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Abstract: In response to uncertainty in remotely sensed land cover products, there is continuing
research on accuracy assessment and analysis. Given reference sample data, accuracy indicators
are commonly estimated based on error matrices, from which areal extents of different cover types
are also estimated. There are merits to explore the ways utilities of land cover products may be
further enhanced beyond map face values and conventional area estimation. This paper presents
an integrative method (CCAErrMat) for uncertainty characterization and utility enhancement. This
works through reference-map cover type co-occurrence analyses based on error matrices localized
in canonical correspondence analysis (CCA) ordination space rather than in geographic space to
overcome the sparsity of reference sample data. The aforementioned co-occurrence analyses facilitate
quantification of accuracy indicators, identification of correctly classified and perfectly misclassified
pixels, and prediction of reference class probabilities, all at individual pixels. Moreover, these
predicted reference class probabilities are used as auxiliary variables to formulate model-assisted
area estimation, further enhancing map utilities. Extensions to CCAErrMat are also investigated as a
way to bypass the pre-computing of map class occurrence pattern indices as candidate explanatory
variables for CCAErrMat, leading to two variant methods: CCACCAErrMat and CNNCCAErrMat.
A case study based in Wuhan municipality, central China was undertaken to compare the proposed
method against alternative methods, including CCA-separate and CNN-separate. The advantages
of CCAErrMat and CCACCAErrMat were confirmed. The proposed method is recommendable for
characterizing uncertainty and enhancing utilities in land cover maps by analyzing locally constrained
error matrices. The method is also cost-effective in terms of reference sample data, as requirements
for them are similar to those for conventional accuracy assessments.

Keywords: error matrices; local accuracy; area estimation; canonical correspondence analysis (CCA);
ordination space; class occurrences; convolutional neural network (CNN); reference sample;
model-assisted estimation

1. Introduction

Land cover information is important for geoscientific research and various spatial
applications. A variety of land cover information products are produced by organizations
around the world at both finer spatial resolution, such as GlobeLand30 [1] and LCMAP
(Land Change Monitoring, Assessment, and Projection) [2], and coarser spatial resolution,
such as Copernicus global land cover [3] and MODIS [4,5]. They provide information
support for natural resource monitoring and environmental modeling at different scales.
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However, land-cover maps are subject to uncertainty, which hampers spatial analyses
and applications. There is growing research on accuracy assessment and analysis [6–9],
which are useful not only for judging maps’ fit for use, but also for better understanding
occurrences of misclassifications and thus informing about how land cover mapping may
be improved. In this paper, uncertainty is a term with broad meanings and includes mis-
classification, ambiguity and fuzziness in labeling, and other types of errors in classification,
though it can be used interchangeably with inaccuracy here.

Accuracy is conventionally assessed in a non-spatial way using error matrices con-
structed by cross-tabulating map classifications and reference classifications. Accuracy
indicators, such as overall accuracy (OA), user’s accuracy (UA), and producer’s accuracy
(PA), are often reported.

Local accuracy characterization complements non-spatial accuracy assessments men-
tioned above and provides pixel-level information about spatial variations of classification
accuracy. For this, there have been continuing research efforts [10–14]. Three types of
methods are often applied: spatial interpolation, empirical modeling, and localized er-
ror matrices, as reviewed by Khatami et al. [12], Stehman and Foody [14], and Zhang
et al. [15], among other researchers. Spatial interpolation may be based on kriging, as in
Steele et al. [16]. Empirical modeling-based methods seek to model relationships between
map-reference classification agreements/disagreements and various predictors, either in
the image spectral domain [9] or the map domain [13,17]. For empirical modeling, machine
learning methods were employed, such as logistic regression [10,13], generalized addi-
tive modeling [18], and random forest [9]. The spatially constrained error matrices-based
method was proposed by Foody [11] to map local classification accuracies (e.g., local OA,
local UA, and local PA). Along this line, Comber et al. [19] computed localized and geo-
graphically weighted correspondence matrices to compute local accuracy indicators. The
local error matrices-based methods are advantageous over alternative methods for their
versatility in modeling multiple accuracy indicators altogether. With per-pixel accuracy
analyzed, it is possible to demarcate low-accuracy locations for well-targeted re-mapping.
For example, an accuracy increase was achieved by combined use of computer image
re-processing over regions relatively easy to map and visual image interpretation over
regions difficult to map [20].

