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Abstract: The number of wheat ears is one of the most important factors in wheat yield composition.
Rapid and accurate assessment of wheat ear number is of great importance for predicting grain yield
and food security-related early warning signal generation. The current wheat ear counting methods
rely on manual surveys, which are time-consuming, laborious, inefficient and inaccurate. Existing
non-destructive wheat ear detection techniques are mostly applied to near-ground images and are
difficult to apply to large-scale monitoring. In this study, we proposed a sampling survey method
based on the unmanned aerial vehicle (UAV). Firstly, a small number of UAV images were acquired
based on the five-point sampling mode. Secondly, an adaptive Gaussian kernel size was used to
generate the ground truth density map. Thirdly, a density map regression network (DM-Net) was
constructed and optimized. Finally, we designed an overlapping area of sub-images to solve the
repeated counting caused by image segmentation. The MAE and MSE of the proposed model were
9.01 and 11.85, respectively. We compared the sampling survey method based on UAV images in this
paper with the manual survey method. The results showed that the RMSE and MAPE of NM13 were
18.95 × 104/hm2 and 3.37%, respectively, and for YFM4, 13.65 × 104/hm2 and 2.94%, respectively.
This study enables the investigation of the number of wheat ears in a large area, which can provide
favorable support for wheat yield estimation.

Keywords: density map regression; sampling survey; UAVs; wheat ear number

1. Introduction

Wheat is an adaptable and globally distributed food crop that is a staple food for about
one-third of the global population, which is also the most important food for trade and
international aid [1,2]. Therefore, wheat yield estimation methods have received extensive
research attention. The number of wheat ears, grains per spike, and grain weight are the
most important yield components of wheat. Several studies have shown that there is a
dynamic compensation mechanism among yield components, with sharp fluctuations in
the differences between other factors and yield correlations, but the correlation between ear
number and yield always remains stable at the strongest level [3–6]. Thereby, the number
of wheat ears has become an important indicator for studying wheat yield, and an accurate
estimation of the number of wheat ears is crucial for growers to predict wheat harvest
and growth trends [7–9]. Traditional survey of wheat ear number relies on manual work,
which is not only tedious and laborious, with limited sampling area, but also error-prone
and time-consuming, thus severely limiting the accuracy of yield prediction and causing
excessive estimation errors. Therefore, the development of an efficient and automated

Remote Sens. 2023, 15, 1280. https://doi.org/10.3390/rs15051280 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15051280
https://doi.org/10.3390/rs15051280
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-0873-3922
https://orcid.org/0000-0003-0372-6707
https://doi.org/10.3390/rs15051280
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15051280?type=check_update&version=2


Remote Sens. 2023, 15, 1280 2 of 16

survey method of wheat ear number is of great significance for wheat yield prediction. In
addition, it can provide a theoretical basis and technical support for early warning signals
related to food security.

Wheat ear counting is a crucial computer vision task. In the last decade, many
researchers have invested substantial effort in it due to its great potential for applications
(e.g., yield measurement and phenotypic analysis). There are three non-destructive methods
for wheat ear counting. One is the traditional image processing algorithms, which aim to
achieve wheat ear counting by manually screening feature parameters (color features and
texture features) [10–12]. This method is fast and low-cost. However, it requires manual
screening of features. If these features do not have adaptive thresholds, the accuracy will
be unstable in complex environments. The second method is object detection or semantic
segmentation based on deep learning algorithms, which aim to use convolutional neural
networks to fit region proposals or segment ears for counting [13–20]. This method can
generate features adaptively, which is less affected by complex environments and can locate
the position of wheat ears. However, it is not suitable for very small scale and scenes that are
too dense. The third method is density map regression based on deep learning algorithms,
which aim to use convolutional neural networks to generate high-quality density maps
to estimate wheat ear number [21,22]. The progress of this method compared with the
previous one is that it uses the location information of wheat ears to exchange, which is
well adapted to small and dense scenes.

Unmanned aerial vehicles (UAVs) are one of the main ways to obtain remote sensing
data at present. Compared with satellite remote sensing platforms, UAV remote sensing
has the advantages of simple operation, mobility and flexibility, rapid response, and low
cost. They have been used increasingly in agriculture in recent years, including crop yield
assessment, crop height monitoring, weed mapping, and biomass monitoring [23–26].
Wheat ear images acquired using UAVs are usually characterized by the diversity of
resolution, inconsistent lighting, and high density, which make crop counting extremely
difficult. As mentioned earlier, the deep learning algorithm can overcome this problem.
However, there are many kinds of deep learning algorithms. It is worth considering
selecting an appropriate method to match UAV images to achieve an efficient survey of
wheat ear numbers.

