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Abstract: The current deep learning-based image fusion methods can not sufficiently learn the fea-
tures of images in a wide frequency range. Therefore, we proposed IFormerFusion, which is based
on the Inception Transformer and cross-domain frequency fusion. To learn features from high- and
low-frequency information, we designed the IFormer mixer, which splits the input features through
the channel dimension and feeds them into parallel paths for high- and low-frequency mixers to
achieve linear computational complexity. The high-frequency mixer adopts a convolution and a
max-pooling path, while the low-frequency mixer adopts a criss-cross attention path. Considering
that the high-frequency information relates to the texture detail, we designed a cross-domain fre-
quency fusion strategy, which trades high-frequency information between the source images. This
structure can sufficiently integrate complementary features and strengthen the capability of texture
retaining. Experiments on the TNO, OSU, and Road Scene datasets demonstrate that IFormerFusion
outperforms other methods in object and subject evaluations.

Keywords: image fusion; transformer; inception transformer; infrared image; visible image

1. Introduction

The image fusion technique aims to fuse images captured by different sensors to gen-
erate a fused image with better human visual effects and scene representation. As a result
of thermal-based imaging, the infrared sensor can work in low-illuminance environments
and all weather conditions and generate infrared images to emphasize prominent targets.
The infrared image contains rich, low-frequency information, but it lacks texture detail.
The visible image contains a rich texture and detailed spatial features, but it is susceptible
to influence by illuminance and weather conditions. Due to the good complementarity of
infrared and visible images, the fused image can provide high-quality results for person
re-identification [1], object tracking [2], remote sensing [3,4], and salient object detection [5].

The image fusion methods can be categorized into traditional methods and deep
learning-based methods. Traditional methods usually consist of three parts, a manual
representation model to extract features, fusion strategies to the feature maps or weight
maps, and an inverse feature extractor to reconstruct images. The traditional methods can
be categorized into spatial domain [6] and frequency domain methods [7–9]. The spatial
domain methods are usually simple to infer, but have poor effects on edge preserving. The
frequency domain methods usually adopt domain transform operation and fuse procedures,
which are more complex [10]. Although traditional fusion methods can achieve good fusion
results, the manual design of transformation algorithms and fusion strategies can result
in higher computational complexity, limiting the fusion performance. Conversely, deep
learning-based models can extract features and generate high-performance fusion images
without the need for a complex manual design. Deep learning-based methods can be cate-
gorized into four types: convolution neural network(CNN)-based fusion methods [11,12],
auto-encoder-based fusion methods [13,14], generative adversarial network(GAN)-based
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fusion methods [15,16], and transformer-based fusion methods [17,18]. Although the above
methods can generate fused images with a good performance, some issues still exist in
order for them to be improved. CNN-based, auto-encoder-based, and GAN-based fusion
methods generally use convolutional layers to extract the features. Thus, these methods
cannot establish long-range dependencies with the limitation of the perceptive field of
convolutional layers. The vision transformer develops attention mechanisms to build a
long-range relationship between the image patches. However, there are still some draw-
backs. Firstly, the existing methods fail to learn information in a wide frequency range,
which is important for infrared and visible image fusion tasks. Secondly, the existing
methods a lack consideration for the relationship between the frequency information of the
source images.

Above all, we proposed IFormerFusion based on the Inception Transformer and
cross-domain frequency fusion. On the one hand, we designed the IFormer mixer based
on the Inception Transformer, which adopts convolution/max-pooling paths to process
high-frequency information and a criss-cross attention path to process low-frequency
information. The IFormer mixer was designed to capture high-frequency information to
Transformers structure and learn information in a wide frequency range. On the other hand,
cross-domain frequency fusion can trade high-frequency information between the source
images to guide the model to retain more high-frequency information. IFormerFusion has
four parts: feature extraction, cross-domain frequency fusion, feature reconstruction, and
fused image reconstruction. The feature extractor can effectively extract comprehensive
features in a wide frequency range. The cross-domain frequency fusion can learn features in
a wide frequency range and trade high-frequency information between the source images to
strengthen the texture-retaining capability of the model. The fusion results are concatenated
and fed to the Inception Transformer-based feature reconstruction part to reconstruct deep
features. Finally, a CNN-based fused image reconstruction part is utilized to reconstruct
the images. Above all, the main contributions of this work can be summarized as follows:

• We propose an infrared and visible image fusion method, IFormerFusion, which can
efficiently learn features from source images in a wide frequency range. IFormerfusion
can sufficiently retain texture details and maintain the structure of the source images.