Map-wise accuracy assessment and per-pixel accuracy modeling are seldom the ul-
timate goal themselves. It is also important to investigate how maps’ utilities may be
enhanced beyond their face values. Here, utilities refer to the information and functionali-
ties attainable with a map. An example is area estimation based on error matrices along
with accuracy assessment [8]. Quantities that can be estimated from error matrices include
map-reference class co-occurrences, map-reference class transition probabilities (with UA
and PA being their respective special cases), and reference class occurrences, which actually
pertain to area estimation.

The quantities mentioned above can be estimated not only for a map as whole but also
around individual pixels. This study seeks to analyze map-reference class co-occurrences lo-
cally so that not only accuracy indicators but also map-reference cover type co-occurrences,
transitions, and marginals (reference class probabilities) can be predicted, all at individual
pixels. For map-reference cover type transitions, there are two extreme cases. One concerns
correctly classified pixels, which can be used as classification training data. The other is
perfectly misclassified pixels (i.e., refinable pixels discussed in [21], which can be corrected
and then added to the aforementioned training data. Such pixels would be difficult to
identify on globally estimated error matrices, as misclassifications are rarely patterned
up, except for cases like in Campos and Brito [22]. In between, a fuller spectrum of map-
reference transition probabilities can be computed for a land cover map individually as in
this research or for fusion of multiple land cover maps [23], although the latter is beyond
the scope of this research.

The predicted per-pixel reference class probabilities can be used to augment land
cover representations. They also help identify mixed pixels, which are common for land
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cover products at 30 m resolution or coarser, especially over fragmented landscapes. The
information about mixed pixels and low-accuracy pixels identified in accuracy assessment
can be used together for well-targeted land cover re-mapping. Moreover, reference class
probabilities are useful for area estimation. While stratified estimators with map classes
being strata are highly recommended [8,24], model-assisted estimators are often applied
for improving area estimation [25,26]. As reference class probabilities mentioned above
are predicted in alignment to reference classifications via reference sample data, they
are presumably closer to the true class proportions than original map classifications. It
then makes sense to formulate model-assisted area estimators by using these predicted
probabilities as auxiliary variables to increase estimation precision.

As discussed above, properly constructed local error matrices are versatile for uncer-
tainty characterization and map-reference cover type co-occurrence analyses, which lead
to enhanced map utilities as described above. However, reference cover conditions are
often only sparsely sampled, meaning that reference sample data are often inadequate for
constructing error matrices localized in geographic space, as revealed in our preliminary
experiments. This research proposes constructing error matrices localized in synthetic
feature space (i.e., ordination space) defined through CCA (thus named CCAErrMat) to
overcome the hurdle of sample data sparsity. This leads to a unifying framework for
predictions and analyses concerning local accuracy indicators, correct classifications, per-
fect misclassification, spectral confusions, and reference class probabilities, which can be
further used as auxiliary variables to facilitate model-assisted area estimation for improved
precision. The remainder of the paper describes the methods and experiments before some
discussion and concluding remarks.

2. Methods

In conventional CCA modeling, response variables are specified according to the objec-
tives of modeling: map-reference classification agreements (conditional or non-conditional)
for mapping local accuracies and reference classifications for predicting reference class
probabilities. Thus, the conventional CCA method is named CCA-separate to highlight
its difference from CCAErrMat (for which response variables are always reference classifi-
cations). Similar to CCA-separate, CNN is also compared with CCAErrMat, thus named
CNN-separate.

