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Abstract: Recent global warming has led to increased coastal disturbances through a significant
transfer of heat between the land and the ocean surface. The polar regions show excessive temperature
changes resulting in massive ice sheet melting. Mid-latitudinal storms pull heat away from the equator
towards the poles; therefore, the global sea level is rising, making coastal cities the most vulnerable.
In last few decades, rapid urbanization in big cities has drastically changed the land cover and
land use due to deforestation, which has led to increased land surface temperatures (LSTs). This
eventually leads to urban flooding due to oceanic storm surges frequently created by low pressure
over the ocean during summer. This paper considered factors such as drastic unplanned urbanization
to analyze coastal cities as the focal point of the generation of heat yielding the annihilation of
the natural topography. Urban heat pockets (UHP) were studied for nine megacities, which were
selected at an interval of 5◦ of latitudinal difference in the northern hemisphere (NH) since 70% of
densely populated megacities are located in coastal regions. A comparative surface temperature
analysis was effectively carried out with the same latitudinal reference for nine mid-sized cities using
the derived LST data from Landsat 8. The results provide a comparative classification of surface
temperature variations across the coastal cities over the NH. This study infers that the issues pertaining
to growing urbanization are very important for analyzing the proportional impact caused by the
settlement hierarchy and lays a robust foundation for advanced studies of global warming in coastal
urban environments.

Keywords: global warming; urbanization; coastal megacity; Landsat 8; land surface temperature
(LST); urban heat pocket (UHP)

1. Introduction

The urban population has been continuously migrating from rural areas to nearby cities
since the beginning of the 19th century due to the industrial revolution and advancements
in medicine, science, and engineering. In 2009, this transition created a new record when the
urban population overtook the rural population for the first time in human civilization [1,2].
Currently, around 55% of the world’s population lives in cities, and it is estimated that this
percentage will rise to 60% by 2030 and to 68% by 2050 [3].

Global cities are observing a difference of opinion among conflicting urban future
narratives. While many governments and business alliances have welcomed the idea that
cities are the places where global capital has accumulated over the past three decades,
forecasts of an urban ecological disaster have been found to increase through research
in the fields of climate, water, and infrastructure [4]. Due to their high susceptibility to
extreme weather events and poor ability to maintain flood management measures, coastal
megacities in developing countries typically suffer the most [5].

The C40 Cities Climate Leadership Group suggested that coastal cities are most affected
by the detrimental effects of climate change because roughly 75% of them are situated in
coastal regions. They are immediately exposed to the risk of any future rise in sea level [6–9].
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According to the standard choice of extreme coastal water level (ECWL) exposure analysis
using SRTM and CoastalDEM, Climate Central, Princeton, USA, has broadly estimated in
the recent literature that the global mean sea level is likely to rise 20 to 30 cm by 2050, and
the recent projections incorporating Antarctic ice sheet dynamics indicate sea level rise of
100–180 cm by 2100 under representative concentration pathway (RCP) 8.5, which could
even exceed 2 m or more in worst-case scenarios, but the chance of the sea level rising above
2 m is only 5%, according to experts’ opinions. Sea level rise will continue with a 2.5-fold
acceleration [10–13] if greenhouse gas concentrations continue their current patterns, which
might have a significant impact on 300 million people [14]. This will provide favorable
conditions for more destructive storms and rising rainfall rates as the average temperature
rises along with the average sea level [15,16].

The latitudinal references with Earth rotation play a very important role in the chang-
ing seasons as well as in the assessment of climatic and weather disturbances all over the
urban environment. In this study, megacities and mid-sized cities were taken into consid-
eration with respect to these different latitudinal references to understand the variability
in urban heating issues. Using a five-degree (5◦N) interval in the northern hemisphere to
study, classify, and identify urban heat pockets in coastal megacities gave a broader picture
of the issues related to urban heating and its impact on climate change.