• We designed the IFormer mixer, which consists of convolution/max-pooling paths and
a criss-cross attention path. The convolution/max-pooling can learn high-frequency
information, while the criss-cross attention path can learn low-frequency information.

• The cross-domain frequency fusion can trade high-frequency information between
the source images to sufficiently learn comprehensive features and strengthen the
capability to retain texture.

• Experiments conducted using the TNO, OSU, and Road Scene datasets show that
IFormerFusion obtains better results in both visual quality evaluation and quantita-
tively evaluation.

2. Related Works
2.1. Vision Transformer

The transformer, which was designed for natural language processing (NLP), has
achieved notable success in a broad range of computer vision tasks, such as image clas-
sification [19,20], semantic segmentation [21,22], and object detection [23–28]. In 2020,
Dosovitskiy et al. proposed the vision transformer, which splits an image into a sequence of
flattened 16 × 16 patches and regards them as words in pieces of text [29]. Then, the vision
transformer will embed the patches linearly and adopt a self-attention mechanism, which
also brings an increased computational complexity quadratic to the image size, which is
the bottleneck of the application in pixel-level tasks (such as image fusion) that require
dense prediction. In 2021, Liu et al. proposed the Swin Transformer, in which self-attention
computation is limited in the local window and shifted window partitioning in successive
blocks [21]. Thus, the Swin Transformer has a linear complexity corresponding to the image
size [21]. In 2022, Si et al. noticed that it is incompetent at learning information in a wide
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frequency range and proposed the Inception Transformer, which can sufficiently learn com-
prehensive features with both high- and low-frequency information [30]. The input images
are split into three partitions and fed into the Inception mixer to learn features in a wide
frequency range. Through the Inception mixer, the Inception Transformer has greater effi-
ciency through a channel splitting mechanism to adopt parallel convolution/max-pooling
paths and self-attention path to learn information within a wide frequency range [30].

2.2. Deep Learning-Based Image Fusion Methods

In the beginning, deep learning models were only utilized to extract features and
generate weight maps for fusion [11]. The majority of fusion methods retain the structure
of the traditional fusion framework. With more researchers designing networks and loss
functions, CNN-based methods gradually differ from traditional frameworks. In 2021,
Long et al. designed a parallel, aggregated, residual dense block consisting of a dense block
path and a residual dense block path and the proposed RXDNFuse [12]. In 2019, Li et al.
introduced an auto-encoder-based fusion network, DenseFuse [13]. The auto-encoder-based
fusion methods can benefit from the high interpretability of the traditional fusion methods
and the feature extraction ability of the CNN. Thus, many researchers focus on improving
each part of the auto-encoder structure. In 2020, to fuse the extracted feature more effectively
and reconstruct the feature maps, Li et al. proposed NestFuse, which adopts a nest-
connected decoder network and the attention-based fusion strategy [31]. In 2021, Xu et al.
proposed a learnable fusion strategy for the first time, which could quantitatively measure
the classification significance of feature maps by using the back-propagation integral
gradient of the classification results [32]. In 2022, Wang et al. proposed Res2Fusion, which
adopts a multi-scale feature extraction strategy without down-sampling, and established
long-distance feature dependency through nonlocal attention mechanisms [33].

Some researchers utilized the generative adversarial network(GAN) to fuse images in
an implicit manner. In 2019, Ma et al. first introduced GAN to infrared and visible image
fusion and proposed FusionGAN [15]. Subsequently, they proposed other GAN-based
fusion methods (DDcGAN [34] in 2020 and GANMcC [16] in 2021). DDcGAN is utilized to
fuse multi-resolution images. GANMcC is utilized to generate fused images with a balance
between the gradient and intensity of the source images.

To further improve the fusion effects, some researchers replaced the CNN layers with
transformer structures. In 2022, Liu et al. proposed MFST, which adopts a self-adaptive
transformer fusion strategy [14]. In 2022, Rao et al. proposed TGFuse, which adopts a
transformer-based generator [35]. In 2022, Wang et al. proposed SwinFuse, which adopts
residual Swin Transformer blocks as the encoder network. Based on the Swin Transformer,
in 2022, Ma et al. proposed a cross-domain long-range fusion method, which includes inter-
and Swin Transformer-based cross-domain modules to extract and fuse deep features [18].