To bypass the pre-computing of map class occurrence pattern indices for CCA model-
ing, novel use was made of CCA and CNN as feature extractors for CCAErrMat in this study.
These two variants of CCAErrMat were named CCACCAErrMat and CNNCCAErrMat,
respectively. A flowchart for the methods proposed is shown in Figure 1.

As indicated in Figure 1, CCA-separate and CNN-separate perform the modeling for
different local accuracy indicators and reference class probabilities only and separately.
By CCAErrMat and its two variant methods, map-reference cover types co-occurrence
analyses are performed based on CCA feature space localized error matrices, proceeding to
training data extraction (by locating correctly classified and perfectly misclassified pixels)
and reference class probability predictions. Reference class probabilities can be used to
augment representations of land cover. They can also be used along with local accuracy
surfaces to demarcate locations of uncertainty to inform land cover mapping. The predicted
reference class probabilities can be further used to drive model-assisted area estimation, as
shown in Figure 1. The aforementioned methods are described in more detail below while
CCA and CNN are described in Appendices A and B, respectively.
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2.1. CCA Feature Space Local Error Matrices: CCAErrMat

The basis for this method is CCA [27,28]. With reference classifications used as re-
sponse variables and map classifications (usually along with map class occurrence pattern
indices) used as explanatory variables, CCA modeling is described in Legendre and Legen-
dre [28] and other related literature [29–33]. See also Appendix A for a concise introduction.

As described in Appendix A, CCA site scores determine the canonical coordinates
of each pixel in the canonical space (CCA feature space) defined by the canonical axes.
Consider a pixel x0. At its location O(x0) in CCA feature space, a subset of the sample pixels
(say k of them) falling within a distance range Dis are weighted by their distance to O(x0)
to construct the error matrix. The resulting values are feature space distance-weighted
counts of CCA sample pixels in each reference class (column j) assigned to each map class
(row i). In other words, cell counts NPO(x0)(i, j) are estimated. Cell counts are the counts
of pixels belonging to map-reference cover type combinations in a localized error matrix.
These counts are sums of numbers of pixels weighted by distances between unknown
locations and sample locations in CCA ordination space. They are non-integers when
distance-weighting is applied:

N̂PO(x0)(i, j) = ∑k
k′=1 Wk′ ∗ I

(
i = c′(xk′), j = c(xk′)

)
, when dk′x0

< Dis (1)

where I() is an indicator; c′(xk′) and c(xk′) refer to map class and reference class for sample
pixel xk ′ , respectively; Wk′ , being the weight assigned to sample pixel xk ′ , is based on the dis-
tance dk′x0(between sample pixel xk′ and x0), which is itself eigenvalue-weighted; and Dis
refers to the search radius containing k sample pixels. The estimated cell counts NPO(x0)(i, j)
are standardized by their grand total say TP to get standardized cell probabilities p̂O(x0)(i, j)
(which equals NPO(x0)(i, j)/TP).



Remote Sens. 2023, 15, 1367 5 of 23

Once the error matrices centered at individual pixels are populated with cell propor-
tions properly estimated, it is straightforward to calculate local accuracy indicators for pixel
x0. For example, we can compute local OA as:

POA, o(x0)= ∑CLS
i=1 p̂O(x0)(i, i) (2)

where CLS represents the number of candidate classes considered. Local UA for map class
c′ and local PA for reference class c are predicted, respectively, as:

PUA, o(x0)|c′= p̂O(x0)
(
c′, c′

)
/ ∑CLS

j=1 p̂O(x0)
(
c′, j
)

(3)

and
PPA, o(x0)|c= p̂O(x0)(c, c) / ∑CLS

i=1 p̂O(x0)(i, c) (4)

We can predict probabilities of all candidate reference classes’ occurrences from the
aforementioned feature space localized error matrices. This amounts to computing the sum
of cell proportions along a particular column (corresponding to a reference class say j):

p̂o(x0)(+, j) = ∑CLS
i=1 p̂O(x0)(i, j) (5)

The resultant class probabilities are useful for identifying mixed pixels, which along
with local accuracy surfaces mapped above, can inform land cover re-mapping. They
can also be used for augmented representations of land cover by showing primary and
alternate class labels for mixed pixels; among them, pixels showing virtually equal class
memberships to more than two classes can be further identified. Furthermore, based on
localized error matrices, it is straightforward to examine pixels if they are correctly classified
or perfectly misclassified (can be corrected easily). From such pixels and the pixel segments
(3 by 3) they fall in, training data are extracted and used for improving classification.