1.1. Why Megacities?

According to the United Nations, urban agglomerations with populations greater
than ten million are classified as “megacities”. Temperatures are generally higher than the
surroundings in such areas because of the abundance of impervious surfaces that trap heat
flux, where per capita vegetation is almost none [17]. According to the UN in 2019, 70% of
the Earth’s population will be urbanized by 2050, and the Earth’s climate will continue to
change. At the same time, the projected global warming and aggravated hydro-climatic
extremes will hit megacities. As a result, the health and well-being of human populations
and urban ecosystems will be at stake. These densely inhabited areas have accelerated
global warming by producing significant amounts of radiation and reflection, which have
an adverse effect on the local climate zone (LCZ). The local climate zone (LCZ) scheme
is a good example of information-rich intra-urban classes that describe different types of
urban land covers and land uses [18,19]. Climate-relevant urban data need to support risk
assessment, and the right scale is an essential prerequisite for developing fit-for-purpose
urban planning policies. The rapid urban demographic explosion is becoming a significant
contributor in transforming the scales in cities. The rate of growth in regional and mid-sized
cities has increased drastically since 1990; it will continue to grow and will probably become
the next influential factor in development [20]. It is anticipated that over a third of the
projected urban growth from now until 2050 will happen in three countries: India, China,
and Nigeria. By 2050, it is projected that India, China, and Nigeria could add 416 million,
255 million, and 189 million urban dwellers, respectively [3].

1.2. Why Coastal Megacities?

Since the dawn of industrialization, it was observed that cities with seaports had the
most benefits and vulnerability due to foreign elements. They were hubs for transferring
goods as well as knowledge from other parts of the world but were also prone to adverse
impacts from changing climatic behaviors [21]. These coastal cities have seen rapid growth
due to their geographical locations. In recent years, they have also been hit by frequent
cyclones, typhoons, and hurricanes all over the world [22]. It was previously predicted that
changes in the frequency and intensity of storms have been brought by global warming
because of increasing sea surface temperatures. Along with the wind damage that coastal
storms generate, the flooding of low-lying areas and wave penetration into inland areas
also have negative and devastating impacts [23–27].

Megacities such as Seoul, Kolkata, and Dhaka, which are not as close to the sea as
other coastal megacities, are still affected by the same sea level rise and extreme weather
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occurrences and are considered to be coastal cities. Sao Paulo is 800 m above sea level;
therefore, even though it is less than 50 km from the shore, it is not a coastal city because
of its elevation above sea level [28]. At present, out of 189 cities, the majority of which are
coastal, including megacities such as Manila, Osaka, and Tokyo, a large number have a
high risk of being affected by three or more different types of disasters. The number of
coastal megacities has almost doubled in the last two decades. The total number of coastal
megacities was 13 (out of 14 megacities) in 1990, which increased to 24 (out of 34 megacities)
in 2018. The number is projected to be more than 50 by 2050 [3].

1.3. Global Warming and Urbanization

Global warming is making cities warmer, while urbanization accelerates the process
via urban heat island (UHI) generation and aerosol radiative forcing [29]. By the middle
of the 21st century, the consequences of interactions among climate change, temperature,
air pollution, and the UHI effect are anticipated to increase the risk of poor human well-
being and the mortality rate in cities globally [30]. Since 1950, the urbanized area has
doubled in developed nations, whereas it has quintupled in developing nations [31]. The
extra warmth of the built-up environment of a city is strictly connected to (i) the high
heat storage capacities of building surface materials [32], i.e., asphalt and concrete, which
reduce evapotranspiration and trap heat during the day and increase the heat storage
capacity; (ii) urban morphology, e.g., narrow streets reduce air flow and automatically
reduce the natural cooling effect; and (iii) anthropogenic heat production [33]. Global
sea level rise is anticipated to accelerate in the 21st century as a result of human-caused
global warming. The adverse consequences of climate change in coastal megacities include
(a) an increased risk of flooding [34] and impeded drainage; (b) the salinization of freshwa-
ter supplies [35]; (c) higher water tables, which may reduce the safety of foundations; and
(d) beach erosion [36].

The process of heating an environment begins with the interaction of incident solar
rays with the Earth’s surface. This solar radiation is absorbed, reflected, and re-radiated
based on the surface properties of the incident surface. The amount of energy that a certain
surface receives over a specific period is known as insolation [37]. Overpopulation and an
expanding built-up environment boost the radiation and ends up contributing more heat
to the atmosphere as the percentage of vegetation has reduced exponentially. Once the
surface is heated, it contributes to heating the adjacent troposphere through a conventional
method of heat transfer using pollutants in the air, which is very much proportional to the
population density of any city.

Earth’s climate was mostly influenced by the sun and volcanic eruptions before the
industrial revolution. Since recent massive anthropogenic interventions in developing the
built environment all over the world, the number of heat waves has increased drastically.
During monsoons, some places experience much heavier rainfall than they used to receive.
Coastal megacities are becoming more vulnerable due to sea level rise, which leads to
the loss of countless lives. This approach is well researched so far, but on the contrary,
coastal megacities are the primary source of massive heat due to the use of non-sustainable
built-up materials and greenhouse gas emissions through unplanned urbanization.