Different from the mentioned methods, we propose IFormerFusion, which sufficiently
learns the features of the images in a wide frequency range through the IFormer mixer
that consists of parallel convolution, max-pooling, and attention paths in a wide frequency
range. Moreover, we designed a cross-domain frequency fusion strategy to sufficiently
integrate complementary features and strengthen the ability to retain texture.

3. Methodology
3.1. Overall Framework

Let I1 and I2 ∈ RH×W×C represent the input images of IFormerFusion, while C is the
channel number, and H and W are the image sizes. As shown in Figure 1, IFormerFusion
is constructed with four parts: feature extraction, cross-domain frequency fusion, feature
reconstruction, and fused image reconstruction.

Feature Extraction: Firstly, the input images or features are first embedded by convolu-
tional embedding layers, which extend the channel dimension of the input to the required
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number. In this experiment, the required channel number is 60. The embedding result can
be expressed as:

φ = Embed(I), (1)
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We then design feature extraction blocks called base blocks. In each base block, the
input feature will split into three partitions including two high-frequency partitions (H1
and H2) and a low-frequency partition (L) through the channel dimension and feed them
into the IFormer mixer. Next, a feed-forward network (FFN) is deployed to refine the
result of the IFormer mixer. Layer normalization (LN) is adopted before both the FFN
and the split operation in the IFormer mixer, which is inferred specifically in the next
section. Moreover, the residual connection is adopted in the mixer. The inference can be
expressed as:

φh1, φh2, φl = Split(Norm(φ)), (2)

φM = φ + Mixer(φh1, φh2, φl), (3)

φF = φM + FFN(Norm(φM)), (4)

where φh1 and φh2 represent the high-frequency information, φl represents the low-
frequency information, φM represents the residual mixed results, and φF represents the
extract features. Feature extraction consists of N1 base blocks. In this experiment, N1 is 3.

Cross-Domain Frequency Fusion: The cross-domain frequency fusion part is designed
to learn features in a wide frequency range and fuse cross-domain frequency information.
The cross-domain frequency fusion part consists of N2 cross blocks. The base block is the
same as the base block in feature extraction. However, in the cross block, the high-frequency
information of two input features is exchanged. The embedding results of input features I1
and I2 can be expressed as:

φ1 = Embed(I1), (5)

φ2 = Embed(I2), (6)

The split partitions of φi are φi
h1

, φi
h2

, and φi
l (i = 1, 2), which can be expressed as:

φ1
h1

, φ1
h2

, φ1
l = Split(Norm(φ1)), (7)

φ2
h1

, φ2
h2

, φ2
l = Split(Norm(φ2)), (8)

The mixed results φ1
M and φ2

M can be expressed as:

φ1
M = φ1 + Mixer

(
φ2

h1
, φ2

h2
, φ1

l

)
, (9)
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φ2
M = φ2 + Mixer

(
φ1

h1
, φ1

h2
, φ2

l

)
, (10)

The extract features φ1
F and φ2

F can be expressed as:

φ1
F = φ1

M + FFN
(

Norm
(

φ1
M

))
, (11)

φ2
F = φ2

M + FFN
(

Norm
(

φ2
M

))
, (12)

In this experiment, N2 is 6. The results φ1
F and φ2

F are concatenated and fed to the
feature reconstruction part. The concatenated result φF can be expressed as:

φF = Concat
(

φ1
F, φ2

F

)
, (13)

Feature Reconstruction: The results of the Cross-Domain Frequency Fusion part are
fed into the Feature Reconstruction part, which consists of N3 reconstruction blocks. The
reconstruction block is half of the base block, which has a single path to process the
concatenated result. In this experiment, N3 is 3.

Fused Image Reconstruction: Finally, a simple CNN-based part to reconstruct fused
images is utilized to reconstruct fused images. The fused image reconstruction part consists
of two convolutional layers.

3.2. IFormer Mixer

The architecture of the IFormer mixer is shown in Figure 2. After splitting the input
feature into three partitions through the channel dimension, high-frequency and low-
frequency mixers are adopted to learn the features in a wide frequency range. The high-
frequency mixer has a max-pooling (MaxPool) path, which consists of a max pooling
subsequently a linear layer [36], and a parallel convolution path, which consists of a linear
subsequently a depthwise convolution (DwConv) layer [37]. The low-frequency mixer
has a criss-cross attention path, which consists of average pooling, criss-cross attention
(CC-Atten) [38], and up-sampling (UpSample). The detailed inference is as follows.