Note that for different modeling objectives (e.g., different local accuracy indicators,
reference class probabilities), the k’s (optimum number of nearest neighboring sample pix-
els) for constructing local error matrices need to be determined individually. Optimization
was carried out through cross-validation in this study.

2.2. CCA and CNN Used as Feature Extractors for CCAErrMat: CCACCAErrMat
and CNNCCAErrMat

For modeling by CCAErrMat, CCA-separate, and CNN-separate, candidate explana-
tory variables usually include map classes, geospatial coordinates, and map class occur-
rence pattern indices, such as class proportions, homogeneity, heterogeneity, dominance,
entropy, and contagion [34–36]. For this study, map class occurrence pattern indices were
computed over moving window sizes of 3 by 3, 5 by 5, 7 by 7, and 9 by 9 pixels. This
maximum window size of 9 pixels was set because smaller window sizes are more infor-
mative for pixel-level modeling and help to reduce the computational burden. A total of
63 explanatory variables were considered in model selection: map class (6), class propor-
tions in different-sized windows (28), pattern indices computed in different-sized windows
(20), class occurrence frequencies of neighbor polygons (7), and sample pixel’s geospatial
coordinates (2) [21].

The computing of class occurrence pattern indices is, however, computationally inten-
sive. As CNN is becoming easy to use and is often considered as a feature extractor, there
seem to be merits in applying CNN using map class indicators alone as explanatory vari-
ables to predict reference class probabilities, which are then used as explanatory variables
along with map classifications for CCAErrMat. This leads to a method named CNNC-
CAErrMat. Likewise, CCA is also used as a feature extractor for CCAErrMat, leading to
Method CCACCAErrMat.
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2.3. Improved Model-Assisted Area Estimation

Area estimators include design-based estimators, model-based estimators, and model-
assisted estimators [25,37,38]. The most common design-based estimator is the π estimator
(also known as the Horvitz–Thompson estimator), which uses probability-based samples
to estimate areas. It is unbiased and has relatively high precision (i.e., low variance). When
stratified sample data with map classes being the strata were organized in an error matrix,
areas for individual cover types were easily estimated [8]. See Appendix C for further
detail. When full-coverage auxiliary variables were available or could be assembled, model-
assisted estimators were used [37,39], such as the difference estimator and the regression
estimator, which are also described in Appendix C.

A model-assisted area estimator, which uses predicted reference class probabilities
(Equation (5)) as auxiliary variables, was proposed in this study. Since the predicted class
probabilities presumably approximated true class proportions more closely than original
map classifications, they were expected to lead to increased precision in area estimation.
This was pursued through the difference estimator and regression estimator described in
Appendix C.

3. Experiments
3.1. The Study Site and Datasets

GlobeLand30 2010 land-cover dataset (http://www.globallandcover.com (accessed on
26 February 2023)) for Wuhan, China was used for this study. The city of Wuhan is about
8495 km2 in areal extent, located in the middle reach of the Yangtze, as shown in Figure 2
(where the inset map of China is shown lower right corner). For Wuhan, of seven classes in
total, the dominant class is cultivated land, followed by water, forest, and artificial surface;
they account for about 60%, 15%, 12%, and 7% of the total area, respectively, according to
map classifications. Grassland, wetland, and bare land together take about 6% of Wuhan’s
areal extent. Further detail can be found in Wan et al. [21].