Therefore, the key aim of this study was to identify the behavior of existing land use in
large megacities that perform differently than mid-sized cities. Using a latitudinal interval
of 5 degrees to select megacities and mid-sized cities provided an overall global perspective
to the problem of urban heating. The aim was attained through the following objectives:
(i) quantifying the LST for nine megacities and nine mid-sized cities using thermal data
acquired from Landsat 8, (ii) binary classification of remotely sensed images using support
vector machine (SVM) classification for all 18 cities, (iii) assessing the correlation between
LST and the SVM-based classified outputs, and finally, (iv) mapping and quantifying urban
heat pockets (UHP) based on the heat radiation level for each megacity with respect to the
paired mid-sized city.
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2. Data and Methodology

The United Nations has listed the megacities globally. According to their coastal loca-
tions, nine large coastal megacities were identified at an interval of almost 5◦ of latitudinal
difference in the northern hemisphere to obtain a worldwide perception of the surface
temperature analysis from the equator to the Arctic Circle. Mid-sized cities at similar
latitudes were considered in this study for comparison, where all the selected cities and
megacities were located at an elevation varying from 0 m to 41 m from the mean sea level
and within 100 km of the shoreline (Figure 1). Population data were collected from censuses
with respect to areas of different boundaries. This research only considered the core city
boundaries, where urban agglomeration is extreme and most of the population is highly
exposed to urban natural calamities [38].
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mid-sized cities).

For each coastal megacity and city, according to their hottest month of the year, the
Landsat 8 OLI and TIR 30 m dataset was collected from the USGS website [39]. In this
step, the downloaded dataset was radiometrically corrected and further used to extract
the radiative skin temperature, commonly known as the land surface temperature (LST),
of the selected date for each megacity and city. The LST extraction provided the result of
the mentioned time (Table 1), which was performed through the translation of the DN
(digital number) to Lλ (spectral radiance) using the equations mentioned in Section 2.1
from the Landsat user’s handbook. The detailed workflow of the methodology of this study
is demonstrated in Figure 2.

Using the Landsat 8 data, atmospheric and radiometric corrections were carried out
as a preprocessing task for the acquired data. The administrative city boundaries for both
megacities and mid-sized cities were used in the form of shape files to clip the downloaded
datasets. Then, the brightness temperature was extracted using thermal band 10, and the
NDVI was generated from band 4 and band 5 to compute the LST for all the cities and
megacities. This whole process was executed using the raster calculator function in QGIS
software. Shape files for the boundaries of the megacities and cities were downloaded from
the respective administrative portals. Afterwards, supervised classification was performed
over all the datasets using an SVM algorithm, which performed better than all other existing
classification algorithms, mainly in densely populated urban areas [40–42]. For each image,
100–300 region-of-interest (ROI) samples were taken according to the city sizes. Each ROI
included more than 100 pixels for each class. The classes for the training samples were built
and unbuilt. To perform this task, the ENVI was used. After this, the classified data were
exported in QGIS for further analysis.
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Table 1. List of cities and megacities with their latitudes/longitudes, elevations, populations, areas,
and Landsat 8 date and time acquisition data.

Megacities/Cities Latitude/Longitude Elevation Population Area (km2) Date Acquired Time Acquired

Lagos Metropolis, Nigeria 6◦27′N/3◦24′E 41 13,432,000 999 21/2/2020 11:02:56
Colombo, Sri Lanka 6◦55′N/79◦59′E 1 752,993 37 11/4/2020 10:23:33

Barranquilla, Columbia 10◦57′N/74◦47′W 18 1,212,943 154 30/4/2020 10:16:24
Hồ Chí Minh (HCM),
Vietnam

10◦45′N/106◦39′E 19 7,004,921 494 13/3/2021 10:13:43

Metro Manila (NCR), the
Philippines 14◦35′N/120◦59′E 3 13,484,462 619 17/5/2021 10:17:01

Dakar, Senegal 14◦43′N/17◦28′W 22 1,146,052 83 27/10/2020 11:33:58

Port-au-Prince, Haiti 18◦31′N/72◦17′W 15 987,310 36 20/8/2020 10:15:00
Greater Mumbai, India 19◦04′N/72◦52′E 14 12,478,447 458 28/5/2019 10:33:24

Karachi (KSDP), Pakistan 24◦51′N/66◦59′E 10 15,400,253 1890 26/5/2020 10:56:10
Miami, Florida 25◦45′N/80◦8′W 2 467,963 143 9/8/2018 10:49:24