With the input X ∈ RH×W×C, X can be divided into two parts through channel
dimension, the high-frequency part, Xh ∈ RH×W×Ch , and the low-frequency part, Xl
∈ RH×W×Cl , where Ch + Cl = C. Then, Xh and Xl are assigned to the high-frequency
mixer and low-frequency mixer, respectively. The details of the high- and low-frequency
mixers follow.
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High-frequency mixer: Considering the sharpness sensitivity of the maximum filter
and the detail perception of the convolution operation, we propose two high-frequency
paths to take advantage of the sharpness sensitivity of max-pooling and the detail per-
ception capability of the convolution layers to learn high-frequency information. Firstly,
the input Xh is divided into Xh1∈ RH×W×Ch/2 and Xh2 ∈ RH×W×Ch/2 . Xh1 is fed into
the max pooling path. Xh2 is fed into the parallel convolution path. The outputs of the
high-frequency mixer Yh1 and Yh2 can be expressed as:

Yh1 = Linear(MaxPool(Xh1)), (14)

Yh2 = DwConv(Linear(Xh2)), (15)

Low-frequency mixer: Considering the strong capability of the attention mechanism
for learning global representation, we use criss-cross attention [38] to establish long-range
dependency to learn low-frequency information. However, in image fusion tasks, dense
prediction can bring great computation complexity with the large resolution of feature
maps in the low-frequency mixer. Therefore, we utilize an average-pooling operation to
reduce the scale of Xl before the criss-cross attention operation and an up-sample layer
to restore the original scale. In this experiment, the kernel size and stride for the average
pooling are 4, and the size of up-sample layers is also 4. This branch can be defined as

Yl = Upsample(CC(AvgPool(Xl))), (16)

where Yl is the output of the low-frequency mixer, and CC represents criss-cross attention.
Finally, the outputs Yh1, Yh2, and Yl are concatenated through the channel dimension

and fused to obtain Yc:

Yc = Fusion(Concat(Yh1, Yh2, Yl)), (17)

3.3. Loss Function

Three loss functions are adopted for the IFormerFusion in the training phase, which is
explained as follows.

The structural similarity (SSIM) loss LSSIM can be expressed as:

LSSIM = α(1− SSIM(IF, I1) + β(1− SSIM(IF, I2), (18)

where α = β = 0.5 in this experiment and SSIM(·) represents the philosophy of structural
similarity [39].

Inspired by IFCNN [40] and SwinFusion [18], we deploy the intensity loss to super-
vise the model to capture potential intensity information. The intensity loss LInt can be
expressed as:

LInt =
1

HW
‖IF −max(I1, I2)‖1, (19)

where ||·||1 represents the l1-norm, and max(·) represents the chosen max value. H and
W represent the image sizes.

We deploy texture loss [18] to evaluate the texture details, which can be extracted by
the maximum function. Thus, the texture loss LText can be expressed as:

LText =
1

HW
· ‖∇IF −max(|∇I1|, |∇I2|)‖1, (20)

where ∇ represents the Sobel gradient operator, |·| represents for the absolute operation,
max(·) represents to choose max value, and ||·||1 represents the l1-norm.

Finally, the total loss function Ltotal is a weighted sum of all loss functions, which can
be expressed as:

Ltotal = λ1LSSIM + λ2LInt + λ3LText, (21)
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where λ1, λ2, and λ3 are weighted to balance each loss.

4. Experimental Results and Analysis

In this section, IFormerFusion is compared with eight advanced fusion methods with
images selected from three public datasets. Subsequently, we conducted quantitative and
qualitative comparisons with nine advanced methods: DenseFuse [13], GANMcC [16],
IFCNN [40], NestFuse [31], Res2Fusion [33], RFN-Nest [41], SwinFuse [42], SwinFusion [18],
and U2Fusion [43]. Finally, a computational complexity analysis is conducted.

4.1. Experiment Setup

The MSRS dataset [44] is selected for training. A total of nine deep learning meth-
ods are selected to compare the methods, i.e., DenseFuse, GANMcC IFCNN, NestFuse,
Res2Fusion, RFN-Nest, SwinFuse, SwinFusion, and U2Fusion. The TNO image fusion
dataset [45], OSU Color-Thermal dataset [46], and RoadScene dataset [43] are selected to
evaluate the above methods.