Model training and testing were based on the sample data acquired by Zhang et al. [40],
which were collected following a class-heterogeneity-stratified random sampling design
(StRS). This design uses a local heterogeneity index to stratify pixels within a class (stratum)
into relatively homogeneous and heterogeneous sub-strata [40,41], resulting in a total of
14 sub-strata for a total of 7 strata (cover types) in the study area. The full training sample
has a total of 3000 pixels, and the full test sample has a total of 1020 pixels, as shown in
Table 1, where number of sample pixels belonging to individual sub-strata are indicated,
with sampling intensities shown in parentheses for the full training sample and the full
test sample. Sampling intensities are percentages of the total number of pixels (Nstrata)
belonging to specific sub-strata (E-Heterogeneous, O-Homogeneous). It is shown that
sampling intensities for E sub-strata were much greater than their O counterparts, being
a feature of the adopted StRS design by Zhang et al. [40]. Sample size allocations for the
training and test samples were configured following the Neyman method [40]. In Table 1,
Cultivt and Artfct are abbreviations for cultivated land and artificial surfaces, respectively,
while grass, water, and bare for grassland, water bodies, and bare land, respectively. These
abbreviations are the same through the remainder of this paper, including the appendices.

In this study, for evaluating the influence of sample size on model performances,
sample subsets I and II (of 360 pixels and 1020 pixels, respectively) were selected from the
full training sample for experiments, as shown in Table 1. For model testing, the full test
sample was adopted. For model-assisted area estimation, sample subset III (of 360 pixels)
was selected from the full test sample and was used along with the latter, as shown in Table 1.
Note that the aforementioned sample subsets I and II (for model training) were different
from the samples used for area estimation (i.e., sample subset III and full test sample),
although with the same sizes (strata-allocations) of 360 and 1020 pixels, respectively, as
shown in Table 1.

http://www.globallandcover.com


Remote Sens. 2023, 15, 1367 7 of 23Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 23 
 

 

 

Figure 2. GlobeLand30 2010 land cover map for Wuhan, China. 

Table 1. Model-training sample full set and subsets I and II, the test sample (for model testing and 

area estimation), and sample subset III (for area estimation). 

Strata and 

Sub-Strata 
Nstrata 

Training Sample 

Full Set (Sampling 

Intensity) 

Sample 

Subset I 

Sample 

Subset II 

Test Sample 

Full Set 

(Sampling Inten-

sity) 

Sample 

Subset III 

Cultivt_E 56,721  120 (0.21) 15 60 60 (0.11) 15 

Cultivt_O 5,739,203 1095 (0.02) 132 160 160 (0.003) 132 

Forest_E 133,655 140 (0.10) 18 70 70 (0.05) 18 

Forest_O 1,001,767 280 (0.03) 27 100 100 (0.01) 27 

Grass_E 70,366 120 (0.17) 15 60 60 (0.09) 15 

Grass_O 248,912 170 (0.07) 21 80 80 (0.03) 21 

Wetland_E 2033 80 (3.93) 9 40 40 (1.97) 9 

Wetland_O 133,735 140 (0.10) 18 70 70 (0.05) 18 

Water_E 23,895 100 (0.42) 12 50 50 (0.21) 12 

Water_O 1,395,043 285 (0.02) 33 110 110 (0.01) 33 

Artfct_E 19,324 100 (0.52) 12 50 50 (0.26) 12 

Artfct_O 699,787 200 (0.03) 24 90 90 (0.01) 24 

Bare_E 3658 80 (2.19) 12 40 40 (1.10) 12 

Bare_O 6994 90 (1.29) 12 40 40 (0.58) 12 

All 9,535,093 3000 360 1020 1020 360 
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Table 1. Model-training sample full set and subsets I and II, the test sample (for model testing and
area estimation), and sample subset III (for area estimation).