Shanghai, China 31◦13′N/121◦28′E 4 25,582,895 6833 16/8/2020 10:25:01
Tijuana, Mexico 32◦31′N/117◦2′W 20 1,810,645 291 29/8/2020 10:22:41

Greater Tokyo, Japan 35◦39′N/139◦50′E 40 9,300,421 628 6/8/2021 10:15:55
Tunis, Tunisia 36◦48′N/10◦10′E 4 638,845 212 2/8/2021 10:54:38

Greater New York, US 40◦43′N/73◦56′W 10 8,804,190 784 6/7/2020 10:39:41
Napoli (Naples), Italy 40◦51′N/14◦18′E 17 967,068 119 7/7/2020 10:47:25

Vancouver, Canada 49◦15′N/123◦6′W 2 631,486 114 14/8/2020 11:01:26
Greater London, UK 51◦30′N/0◦7′W 11 9,002,488 1572 15/7/2018 10:51:33

All the built-up pixels, in form of a point feature (raster to vector), for each classified
dataset were extracted in QGIS using the raster to vector function. The purpose of this task
was to separate heat generated from a built-up environment from any other classes such
as vegetation, waterbodies, and barren land (rock, soil, and sand) because in some places
barren land shows higher LST values than built-up environments, and our main concern
was to study the LST caused by built-up environments, which mainly consist of buildings,
roads, and other manmade features. For all those built-up point features, the LST was
added as an attribute from the initially derived LST images for each city and megacity by
sampling those points from the LST raster data. After attaching those LST DN values to
the point features, they were reclassified into five classes based on the temperature, which
were defined as <20, 20–25, 25–30, 30–35, and >35. Finally, this thematic reclassification was
overlaid on the SVM-classified images of all respective cities and megacities to generate the
final maps of urban heat. The surface temperatures for different materials throughout the
day were taken for 3 consecutive days in the last week of May 2022 and were acquired to
validate findings in the Mumbai area.
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2.1. Land Surface Temperature Extraction

The satellite sensors receive electromagnetic thermal energy using their thermal sen-
sors and store it as digital numbers (DN). This analysis was performed in QGIS software
for each image.

Lλ = ML ∗ Band_10 + AL − Oi (1)

where Lλ = at-sensor spectral radiance; ML represents the radiance multiplier of band No.
10; AL = radiance of band No. 10; and Oi represents the correction value for band 10, which
is 0.29. For OLI-TIRS (Landsat 8), the ML for band 10 is 0.0003342 and the AL is 0.10000.
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Spectral radiance to brightness temperature conversion in Kelvin (K):

BT = [K2/ ln(K1/Lλ + 1)]− 273.15 (2)

BT represents the satellite brightness temperature in Kelvin; K1 represents calibration
constant 1; and K2 represents calibration constant 2. The calibration constants for OLI-TIRS
(Landsat 8) K1 and K2 are, respectively, 774.8853 and 1321.0789. Then, BT is converted to
Celsius.

Emissivity of surface temperature correction:
Emissivity is defined as difference between the electromagnetic radiance of an object

and a blackbody. It is not only dependent upon the surface materials (i.e., the surface’s
physical and chemical properties) but also upon the surface roughness of the object.

NDVI = (NIR− Red)/(NIR + Red) (3)

In this study, NDVI (normalized difference vegetation index)-based emissivity mea-
surement for Landsat 8 was considered, where band 5 was considered as a near-infrared
band (NIR) and band 4 was considered red.

PV = [(NDVI−NDVIMin)/(NDVIMax −NDVIMin)]
2 (4)

where PV is the proportion of vegetation extracted from Equation (4). For each city, the
mean, minimum, and maximum NDVI values were used for PV extraction.

E = m ∗ PV + n (5)

where m and n are, respectively, 0.004 and 0.986.
Brightness temperatures can lead to errors in the computation of surface temperature.

In order to minimize these errors, emissivity correction is important and is performed to
retrieve the LST from BT using Equation (6), where LST is in Celsius (C).

LST = BT/(1 + (λ ∗ BT/α)∗ ln(¢)) (6)

where λ represents the emitted radiance wavelength for band 10, i.e., 10.8 µm; α represents
1.438 × 10−2 mk; and ¢ represents the land surface emissivity (α is calculated as α = hc/σ,
where h represents Plank’s constant (6.626 × 10−34 Js), c represents the velocity of light
(3 × 108 m/s), and σ represents the Stefan–Boltzmann constant (1.38 × 10−23 J/K)) [43,44].