Crowd counting research provides a solution to the method selection for this study
because its scene is very similar to the wheat ear counting scene of UAV images [27].
Its density map regression algorithm mainly focuses on small-scale and dense crowd
scenes and is maturely developed [28–31]. This algorithm transforms (e.g., geometric
adaptive Gaussian kernel) the labeled target information into a probability density map
(ground truth), then uses end-to-end training to generate a high-quality density map
(predicted value), and finally determines the quantity by integration. In addition, the
location information of each wheat ear will not be taken into account during the survey, so
the weakness of this algorithm can be ignored.

Although we have preliminarily determined the method is suitable for wheat ear
counting on UAV images, in the actual survey process, there are problems in the UAV
image acquisition and algorithm matching. Therefore, we designed a UAV image sample
collection method and selected several density map algorithms to optimize it to adapt to
UAV images. This research will improve the efficiency of the field survey of wheat ear
numbers, and is of great significance for wheat yield estimation by UAVs.

2. Materials and Methods
2.1. Experiment

To construct wheat ear counting scenarios with different gradients, we conducted
field experiments over two consecutive years (2018–2019, 2019–2020) of variety, density
and nitrogen fertilizer experiments at two test stations. Specifically, the field experiment
of Ningmai No.13 (NM13) was carried out at Yazhou Agricultural Experimental Station,
including two densities (150 × 104 hm−2 and 300× 104 hm−2) and three nitrogen fertilizers
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(150 kg · hm−2, 225 kg · hm−2 and 300 kg · hm−2). The field experiment of Yangfumai No.4
(YFM4) was carried out at Diaoyu Agricultural Experimental Station, including two den-
sities (150 × 104 hm−2 and 300 × 104 hm−2) and three nitrogen fertilizers (150 kg · hm−2,
225 kg · hm−2 and 300 kg · hm−2). The strip field with the size of 3 × 30 m, and each cell
was treated in the same way for two years. The overview of the study area is shown in
Figure 1.

Figure 1. Overview of the study area.

2.2. Sampling Survey Pipeline

The overall sampling survey pipeline of wheat ear number is shown in Figure 2. It
mainly includes 3 steps: image acquisition design, dataset generation, and density map
regression network (DM-Net) construction and optimization.

2.2.1. Image Acquisition Design

The five-point sampling method is recognized as a general method for agricultural
data collection. We refer to the five-point sampling method for UAV image acquisition to
achieve the purpose of the efficient survey of wheat ear number (Figure 2). The sampling
points are flexibly determined by the field size, image sensor and flight parameters. In this
study, a DJI Mavic 2 Pro (SZ DJI Technology Co., Ltd., Shenzhen, China) equipped with
a 1-inch CMOS camera was used, and the flight altitude was 5 m. As the experimental
field was a strip field, its width was just in the frame of the image sensor. Therefore,
the sampling points were determined by equally spaced linear sampling. For each flight
campaign, the UAV followed a predefined zigzag-shaped flight path planned using the
PhenoFly Planning Tool [32] and implemented using the autopilot software DJI GS Pro
(SZ DJI Technology Co. Ltd.). The image acquisition time was 7 days after flowering. The
image size is 5472 × 3648 pixels and the image resolution is 0.8 mm/pixel. In 2018–2019,
two images were collected for each treatment, a total of 24 original images, for model
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training and verification. In 2019–2020, five images were collected for each treatment, a
total of 60 original images, mainly for model testing. A total of 84 original images were
collected in two years.
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Figure 2. UAV-based sampling survey pipeline of wheat ear numbers.

2.2.2. Dataset and Image Labeling

The training set and validation set were collected in 2018–2019. Wheat ears were
consistent in different UAV images, and 24 images were enough to train a reliable model.
Since the original images contained a large number of wheat ears, they were divided into six
equal parts according to their length and width. Thus, one original image was segmented
into 36 sub-images with a size of 912× 608 pixels. There were a 24× 36 = 864 sub-images in
total. A total of 50% of them were divided into the training set and 50% into the validation
set randomly. Finally, 432 sub-images were used for model training and 432 sub-images
were used for validation. Labelme 4.5.10 (https://github.com/wkentaro/labelme, accessed
on 5 November 2022) was used to point-label the wheat ears, with the marker location being

https://github.com/wkentaro/labelme
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the center point of the ears and the label being ear, then saving them in the format of a .json
file. A total of 153,699 wheat ears were labeled. Those sub-images and labels constituted the
new dataset, named the UEC dataset. The test dataset was collected in 2019–2020, including
60 original images. The test images were used to compare with the field-measured data.
Therefore, image segmentation and manual labeling work were unnecessary.

