconsistent. The
reason for this phenomenon may be related to topography, altitude and planting varieties
of rubber plantations. Finally, the RF algorithm is based on pixel-by-pixel classification,
and it is difficult to avoid the ‘salt and pepper’ phenomenon. Although the post-processing
method was adopted to optimize the classification results, these effects are still the main
problems faced by pixel classification. The introduction of object-oriented ideas and the
combination of machine learning algorithms will be the focus of future research.

Previous studies have doubted and addressed the negative impact of commercial
monoculture rubber expansion on carbon storage, deforestation and fragmentation impacts
on biodiversity and ecosystem services. Rubber provides an important cash income to
local smallholder farmers indeed, but in the perspective of capacity to support biodiversity,
ecosystem services and human well-being, socio-ecological solutions are required to combat
degradation and promote restoration at regional and landscape scales. A key challenge
in making decisions regarding the rubber expansion management is its complexity and
intractability. Tropical forests support a huge fraction of global terrestrial biodiversity and
account for 25% of the terrestrial carbon pool. Decisions need to consider the stakeholders,
collaborations and mutual interactions among different roles (e.g., governments, scientists)
in such a diverse region as XSBN. Through the shared understanding of the process and of
challenges in rubber expansion, such as forest ecology, carbon stocks, the use of technology



Remote Sens. 2023, 15, 1228 19 of 22

in management and the short and long run profitability, we would finally be able to achieve
sustainable development goals.

5. Conclusions

This study integrates multi-spectral and synthetic aperture radar data. The Landsat-
7/ETM+, Landsat-8/OLI and Sentinel-2 MSI image datasets were reconstructed. Based
on the time series curves of NDVI, EVI and LSWI with 10 m spatial resolution, the pheno-
logical information of rubber plantations was determined by combining NDI_VV index.
The characteristics of FVC, TCT-BRI, TCT-GRE, TCT-WET and topography were further
obtained, and five classification schemes were constructed. The Random Forest classi-
fication algorithm was used for classification, and the spatial distribution and dynamic
change maps of rubber plantations in XSBN in 2014, 2016, 2018 and 2020 were drawn.
The classification results were verified by OA, Kappa coefficient, PA and UA. The main
conclusions are as follows:

(1) By using available, free LULC datasets and Google Earth high-resolution images, the
sample selection process was optimized using the method of “stratified sampling
+ non-homogeneous data voting”, which effectively solved the problem of field
samples in plateau mountainous areas. Research papers with an insufficient number
of samples, often due to the high difficulty in obtaining them, are prone to errors
and omissions.

(2) Five classification scenarios were developed for rubber plantations throughout the
phenology period by integrating NDVI, EVI, LSWI, NDI_VV, TCT-BRI, TCT-GRE,
TCT-WET and FVC composite images, slope and elevation data. Compared to the
other scenarios, the addition of the NDI_VV index may significantly minimize the
misclassification of rubber plantations and tea plantations while improving accuracy,
which indicates the enormous potential of radar data in distinguishing tree species of
varying heights.

(3) The four accuracy evaluation indexes of UA, PA, OA and Kappa coefficient derived
from CS 5 were cross-validated, and the result indicated that the method proposed
provides reliable results on spatial distribution of rubber in the fragmented terrain and
mixed vegetation environment of highland mountainous regions, and is potentially
transferable to other similar areas as a robust approach for rapid monitoring of
rubber plantations.
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