2.2. SVM Classification for Urban Built-Up Environment Extraction

The most prevalent method for classifying satellite images is pixel-based classification,
which uses quantitative approaches to discern patterns per pixel inside an image. Apart
from pixel-based classification, another type is called object-based classification, in which
rather than taking pixels as the minimum unit, it divides the image into objects and
uses the spectral, spatial, contextual, and textual characteristics between them to classify
them [45–47]. Pixel-based classification, a traditional classification that uses the combined
spectral responses of all pixels in a training set for a given class, is considered very effective
for low to moderate spatial resolution data [48]. For mapping a complex urban environment
in a city, the SVM classifier achieved higher overall accuracy than the maximum likelihood
classifier across all other classification schemes [49,50]. SVM is a supervised classification
method derived from statistical learning theory that generates better classification outputs
from complicated and noisy data. With a decision surface that optimizes the margin
between the classes, it conceptually divides the classes. An SVM-based classification using
kernel-type variables such as RBF (radial basis function) was performed in ENVI software
to create a binary image with built and unbuilt classes.
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2.3. Assessment of Urban Heat Pockets

The SVM-classified raster was used to extract the LST values for built-up pixels by
overlaying the results with the computed LST data. The frequency of built-up pixels in the
five classes of temperature range was computed to extract the heat variations in built-up
environments. Based on these heated zones, urban heat pockets (UHP) were quantified
(Table 2).

UHPi% = fi/n (7)

where f is the frequency of built-up pixels for i = I, II, III, IV, and V, which depict classes
based on computed LST, and n is total No. of built-up pixels. UHP classes I, II, III, IV,
and V varied, respectively, from LST pixel values, ranging from >35 ◦C to 35 ◦C–30 ◦C,
30 ◦C–25 ◦C, 25 ◦C–20 ◦C, and <20 ◦C.

Table 2. Classification of urban heat pockets.

UHP Class LST Pixel Value Severity

I >35 ◦C Extreme heat stress
II 35 ◦C–30 ◦C Moderate heat stress
III 30 ◦C–25 ◦C Slight heat stress
IV 25 ◦C–20 ◦C Comfortable heat stress
V <20 ◦C No thermal stress

3. Results

The LST maps for each coastal megacity and corresponding mid-sized city of similar
latitudinal reference are shown in Figures 3–5, with examples from lower-, mid-, and-upper
latitude regions. Different shades of red show the temperature, ranging from <20 ◦C to
>35 ◦C, as per the LST recorded for that particular mid-sized city and megacity in same
latitudinal reference. All the other pairs of coastal megacities and corresponding mid-sized
cities are attached in Appendix A (Figures A1 and A2).

Observations made from the histogram (Figure 6) were investigated and are presented
in form of image pairs. A comparative analysis (Table 3) provides a better understanding of
the variation in the latitudinal references and their heat signatures.

Table 3. Built-up area percentage, highest and mean LST, and elevation and azimuth sun angles for
cities and megacities.

Megacities/Cities Built-Up Area
(%)

Highest LST of
Built-Up Area

(◦C)

Mean LST of
Built-Up Area

(◦C)