2.2.3. Density Map Generation

Two methods were used to obtain the ground-truth density maps. One is to generate
density maps with the same size of Gaussian kernels for all objects [29]. Supposing there is
a point at the pixel xi that denotes the position of wheat ears in the scene, the corresponding
ground-truth density map DGT

1 can be computed by blurring each ear annotation using a
Gaussian kernel. The DGT

1 is defined as below:

DGT
1 = ∑N

i=1 δ(x− xi)× Gµ,σ2(x), (1)

For each annotation ear xi in the ground truth δ, we convolve δ(x− xi) by a Gaussian
kernel Gµ,σ2 with parameter µ (kernel size) and σ (standard deviation), where x is the
matrix consistent with the size of the labeled image, and the initial values are all 0; where xi
is the pixel position of the annotation ear, δ(x− xi) is a function that sets 0 of the position
xi of matrix x to 1; N is the number of ear annotations. In the experiment, we set µ = 15
and σ = 4, 8, 12 for further testing.

As shown in Figure 3, the scale and characteristics of wheat ears in the edge view
differed greatly from that in the center view. In order to reduce the influence of this
difference, the density map generation was optimized. The second method was through
geometry-adaptive kernels. An adaptive Gaussian kernel based on the distance between
the target point and the image center point in the camera view was proposed. The DGT

2
was defined as below:

DGT
2 = ∑N

i=1 δ(x− xi)× Gθi (x), with θi = βDi, (2)

Di = 0.01× di + 25, (3)

where Gθi is an adaptive Gaussian kernel, Di is the function between diagonal line and
distance (Section 3.1), β is the conversion coefficient between diagonal line and kernel size,
and β = 0.1.

2.2.4. The Proposed Method

As a classical crowd counting algorithm, CSRNet [33] demonstrates a good perfor-
mance. This research took it as the basic model framework, and added multi-scale feature
fusion on the back-end network to enhance the quality of density map generation. The per-
formance will be compared with other density map algorithms (Section 3.2). The proposed
network is shown in Figure 4.

The image and the corresponding ground truth were randomly cut into 400 × 400 pixels
and input into the model. The front-end network used VGG16 as the backbone to extract
basic image features. In the back-end network, a 1 × 1 convolutional kernel, a 3 × 3 con-
volutional kernel, and up-sampling were used to continuously improve the density map
quality. Then, focusing on the same-sized feature layers in the front-end network, we
combined them with the up-sampled feature layers. Finally, a high-quality density map of
the same size as the cropped image was generated.
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2.3. Model Training

The DM-Net was straightforwardly trained as an end-to-end structure. The first 10 con-
volutional layers were fine-tuned using a well-trained VGG-16. For the other layers, the
initial values came from a Gaussian initialization with a 0.01 standard deviation. Stochastic
gradient descent (SGD) was applied with a fixed learning rate at 1 × 10−5 during training.
The loss function is given below:

L(Θ) =
1

2N

N

∑
i=1
‖Z(Xi; Θ)− ZGT

i ‖
2
2 (4)

where Θ is a set of learnable parameters in the DM-Net; N is the number of training images;
Xi represents the input image, while ZGT

i is the ground truth result of the input image Xi;
Z(Xi; Θ) is the estimated density map generated by the DM-Net with parameters shown
as Θ for the sample Xi. L is the loss between the estimated density map and the ground
truth density map.
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The environment configuration for model training is shown in Table 1.

Table 1. Environment configuration.

Hardware Software

Project Content Project Content

CPU AMD EPYC 7742
64-Core Processor Language Python 3.7

GPU NVIDIA A100 40 G × 4 Framework Pytorch 1.7
RAM 512 G CUDA CUDA 11.0
Operating system Ubuntu 20.04 LTS Monitor Tensorboard X

2.4. Model Evaluation

The mean absolute error (MAE) and mean square error (MSE) were used for the model
evaluation, which were defined as follows:

MAE =
1
N

N

∑
i=1
|zi − ẑi| (5)
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MSE =

√√√√ 1
N

N

∑
i=1
|zi − ẑi|2 (6)

where N is the number of images in one test sequence; zi is the ground truth of counting; ẑi
is the value of estimation; its formula is shown below:

ẑi =
L

∑
l=1

W

∑
w=1

zl,w (7)

where L and W represent the length and width of the density map, respectively, while zl,w
is the pixel at the coordinates of the generated density map (l, w).

2.5. Manual Measurement and Evaluation

The number of wheat ears in 1 m2 was counted manually at maturity. Measurement
of each treatment was repeated 5 times, and the average value of it was taken. Then, it was
converted to standard units as evaluation data.