Strata and
Sub-Strata Nstrata

Training Sample
Full Set (Sampling

Intensity)

Sample
Subset I

Sample
Subset II

Test Sample
Full Set

(Sampling Intensity)

Sample
Subset III

Cultivt_E 56,721 120 (0.21) 15 60 60 (0.11) 15
Cultivt_O 5,739,203 1095 (0.02) 132 160 160 (0.003) 132
Forest_E 133,655 140 (0.10) 18 70 70 (0.05) 18
Forest_O 1,001,767 280 (0.03) 27 100 100 (0.01) 27
Grass_E 70,366 120 (0.17) 15 60 60 (0.09) 15
Grass_O 248,912 170 (0.07) 21 80 80 (0.03) 21

Wetland_E 2033 80 (3.93) 9 40 40 (1.97) 9
Wetland_O 133,735 140 (0.10) 18 70 70 (0.05) 18

Water_E 23,895 100 (0.42) 12 50 50 (0.21) 12
Water_O 1,395,043 285 (0.02) 33 110 110 (0.01) 33
Artfct_E 19,324 100 (0.52) 12 50 50 (0.26) 12
Artfct_O 699,787 200 (0.03) 24 90 90 (0.01) 24
Bare_E 3658 80 (2.19) 12 40 40 (1.10) 12
Bare_O 6994 90 (1.29) 12 40 40 (0.58) 12

All 9,535,093 3000 360 1020 1020 360

3.2. Results

Modeling and estimation were carried out using methods described in Section 2. Some
of the results, especially the intermediate ones, are shown in Appendix D, as indicated in
the text below wherever relevant.
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3.2.1. Mapping Local Accuracy

Conventional error matrix-based accuracy assessment was carried out, as shown
in Table A1 in Appendix D. While it is possible to identify classes of relatively lower
UAs and/or PAs from inspecting the error matrix, pixel-level information about spatial
variations in accuracy would be possible only through local accuracy mapping.

Local accuracies were mapped using the methods described in Section 2. In Appendix D,
Table A2 shows the optimal explanatory variables selected and optimum k’s for KNN (K
nearest neighbors) in CCA-separate while shows optimum k’s for CCAErrMat. Some of the
local accuracy surfaces obtained with method CCAErrMat based on the training sample subset
of 360 pixels are shown in Figure 3, where surfaces of local OAs, local UAs for cultivated land,
and local PAs for water bodies are shown in Figure 3a–c, respectively.

Water pixels appear to have higher local OAs while pixels of artificial surfaces and
cultivated land tend to have lower local OA, as shown in Figure 3a. For the class of
cultivated land, there exist variations in local UAs, as shown in Figure 3b. For the class of
water bodies, higher local PAs tend to cluster around water bodies of larger areal extents.

Accuracies of local accuracy indicators predicted using different methods were eval-
uated based on the full test sample. This was performed based on area under the curve
(AUC) (i.e., the receiver operating characteristic curve, ROC) [42] commonly applied for
continuously valued quantities such as local accuracies. Results are shown in Table 2.

Table 2. AUC-based evaluation for local accuracy characterization.

CCAErrMat CCA-Separate CNN-Separate CCACCAErrMat CNNCCAErrMat

360 1020 360 1020 360 1020 360 1020 360 1020

Local OA 0.71 0.72 0.75 0.79 0.74 0.77 0.74 0.77 0.72 0.76

Local UA

Cultivt 0.72 0.71 0.67 0.75 0.78 0.75 0.70 0.74 0.62 0.76
Forest 0.79 0.83 0.78 0.87 0.82 0.86 0.77 0.82 0.82 0.87
Grass 0.61 0.50 0.57 0.54 0.66 0.61 0.67 0.65 0.61 0.56

Wetland 0.61 0.68 0.61 0.71 0.40 0.70 0.54 0.67 0.36 0.70
Water 0.45 0.62 0.66 0.81 0.55 0.54 0.56 0.56 0.54 0.54
Artfct 0.70 0.56 0.69 0.66 0.73 0.71 0.71 0.70 0.69 0.70
Bare 0.63 0.65 0.58 0.80 0.72 0.87 0.62 0.70 0.73 0.79

Local PA

Cultivt 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
Forest 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
Grass 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00

Wetland 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Water 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
Artfct 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
Bare 0.98 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00

As shown in Table 2, accuracies increase generally as the training sample size increases.
For local OAs, all methods tested achieve AUCs higher than 0.70. CCA-separate with
1020 training sample pixels attained the highest accuracy (0.79). For local UAs, relatively
accurate predictions are generated by most methods for cultivated land, forest, and artificial
surfaces. For local PAs, prediction accuracies are quite high. This is similar to that reported
in Wickham et al. [13].