Solar Elevation
Angle

Solar Azimuth
Angle

Lagos 69.44 33.39 30.25 52.18 128.62
Colombo 75.41 31.56 27.86 67.95 84.52
Barranquilla 55.93 34.78 28.58 65.02 77.91
Hồ Chí Minh 61.88 35.02 28.96 59.95 115.47
Manila 61.96 41.26 35.21 66.25 75.01
Dakar 80.03 39.91 32.61 55.41 142.26
Port-au-Prince 53.44 34.66 30.11 51.61 93.76
Mumbai 40.16 41.36 33.23 63.26 80.08
Karachi 25.59 40.54 33.79 68.29 95.59
Miami 74.08 35.43 31.57 51.15 96.81
Shanghai 34.83 44.01 29.07 58.87 126.32
Tijuana 78.48 42.98 34.55 52.95 122.45
Tokyo 79.83 41.02 33.27 62.14 126.97
Tunis 58.19 40.40 32.35 63.11 129.76
New York 67.21 45.91 33.39 56.27 111.92
Naples 70.83 38.90 31.71 55.87 110.43
Vancouver 76.56 33.00 24.85 45.04 129.45
London 68.29 45.90 32.72 49.45 124.27
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Lagos and Colombo—The megacity Lagos was observed to have a highest LST 2 ◦C higher
than Colombo. Both are capital cities, and they share nearly same latitude. The mean LST
was 2.5 ◦C higher in Lagos, whereas the sun elevation angle is somewhat lower compared
to Colombo in their respective summers. However, on a brighter side, Lagos did not have
any built-up area showing an LST >35 ◦C.
Barranquilla and HCM city—The megacity HCM and Barranquilla, the capital city of Colom-
bia, were observed to have similar thermal performances. The LST difference was negligible,
and being a megacity, HCM was only higher by 0.24 ◦C in terms of the highest LST and by
0.38 ◦C in terms of the mean LST.
Manila and Dakar—Manila is one of the most densely populated megacities in the world.
It highest LST was almost 1.5 ◦C higher than that of Dakar, which is of similar density.
Moreover, the mean LST of Manila was 2.5 ◦C higher than that of Dakar. Additionally,
57.46% of the total built-up environment had an LST higher than 35 ◦C.
Port-au-Prince and Mumbai—The highest LST of Mumbai was much higher than that of
Port-au-Prince, and the city was loaded, with 19.17% of the total built-up area having an
LST of more than 35 ◦C, but the mean LST difference was smaller in a brighter context.
Karachi and Miami—Karachi also had a difference of around 5 ◦C for its highest LST com-
pared to Miami, and 12.04% of the total built-up area was higher than 35 ◦C.
Shanghai and Tijuana—Shanghai was observed to have a highest LST only 1 ◦C higher than
that of Tijuana. However, surprisingly, Tijuana was noticed to have a mean LST of 34.5 ◦C,
which was 5.5 ◦C higher than that of Shanghai. Additionally, in Shanghai, only 2.40% of
the total built-up area was higher than 35 ◦C, whereas this number for Tijuana was 43%,
which signifies the alarming level of heat generation inside the city.
Tokyo and Tunis—Tokyo is one of the megacities where the population is decreasing, but
the city is already densely populated, and Tunis is the capital city of Tunisia. Tokyo
was observed to have a higher mean LST than Tunis. Additionally, Tokyo had a higher
percentage of its total built-up area higher than 35 ◦C.
New York and Naples—NYC was observed to have a difference of 7 ◦C in its highest LST
compared to Naples. It was only 2 ◦C higher in terms of the mean LST, and both had almost
50% of their total built-up areas higher than 35 ◦C.
Vancouver and London—The highest LST in London was almost 13 ◦C higher than that of
Vancouver, and the mean LST was 8 ◦C higher. Additionally, London had 7.25% of its total
built-up area higher than 35 ◦C.
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4. Discussion

High summer-time temperatures are arriving earlier and lasting longer, mostly in the
northern hemisphere because the climatic zones are shifting towards the equator [51], and
coastal megacities are extremely exposed to natural calamities due to this
phenomenon [28,38,52]. Therefore, the first approach was to choose cities with larger
percentages of urban population, which will naturally cause a high percentage of built-up
areas (megacities were considered according to UN dataset). While studying the global
megacities, it was observed that 70% of the total megacities are located on the coast since
coastal areas have maximal access in terms of transportation. In particular, most of the
cities developed since European colonization, which made it easy for further development
in the post-industrialization era.

Megacities were selected globally, as the approach was to justify the global perspective.
Therefore, nine coastal megacities were identified worldwide at different longitudes, from
Tokyo at the extreme east to New York at the extreme west. Based on the solar flashlight
effect theory, the selected cities were categorized based on their latitudes, as the sunlight
angle is different from the equator to the poles [53]. At the peak of summer, at a specific
time, sunlight will fall on the places at an angle of 90◦; thus, the solar insolation will be
maximal, and the land surface temperature will be at its highest from the equator to the
tropics. However, from the tropics to the poles, this phenomenon never happens, even at
the peak of summer because of inclination of the Earth’s rotation has an angle of 23.5◦ and
sunlight is received at an angle less than 90◦. Based on this fact, at the same time, insolation
will vary from the equator to the poles in megacities at different latitude on Earth, and
the places with same latitude will have the same insolation. Thus, the approach was to
pair nine megacities of the northern hemisphere with nine mid-sized cities to observe and
analyze whether the surface thermal performances of the cities were the same or different.