The root mean square error (RMSE) and mean absolute percentage error (MAPE)
were used to evaluate the accuracy of the UAV sampling survey method. The formula is
as follows:

RMSE =

√
∑i(xi − yi)

2

n
(8)

MAPE =
1
n ∑

i

|xi − yi|
yi

× 100% (9)

where xi is the UAV sampling survey data, yi is the manual measurement data, and n is the
number of survey regions.

3. Results
3.1. Density Map Generation

A high-quality density map was a basis for training a good model. This research used
a Gaussian kernel to generate the density map, where kernel size was the biggest factor
affecting the quality of the density map. As mentioned in Section 2.2.3, the first method
used the same size of Gaussian kernels to generate density maps. The second method
used adaptive Gaussian kernels to generate a density map. Zhang et al. [28] used the
k-nearest neighbor algorithm to determine the kernel size. The method solved the problem
of different target scales in crowd images, but the scene in this paper did not conform to
the rule. By analyzing the relationship between the diagonal length of wheat ears at the
different views and their distance from the image center (Figure 5), it could be found that
the scale of wheat ears was related to the angle of the image view. The results showed that
there was a significant linear relationship between them, and R2 was 0.6121. Therefore, it
was taken as the basic index of adaptive kernel size, and used the conversion coefficient to
determine the final kernel size.

The results of density map generation are shown in Figure 6. It shows that the method
using the same kernel size did not take into account the scale of wheat ears, and the density
maps were consistent. The proposed method by adaptive kernel size could generate density
maps with different scales of wheat ears, which was more consistent with the actual scene.
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3.2. DM-Net Construction

The density map regression algorithm has developed rapidly in recent years. Ac-
cording to different network structures, it could be subdivided into multi-scale fusion and
attention-based, among which the representative networks are MCNN, CSRNet, SFANet,
etc. [27]. In order to construct a DM-Net suitable for UAV images, the proposed method
was compared with those algorithms. The training results are shown in Figure 7. After
200 iterations, the training loss and MAE value of all models tended to be stable. The
training result of the proposed method in this paper was better than that of other methods.
The accuracy of all models under the validation data is shown in Table 2. The MAE and
MSE of the proposed method were 9.01 and 11.85, respectively. Compared with CSRNet, it
was improved by 16.42%. The estimated density maps of different models are shown in
Figure 8. Among them, SFANet and the proposed method were the closest to the density
map of ground truth. The proposed method was better than the former, which may be
affected by the generation method of the density map.
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Table 2. The accuracy of different DM-Nets.

Methods MAE MSE

MCNN [28] 28.50 36.62
CSRNet [33] 10.78 13.73
BLNet [30] 12.83 16.32
SFANet [34] 10.04 12.83
The proposed method 9.01 11.85

The performance of the deep learning model was not only related to its network struc-
ture but also closely related to data quality. For the density map regression algorithm, the
quality of the ground truth density map was particularly important. This study compared
the effects of the density maps generated by different Gaussian kernel sizes on the accuracy
of the proposed model (Table 3). When a fixed Gaussian kernel size was used, the smaller
the kernel size, the higher the accuracy. The MAE and MSE of the best size were 10.03
and 13.34, respectively. However, none of them had higher accuracy compared with the
adaptive Gaussian kernel size proposed in this paper.
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Table 3. The influence of different Gaussian kernel sizes on the model accuracy.

Kernel Size MAE MSE

DGT
1 , σ = 4 10.03 13.34

DGT
1 , σ = 8 10.74 14.25

DGT
1 , σ = 12 13.31 16.65

DGT
2 , β = 0.1 9.01 11.85

DGT
2 , β = 0.2 9.97 13.00
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3.3. The Result of the Sampling Survey

The last goal was to count regional wheat ear number in the form of the sampling
survey, which was a way to improve the efficiency of the work. The proposed DM-Net
was to segment a sample image into sub-images for further estimation. Therefore, it was
necessary to splice the estimation of sub-images into a complete sample image. In the test
period, the image segmentation method was different from the training period. There were
overlapping areas between adjacent sub-images. After obtaining the estimated density
map of each sub-image, half of their overlapping areas were cut and deleted. Then the
estimated density map of a complete sample was spliced with them (Figure 9). The width
(or height) of the overlapping area was determined by the wheat ear scale. Generally, it
was not lower than the maximum value of the wheat ear scale, and it was recommended to
be two times. This method can solve the problem of repeat counting caused by the splicing
of segmented images, and it is also valuable for other repeat counting research.
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Since the ground truth of the test data were not obtained, we integrated the density
map estimation results of the training and validation samples (Figure 10a). The R2 between
the estimated value and the ground truth was 0.9919, which was a highly significant
correlation. It showed that the method of DM-Net construction and density map splicing
was effective. All test data were estimated and converted into standard units by sampling
area, which was compared with the value of the manual survey (Figure 10b). The results
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showed that the RMSE and MAPE of NM13 were 18.95 × 104/hm2 and 3.37%, respectively.
The RMSE and MAPE of YFM4 were 13.65 × 104/hm2 and 2.94%, respectively. Therefore,
the method proposed in this paper is reliable and effective.
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4. Discussion
4.1. The Challenge of UAV Image Datasets