All the experiments in this paper are conducted on Intel(R) Xeon(R) Silver 4210 CPU
and NVIDIA GeForce RTX 3090 GPU. The PyTorch program is used. The batch size is eight.
The images are randomly cropped to 128× 128 patches and normalized to [0, 1]. The Adam
optimizer is used. The model is trained for 200 epochs. The initial learning rate is 0.001 and
it decays to half this in epochs 20, 40, 80, 120, and 180.

4.2. Evaluation Metrics

A total of six metrics are selected for evaluation, including mutual information
(MI) [47], fast mutual information (FMI) [48], the peak signal-to-noise ratio (PSNR), the
structural similarity index measurement (SSIM) [39], visual information fidelity (VIF) [49],
and Qabf [50]. These metrics measure the performance of the fusion method from different
aspects. Suppose the infrared image, the visible image, and the fused image are I, V, and F,
respectively. Their detailed definitions are described as follows:

The mutual information metric is a quality index that measures the amount of infor-
mation transferred from the source images to the fused image. mutual information is a
fundamental concept in information theory and measures the dependence of two random
variables. The definition of the mutual information metric can be expressed as:

MI = MI(I, F) + MI(V, F), (22)

where MI(I, F) and MI(V, F) are the amounts of information transferred from the infrared
images and visible images to the fused image, respectively. The MI between two random
variables can be calculated by the Kullback–Leibler approach, which can be expressed as:

MI(X, F) = ∑
x, f

PX,F(x, f )log
PX,F(x, f )

PX(x)PF( f )
(23)

where PX,F(x, f ) is the joint histogram of the source image x and the fused image F; PX(x)
and PF( f ) are the marginal histograms of the source image X and the fused image F,
respectively.

The fast mutual information metric calculates the regional mutual information between
the corresponding windows in the fused image and the source images [48]. The mutual
information In f o(I, F) and In f o(V, F) can be expressed as:

In f o(X, F) =
2
n

n

∑
i=1

In f oi(X, F)
Hi(X) + Hi(F)

(24)
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where Hi(X) and Hi(F) are the entropies of X and F, and the mutual information In f oi(X, F)
can be expressed as:

In f oi(X, F) =
Hi(X) + Hi(F)

2
(25)

The fast mutual information metric can be expressed as:

FMI(I, V, F) =
1
2
(In f o(I, F) + In f o(V, F)) (26)

The peak signal-to-noise ratio metric is the ratio of the maximum possible power of a
signal to the destructive noise power, which affects its representation accuracy. The PSNR
of the fused image and source images can be expressed as:

PSNR = 10log
(

max(F)
MSE(I, F)

)
+ 10log

(
max(F)

MSE(V, F)

)
(27)

where max(F) is the maximum value in the fused image, and the MSE(I, F) and MSE(V, F)
are the mean-squared errors, which can be expressed as:

MSE(X, F) =
1

M ∗ N

M−1

∑
i=0

M−1

∑
j=0

[X(i, j)− F(i, j)]2 (28)

where X(i, j) and F(i, j) are the value of X and F in row i and column j, and M and N are
the weight and height of the images, respectively.

The structural similarity index measurement metric calculates the similarity of the
fused images and source images in terms of luminance, contrast, and structure [39]. The
SSIM metric can be expressed as:

SSIM(X, F) =

(
2µxµ f + C1

)
(2σx f + C2)(

µx
2 + µ f

2 + C1

)
(σx

2 + σf
2 + C2)

(29)

where µx and µ f are the average gradients of X and F; σx and σf are the standard deviation
of X and F; σx f is the correlation coefficient of X and F; C1, C2, and C3 are (0.01 ∗ L)2,
(0.03 ∗ L)2, and 1

2 (0.01 ∗ L)2, respectively; L the dynamic range of the pixel values, which
is 255.

The visual information fidelity metric calculates image distortions including additive
noise, blurs, and changes [49]. VIF is derived from the quantification of two types of mutual
information: the mutual information between the input and the output of the HVS channel
(described via a stationary white Gaussian noise model) when no distortion channel is
presented (i.e., reference mutual information) and the mutual information between the
input of the distortion channel and the output of the HVS channel for the test image [51].
The visual information fidelity can be expressed as:

VIF(X, F) =
∑k∈subbands I(

→
Cs,k,

→
Fs,k

∣∣∣∣RS,k)

∑k∈subbands I(
→

Cs,k,
→

Xs,k

∣∣∣∣RS,k)