According to our methodology, the peak summer months were identified for those
18 megacities and cities. However, summertime was not same for the cities at the same
latitudes because of local or regional climatic factors such as oceanic currents and the
wind pressure direction. Landsat 8 data were downloaded for each megacity and city,
which were selected earlier based on their hottest months. While downloading, it was
difficult to obtain cloud-free datasets, as coastal cities have the problem of frequent cloud
formation due to being near to the oceans. A summer 2020 timeline was considered for LST
extraction. In some cases, images were taken from the summer of 2021/2019/2018 due to
the non-availability of cloud-free data.

As per the research, the outdoor comfortable temperature is 26.2 ◦C, which is fun-
damentally an air temperature (AT), but the acceptable outdoor temperature with slight
heat stress ranges between 26.2 ◦C and 31.6 ◦C [54]. However, the temperature does not
affect the comfort level alone since the relative humidity (RH) and wind play a vital role in
maintaining a comfortable outdoor environment, and a 26.2 ◦C outdoor air temperature
at 40% humidity is the ideal condition [55–57]. Nevertheless, if humidity reaches beyond
70%, the same air temperature feels so much hotter because the body’s sweat evaporates
slowly when the air is already saturated with water. A metric called the heat index indicates
that if the body experiences 88 ◦F (32 ◦F = 0 ◦C) weather with 85% humidity, then it feels
like the temperature is 110 ◦F [58]. Air adjacent to the surface is heated by radiation and
conduction, so longer day hours with an elevated sun angle on a particular area might
increase insolation. Additionally the emissivity of outdoor materials and the outdoor envi-
ronment reaches its intolerable temperature in the afternoon between 1 pm and 3 pm due to
radiation and re-radiation through the pollutants present in the air [59,60]. In conclusion,
higher emissivity means a higher LST, which means a higher outdoor air temperature.

On a hot summer day in the afternoon, the land surface temperature (LST) and the air
temperature (AT) might vary by up to 9 ◦C [61]. In justification of the above statement, a
field study of the surface temperature variation was conducted in one of the listed cities
(Table 1). The megacity Mumbai experienced various stages of development for last three
centuries, so the built-up environment includes an extensive variety of building materials
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with different emissivity [62]. The surface temperatures for different buildings, bridges,
roads, parks, etc., were recorded for three consecutive days in the last week (peak summer
days) of May 2022 due to the higher UHI intensity measurements that were taken on the
mentioned days [63]. The experiment was planned for the time of our observation to
overlap with the data acquisition time of Landsat 8 of the study area, which was around
10:30 a.m. IST for the Mumbai region.

In Figure 7, it is observed that the average difference in LST at 10 a.m. and 2 p.m. was
10.4 ◦C, so for example, in an area in Mumbai, if the LST is 35 ◦C at 10 a.m., then it will be
around 45.4 ◦C at 2 p.m., and as per the previous reference [61], the air temperature at same
time should vary between 36.4 ◦C and 45.4 ◦C. The LST was significantly higher than the
air temperature since the majority of the city’s areas are built-up and impermeable, which
traps heat from the sun [44]. As a coastal city, the RH of Mumbai will always vary between
55% and 80% throughout the day, as per the Power Lark data. As a result, it was decided
to segregate the built-up areas in different urban heat pockets (UHP), with LST > 35 ◦C as
class I, 35 ◦C–30 ◦C as class II, 30 ◦C–25 ◦C as class III, 25 ◦C–20 ◦C as class IV, and <20 ◦C
as class V.
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Figure 7. Recorded daily temporal data for the surface temperatures of various built-up materials in
Mumbai.

In reference to Figure 8, the megacities Lagos and Ho Chi Minh showed some similari-
ties with respect to their similar latitudinal counterparts. UHP Class I was not observed in
Lagos, and with respect to other megacities, the outdoor temperature was bearable because
in megacities such as Lagos, where the population density is quite high, people live without
shelter. There are two components that might be responsible for this kind of behavior: a
low-rise built-up area using locally available building materials, and mixed land use in
urban areas. The former component validates Lagos’s lower LST, while later suggests a case
for HCM and its low-LST behavior.

Manila showed a much higher percentage in class I of UHP, which is quite alarming.
As far as the reason for this behavior is concerned, in Manila, most of the built-up surface’s
materials, such as concrete and glass, are observed. This makes the city’s heat balance quite
vulnerable, while Dakar did not show much of a difference in its mean LST because of the
influence of the surrounding deserted area.