Then, we compare CCAErrMat and CCACCAErrMat. Although they predict local
accuracies with comparable accuracies, CCACCAErrMat predicts local OAs and local UAs
(for grassland, artificial surfaces, and bare land) with greater accuracy. Thus, it is highly
recommended for use given its reduced cost in computing class occurrence pattern indices.
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3.2.2. Analyzing Map-Reference Class Co-Occurrences

Alternative methods were applied with training sample subsets I and II detailed in
Table 1. Unless stated otherwise, the results obtained using CCAErrMat with the sample of
360 pixels were used as examples below.

Reference class probabilities predicted were used to identify mixed pixels. They were
identified by setting thresholds on the maximum class probabilities. The threshold applied
was 0.60. Mixed pixels identified are shown in Figure 4a, indicating many pixels were
viewed as mixed as the threshold value applied was relatively high. Based on local OAs,
locations of relatively low accuracy (thresholding at 0.20) can be marked, resulting in the
map shown in Figure 4b, where fewer locations than those in Figure 4a were considered as
of low-accuracy, as the threshold value applied was relatively low. Combining the maps
shown in Figure 4a,b, locations of low-accuracy and mixed cover were identified. This
leads to the map shown in Figure 4c, where the locations marked indicate the locations
where re-mapping should be targeted.
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Predicted reference class probabilities were further used to augment land cover repre-
sentations. The most probable cover types (i.e., primary classes) were determined based on
the predicted class probabilities, as shown in Figure 5a. For mixed pixels identified as in
Figure 4a, the second most probable class labels (i.e., alternate classes) were determined,
resulting in Figure 5b. Furthermore, the mixed pixels exhibiting almost equal probabilities
to more than two classes were further identified (called highly mixed pixels), as shown in
Figure 5c, where the third most probable classes are depicted.
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In addition, based on local error matrices, locations that appear to be correctly classified
or can be corrected based on local refinability can be identified. A total of 359,780 pixels
were identified as being correctly classified while only 768 pixels were classified as refinable.
All 3 by 3 pixel segments (excluding edge pixels) in which correctly classified pixels fall
were extracted (Figure 6a). For pixels found refinable, homogeneous 3 by 3 pixel segments
(again excluding edge pixels) they fall in were corrected accordingly (Figure 6b). The union
of correctly classified pixel segments (Figure 6a) and corrected pixel segments (Figure 6b)
are shown in Figure 5c, leading to the set of pixels potentially usable as classification
training data.

3.2.3. Improved Area Estimation

Based on reference class probabilities predicted using CCAErrMat (trained with the training
sample subset I of 360 pixels described in Section 3.1), model-assisted area estimation was carried
out and compared with that obtained with the π estimator. For this, two samples (the full test
sample set of 1020 pixels and its subset of 360 pixels (sample subset III), as shown in Table 1)
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were used. The estimated area proportions and the corresponding standard errors (SEs) relative
to area proportions estimated are shown in Tables 3 and 4, respectively.
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Table 3. Area proportions estimated with different estimators (%).