(30)

where the subbands are a collection of specific sub-bands; I(
→

Cs,k,
→

Fs,k

∣∣∣∣RS,k) and I(
→

Cs,k,
→

Fs,k

∣∣∣∣
RS,k) are the information extracted from specific sub-bands of the source image and fused

image;
→

Cs,k is the random field from source images;
→

Fs,k and
→

Xs,k are the output of the
HVS channel for the fused image and source images; RS,k is the model parameter of the
sub-bands.
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Thus, the visual information fidelity for fusion (VIFF) can be expressed as:

VIFF =
1
2
(VIF(V, F) + VIF(I, F)) (31)

The Qabf metric measures the similarity of the edge transferred from the source images
to the fused image. Qabf can be expressed as:

Qab f =
∑M

i=1 ∑N
j=1(Q

A,F(i, j)wA(i, j) + QB,F(i, j)wB(i, j))

∑M
i=1 ∑N

j=1(wA(i, j) + wB(i, j))
(32)

where wX(i, j) is the weight matrix of source images and QX,F(i, j) is the edge information
transferred from the source image to the fused image. The QX,F(i, j) can be expressed as:

QX,F(i, j) = QX,F
g (i, j)QX,F

a (i, j) (33)

where QX,F
g (i, j) and QX,F

a (i, j) are the retaining edge intensity and direction in the pixel
(i, j), respectively.

4.3. Results on the TNO Dataset

Visual Quality Evaluation: Four pairs of images are selected to evaluate the visual
effects of IFormerFusion and nine comparable methods, as shown in Figure 3. Some targets
and details are highlighted with boxes to display the information that is worthy of attention.
DenseFuse, NestFuse, RFN-Nest, and SwinFuse extract features through a well-designed
encoder and adopt an additional attention-based or learnable fusion strategy. Their fused
images have lower brightness and contrast values than those of the other methods do,
which indicates a weaker ability to retain detailed texture information. In Figure 3a, the
fused images of DenseFuse, NestFuse, and SwinFuse cannot display the text information
of the pedestrian and the store billboard. In Figure 3b, the target on the building is hard to
distinguish from the background. In Figure 3c,d, the tree branches lack details. The fused
images of GANMcC retain the sharpness of the target in the infrared images. However,
the background information, such as the plants and buildings, is fuzzy and lacks details.
Res2Fusion offers better visual effects than the above methods do. In Figure 3a, the store
billboard and pedestrian details are retained from the source images. Nevertheless, in
Figure 3b, the target over the building is still not clear. In Figure 3c, the details of the tree
branches are retained, but in Figure 3d, more specific details of the tree are lost. The fused
images of IFCNN, SwinFusion, U2Fusion, and IFormerFusion generate fused images that
can balance the gradient and intensity information. The targets are displayed with rich
texture details and sharp edges. The details of background information, including the
plants and buildings, are retained. However, IFormerFusion obtains the best visual effects
and retains rich texture details and sharp edges.
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Quantitative Evaluation: To quantitatively evaluate IFormerFusion and the compa-
rable methods, six metrics are calculated using 21 pairs of images. The result is shown in
Figure 4. The average value of each metric is shown in Table 1. IFormerFusion obtains the
best values in MI, FMI, PSNR, VIFF, and Qabf, and the second-best value in SSIM. More
specifically, the highest MI and FMI values show that the proposed method can transfer
more feature and edge information from the source images to the fused image. The highest
PSNR value shows that the proposed method causes the least information distortion during



Remote Sens. 2023, 15, 1352 11 of 17

fusion. The highest VIFF value shows that the proposed method has more effective visual
information. The highest Qabf value shows that the proposed method can obtain more
visual information from the source images. The DenseFuse has the highest SSIM value,
which indicates the advantage of structural information maintenance. However, DenseFuse
is weaker in terms of the other metrics. Above all, the result indicates that IFormerFusion
produces the best fusion results.
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Table 1. Average results of 21 pairs of images from the TNO dataset. The best values are in bold, and
the second-best values are in italic.