Mumbai and Karachi had around 2 ◦C to 3 ◦C differences in their mean LSTs compared
to their respective cities, i.e., Port-au-Prince and Miami. As per the graph shown in Figure 8,
it can be concluded that both megacities had very low percentages of their built-up areas
responsible for temperature ranges greater than 35 ◦C. This pattern could be seen because
of the recent developments in the last decade in the built-up region because of rapid
urbanization. Buildings are mostly made of materials such as glass and concrete and are of
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the high-rise type, with artificial cooling, which increases greenhouse gas emissions and
heats up the overall outdoor environment.
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Shanghai is a well-planned megacity with a lot of mixed land use comprising both
built-up areas (impervious surfaces) and vegetation in parallel. This pattern reduces
the surface temperature pixel value (30 × 30 m) more than a pixel mostly with built-up
environment [64]. While the topography in Tijuana has a higher percentage of barren
hills, which reflect, the built-up area becomes extremely hot because of multiple sources of
radiation. The observed difference in the mean LSTs of these two was much higher, and
Tijuana showed a higher mean LST compared to other city–megacity pairs. This shows
that the topographical properties of surroundings could be taken as one of the prominent
factors for understanding the urban heat in a city. Like Shanghai, the well-planned Tokyo
benefits from its topographical features (urban forest), which make it cooler than the other
surrounding cities of neighboring countries. Natural surfaces, i.e., vegetation and water,
that have high emissivity are one of the prominent mitigating factors in the case of Tokyo’s
urban heating. While Tunis is not a megacity, it still shows behavior similar to one due to its
surrounding natural desert feature on one side, which heats up the city during the day. The
topography can be seen to play a predominant role in increasing heat as well as mitigating
urban heat.

In case of New York, being an international hub for business and cultural integration,
the city has a lot of high-rise buildings, which are constructed of steel and concrete. This
explains the high percentage of class I UHP. Whereas Naples shows the same behavioral
pattern and reason for being, it mostly has old stone buildings, which reflect more heat in
the daytime and thus have a significant impact on a high LST [65]. As London is the oldest
megacity, growth-wise planning can be seen as well as different building materials. It was
observed that newly constructed built-up areas in London showed behavior of UHP class I,
whereas Vancouver can be called one of the coldest cities, even during summer.

5. Conclusions

In this paper, the impact of coastal megacities on global warming was analyzed, as
two thirds of all megacities are situated on the coast. Based on the solar flashlight effect,
nine megacities were selected at a latitude interval of 5◦ in the northern hemisphere and
analyzed using a Landsat 8 dataset. The results were derived through LST extraction and
SVM classification of these images, which showed the correlation between the built-up
percentage and urban heat pockets for each megacity. In parallel, nine mid-sized cities were
also taken under observation to understand the difference in heat impact between these
cities and megacities based on population. Some of the observations and limitations in this
study are as follows.

The initial understanding of this study was that urban land masses at the same
latitude experience temporal shifts in seasons. It was observed that the highest LST values
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occurred in the pairs of megacities and cities lying in the mid-latitudinal region. Seasonal
variations not only depend on the location but also on topography, oceanic currents, and
atmospheric wind disturbances in coastal regions. In some cases, the heat radiated from
the built environment might affect oceanic currents and vice versa to create a much greater
disturbance in the global context. Megacities in developing nations are facing considerable
pressure in handling the cost of global warming, even though these nations are contributing
less to the heat generated globally. It has been quantified that the megacities New York,
Manila, Mumbai, and Karachi are generating more clusters of urban heat pockets than
the similar latitudinal mid-sized cities (Figure 8). These mid-sized cities are very high in
number compared to the existing megacities in the world. Soon they will be contributing
to greater global heating issues. Tijuana, Tunis, Miami, and Dakar are in the process of
becoming the hottest megacities in next decade due to their urban thermal performances,
which are exceptionally similar to the existing megacities in the world. These upcoming
megacities should follow the planning policy and urban design of Shanghai, the second
most populated coastal city in the world; it maintains a maximum urban temperature below
35 ◦C, which is impressive.
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Appendix A

Built/un-built maps with corresponding heat maps for both megacities and their
respective mid-sized cities, as per the latitudinal reference, are shown for Ho Chi Minh
City and Barranquilla, Manila and Dakar, and Karachi and Miami (Figure A1) as well as
Shanghai and Tijuana, Tokyo and Tunis, and Vancouver and London (Figure A2).

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Figure A1. Built/unbuilt maps with corresponding heat maps for both megacities and their respective
mid-sized cities, as per the latitudinal reference (top: Ho Chi Minh City and Barranquilla) (middle:
Manila and Dakar) (bottom: Karachi and Miami).
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