The scene of UAV images is very different from that of near ground images in the wheat
ear counting task. This can be seen from the comparison between the public dataset Global
Wheat Head Detection (GWHD, https://www.kaggle.com/c/global-wheat-detection, ac-
cessed on 5 November 2022) and the UEC dataset of this study (Figure 11). The challenge
of the GWHD dataset is complex and involves diverse scenarios. Because of its high resolu-
tion, it can be accurately recognized by the object detection algorithm. The challenge of
the UEC dataset is a large number of ears at low resolution. The number of images in the
GWHD dataset is four times that of the UEC dataset. However, the total number of labels
is equal (Figure 12a,b). The number of ears in one image of the GWHD dataset is usually
less than 100, with an average of 43.19, while the average of the UEC dataset is 194.06
(Figure 12c). Therefore, this study improved the survey efficiency of wheat ear counting
using UAV images.
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4.2. Advantages in Efficiency

The goal of this paper is to improve survey efficiency while ensuring high accuracy.
This research tested the difference in data collection between the two UAV survey modes
at different flight altitudes (Table 4). The first mode is to obtain all regional images and
then splice them. The second is the five-point sampling method in this paper. The results
showed that with the increase in flight altitude, the number of images, the time of image
acquisition and the time of image mosaic decreased in both modes. However, the number
of wheat ears in one image increased. Due to the large number, it could only be counted
by the deep learning model through image segmentation. The flight height of 5 m seems
to be a suitable level, because it has higher image resolution when the image acquisition
time is short. The number of images in image mosaic mode was 160 times more than
in sample survey mode, and the total time consumed was about 2500 times. The loss of
image processing and model computation were not taken into account. Despite the higher
accuracy, the extremely low efficiency of the image mosaic mode is a deterrent, because it
is difficult to adapt to the actual survey work.

Table 4. Comparison of different survey modes of UAV in wheat ear number.

Projects
Flight Altitude

2 m 5 m 10 m 20 m 50 m

Image
Mosaic

Number of images Null 26,327 6623 1676 280
Time of image acquisition (min) Null 2110.9 536.6 103.8 11.5
Time of image mosaic (min) Null 7898.1 1986.9 502.8 84.0

Sampling
survey

Number of images 532 98 22 6 1
Time of image acquisition (min) 11.1 3.9 2.6 2.4 2.3

Image resolution (mm/pixel) 0.3 0.8 1.6 3.2 7.9

Number of ears in one image 1000 8000 40,000 136,000 880,000
Number of ears in one sub-image (1/25) 40 320 1600 5440 35,200

The size of the test region is 1 hm2. The test equipment is DJI Inspire 2 (DJI, Shenzhen, China) equipped with a
ZENMUSE X5S camera. In image mosaic mode, the heading repetition rate is 85%, and the side repetition rate
is 75%. The image mosaic software is Pix4Dmapper. The test computer is configured with Intel Core i9-10900X
processor, 128 G memory, NVIDIA GeForce RTX 2080 Ti graphics card. The sampling survey mode refers to
this paper.
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5. Conclusions

Wheat ear number is one of the most important yield components of wheat, and
timely and accurate estimation of ear numbers is an important basis for predicting wheat
yield. This paper proposed a sampling survey method based on UAV to achieve efficient
acquisition of wheat ear number in the field. The research showed that the adaptive
Gaussian kernel is used to generate a ground truth density map, which is more consistent
with the actual scene. Multi-scale feature fusion network structure can improve the quality
of the estimated density map. By using overlapping regions, the problem of duplicate
counting caused by image segmentation can be solved. Five-point sampling method based
on UAV images and the density map regression algorithm based on a convolution neural
network were used to complete the task of regional wheat ear counting. Unfortunately,
due to the limitations of the experimental design, the analysis of different resolutions and
periods needs further study. The effect of wheat ear distribution and shelter on yield
prediction is also worth studying.
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