Method MI FMI PSNR SSIM VIFF Qabf

DenseFuse 1.4517 0.2261 16.5174 0.7459 0.4592 0.3383
GANMcC 1.4796 0.2244 14.2352 0.6424 0.4012 0.2380

IFCNN 1.6518 0.2510 16.1784 0.7126 0.5170 0.5041
NestFuse 1.6923 0.2524 13.9948 0.5967 0.4933 0.3667

Res2Fusion 2.2548 0.3380 15.6556 0.6998 0.5707 0.4764
RFN-Nest 1.4050 0.2084 15.0033 0.6776 0.4881 0.3598
SwinFuse 1.6524 0.2460 14.9131 0.6492 0.4960 0.4453

SwinFusion 2.2237 0.3389 15.1855 0.7102 0.5941 0.5216
U2Fusion 1.2451 0.1865 16.0628 0.6737 0.4809 0.4249
Proposed 2.3341 0.3538 16.7712 0.7258 0.6085 0.5765

4.4. Results on the OSU Dataset

Visual Quality Evaluation: A pair of images are selected to evaluate the visual effects
of IFormerFusion and nine comparable methods. The results are shown in Figure 5. In
the visible image, the pedestrian in the shadow of the building is hard to distinguish,
while they are clearly observable in the infrared image. In the fused images of DenseFuse,
GANMcC, NestFuse, and RFN-Nest, the gradient of the pedestrian is close to the building.
Moreover, the edge of the pedestrian is blurred by the background building in GANMcC
and RFN-Nest. In the fused images of IFCNN, Res2Fusion, SwinFuse, SwinFusion, and
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IFormerFusion, the brightness of the pedestrian is similar to that of the infrared images,
which indicates that the information in the infrared images is well retained. In the fused
images of GANMcC and RFN-Nest, the sculpture on the lawn is blurred. The constrain of
the lawn in the fused images of IFCNN, NestFuse, SwinFuse, and U2Fusion is discordant,
which is more influenced by the infrared images. Thus, the texture detail of the lawn is lost.
The lawn in the fused images of Res2Fusion, SwinFusion, and IFormerFusion has better
visual effects. Above all, the proposed method, IFormerFusion, can retain texture detail
and fuse with a balance of the gradient and intensity.
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highlighted with red boxes.

Quantitative Evaluation: To quantitatively evaluate IFormerFusion and compare the
methods, six metrics are calculated using 40 pairs of images. The result is shown in Figure 6.
The average value of each metric is shown in Table 2. IFormerFusion obtains the best results
in terms of PSNR, VIFF, and Qabf, which indicates that the proposed method has the least
information distortion and obtains the best visual effects during fusion. The proposed
method lags behind the best method by a narrow margin in terms of MI, FMI, and SSIM.
Thus, the result indicates that IFormerFusion can transfer a lot of information from the
source images and produces the best results.

Table 2. Average results of 40 pairs of images from the OSU dataset. The best values are in bold, and
the second-best values are in italic.

Method MI FMI PSNR SSIM VIFF Qabf

DenseFuse 1.8942 0.2634 14.7407 0.5988 0.3271 0.3906
GANMcC 1.8014 0.2548 14.6034 0.5377 0.2943 0.2120

IFCNN 1.9484 0.2602 14.7524 0.6074 0.3387 0.5322
NestFuse 2.3474 0.3280 12.4301 0.4739 0.3113 0.3910

Res2Fusion 2.6372 0.3557 15.0758 0.6268 0.3614 0.5013
RFN-Nest 1.8255 0.2496 14.6995 0.5699 0.3163 0.2588
SwinFuse 2.3002 0.3121 13.0634 0.5560 0.3294 0.4224

SwinFusion 2.7763 0.3693 13.9279 0.6125 0.3772 0.5296
U2Fusion 1.7818 0.2430 14.7607 0.6074 0.3300 0.4627
Proposed 2.7155 0.3636 15.2345 0.6137 0.4014 0.5865
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4.5. Results on the Road Scene Dataset

Visual Quality Evaluation: A pair of images is selected to evaluate the visual effects
of IFormerFusion and nine comparable methods. The result is shown in Figure 7. In
the fused images of DenseFuse, GANMcC, Res2Fusion, and RFN-Nest, the tree on the
left is hard to distinguish from the background. On the right of the images, the texture
of the tire rim is not rich, and the people standing by the area are fuzzy. In the fused
image of NestFuse, though the tree branches are clear, artifacts exist in the car light, which
indicates that NestFuse cannot balance the light information. In the fused images of IFCNN,
SwinFuse, SwinFusion, U2Fusion, and IFormerFusion, the details of tree branches can be
distinguished on the left. On the right, the tire rim is sharp, and the people in front of the
car can be distinguished.
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Quantitative Evaluation: To quantitatively evaluate IFormerFusion and compare
methods, six metrics are calculated on 221 pairs of images from Road Scene datasets. The
average value of each metric is shown in Table 3. The NestFuse obtains the best results
in terms of MI and FMI. However, as shown in Figure 7, artifacts exist on the car, which
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will introduce extra information to the fused images to increase the MI and FMI values.
IFormerFusion obtains the best values in terms of PSNR, VIFF, and Qabf. IFormerFusion
obtains the second-best value for SSIM, behind that of DenseFuse. DenseFuse also obtains
second-best result in terms of PNSR. However, DenseFuse produces unsatisfactory results
in other metrics; in other words, DenseFuse can retain the structure and information from
the source images, but has worse visual effects and less information. Above all, the result
demonstrates that IFormerFusion produces the best fusion results.

Table 3. Average results of 221 pairs of images from the Road Scene dataset. The best values are in
bold, and the second-best values are in italic.

Method MI FMI PSNR SSIM VIFF Qabf

DenseFuse 2.0284 0.2874 16.4269 0.7230 0.4263 0.3827
GANMcC 1.9118 0.2645 13.3721 0.6220 0.3737 0.3360

IFCNN 2.0323 0.2827 16.3297 0.6860 0.4570 0.5449
NestFuse 2.6735 0.3685 11.9909 0.5784 0.3880 0.3754

Res2Fusion 2.4273 0.3338 14.1526 0.6634 0.4782 0.5135
RFN-Nest 1.9242 0.2640 13.9858 0.6344 0.4048 0.3129
SwinFuse 2.2021 0.2977 14.3088 0.6566 0.4464 0.5066

SwinFusion 2.3399 0.3339 14.3191 0.6932 0.4660 0.4611
U2Fusion 1.9364 0.2654 15.7728 0.6701 0.4409 0.5221
Proposed 2.2308 0.3158 17.0110 0.7052 0.4818 0.5490

4.6. Computation Efficiency

Moreover, we provide the computation efficiency of IFormerFusion and comparable
methods, as shown in Table 4. DenseFuse, IFCNN, and NestFuse have a high computation
efficiency because these methods consist of convolutional layers and simple fusion strate-
gies. The RFN-Nest and SwinFuse one have a low computational efficiency because these
methods utilize attention-based fusion strategies. Though GANMcC and U2Fusion also
consist of convolutional layers, the computation is more complex. Thus, these methods
have a lower computational efficiency. Res2Fusion and SwinFusion have the lowest compu-
tational efficiency because more complex attention mechanisms are used in these methods.
However, the proposed IFormerFusion has a competitive computational efficiency and
retains the linear computational complexity of the image size. All the methods are tested
using a public code.

Table 4. Computation efficiency of IFomrerFusion and compared methods (unit: second). The best
values are in bold, and the second-best values are in italic.

Method TNO OSU RoadScene

DenseFuse 0.0060 0.0079 0.0060
GANMcC 1.8520 1.0068 0.5242

IFCNN 0.0160 0.0132 0.0119
NestFuse 0.0167 0.0213 0.0144

Res2Fusion 10.208 0.919 2.937
RFN-Nest 0.2687 0.0510 0.1752
SwinFuse 0.1229 0.1248 0.1929

SwinFusion 8.6211 2.2020 5.1209
U2Fusion 2.3107 1.2639 0.6492
Proposed 0.3479 0.2678 0.2488

5. Conclusions

We propose IFormerFusion, a cross-domain frequency information learning infrared
and visible image fusion network based on the Inception Transformer. The IFormer mixer
based on the Inception Transformer consists of the high-frequency mixer, which consists
of max pooling and convolution paths, and the low-frequency mixer, which contains a
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criss-cross attention path. The high-frequency mixer can take the advantage of convolution
and max-pooling for capturing high-frequency information. The low-frequency mixer can
establish long-range dependency, and the criss-cross attention can reduce the computational
complexity. Thus, the IFormer mixer can learn information in a wide frequency range.
Moreover, the high-frequency information is traded in the cross-domain frequency fusion
part to achieve the sufficient integration of complementary features and strengthen the
capability to retain texture. The proposed IFormerFusion can comprehensively learn
features from high- and low-frequency information to retain texture details and maintain
the structure.

We conducted experiments on TNO, OSU, and Road Scene datasets and compared
them with nine advanced deep-learning methods using six metrics. The results demonstrate
that IFormerFusion performs well at preserving the structure and retaining texture details.
In addition, IFormerFusion presents the balanced intensity of the targets and background
in the fused image. IFormerFusion also has a competitive computational efficiency.
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