Area Cultvt
Land Forest Grass Wetland Water Artificial

Surfaces
Bare
Land

360
pixels

π estimator 50.1 12.9 6.8 3.4 17.1 8.9 0.8
Difference
estimator 50.4 12.6 6.9 3.5 16.9 8.8 0.8

Regression
estimator 50.4 12.6 6.9 3.6 16.9 8.8 0.8

1020
pixels

π estimator 49.1 12.6 6.7 2.6 19.5 8.9 0.6
Difference
estimator 49.9 12.6 6.5 2.5 18.9 9.1 0.6

Regression
estimator 50.0 12.6 6.5 2.6 18.7 9.1 0.6
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Table 4. Standard error (SE) estimates (relative to area proportions estimated) obtained with different
estimators (%).

SE Cultvt Land Forest Grass Wetland Water Artificial
Surfaces Bare Land

360
pixels

π estimator 5.0 14.1 24.0 38.3 12.4 18.3 102.4
Difference
estimator 3.9 11.6 21.7 28.1 8.9 12.8 91.5

Regression
estimator 3.8 11.6 21.7 28.2 8.7 12.8 96.5

1020 pixels

π estimator 2.6 8.9 16.1 32.2 7.0 12.0 81.9
Difference
estimator 2.1 6.8 15.0 26.5 5.1 7.4 78.7

Regression
estimator 2.0 6.8 15.0 26.0 5.1 7.5 80.6

As shown in Table 3, area proportions of seven classes estimated from multiple
methods are quite similar. However, there are noticeable differences in SEs concerning the
area estimates, as shown in Table 4 (where smaller SEs mean greater precision). Overall,
SEs for area estimates obtained with a larger sample size (1020 pixels) are smaller than
those with smaller sample size (360 pixels), indicating improved precision with a greater
sample size. With respect to the differences of SEs among the three estimators tested, the π

estimator leads to the greatest SEs, the regression estimator the smallest SEs (especially for
the classes of cultivated land and water bodies), with the difference estimator in between,
on the whole. Exceptions are observed with the class of bare land, due to it being the
smallest areal extent and prone to misclassification.

4. Discussions
4.1. Comparisons with Related Work

This study promotes method CCAErrMat for uncertainty characterization and utility
enhancement. The method’s major advantages lie in its multiple functionalities.

For local accuracy mapping, CCAErrMat allows predictions of multiple local accuracy
indicators without having to re-run modeling separately, although optimum k’s for different
accuracy indicators need to be determined separately. The proposed method complements
those devised for image-domain per-pixel accuracy analyses, such as Ebrahimy et al. [9].

Concerning performances of local accuracy modeling, some remarks are in order.
Although not reported here, a preliminary experiment was undertaken. Results indicated
that geospatially constrained local error matrices are inferior to CCAErrMat due to the
sparsity of sample data used in this study (even with the full model-training sample set
of 3000 pixels). In addition, the initial results showed that CCAErrMat was comparable
to random forest in prediction performances. Nevertheless, it is important to undertake
more comprehensive comparative studies on competing methods, although this is out of
the scope of this study.

Predicted reference class probabilities can be used to augment land cover representa-
tions by providing information about potential land cover distributions through multiple
alternative class labels. They can also be used to locate mixed pixels, providing useful
information about locations prone to misclassification. The demarcation of low-accuracy
locations and mixed pixels is useful for well-targeted land cover re-mapping. This is com-
plementary to the work done by Yu et al. [43], in which difficult-to-map classes are identified
and analyzed based on multiple classifications of land cover, and by Huang et al. [20],
where areas of uncertainty were identified using multiple map consistency analysis.

Corrections for misclassification errors can be done to increase classification accuracies
when misclassification errors exhibit certain patterns [22]. However, map-wise misclassi-
fication patterns are rarely apparent or discernible. By the proposed method, patterns of
map-reference cover type associations can be analyzed based on localized error matrices.
Pixels that are correctly classified or perfectly misclassified can be identified to create classi-
fication training datasets, although our preliminary experiments using augmented training
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data indicated only a modest accuracy increase. Nevertheless, this method provides a
map-domain strategy for classification improvement, complementing to image-domain
strategies as in Huang et al. [20], in which image interpretation is adopted over uncertain
regions while training sample data for image classification over certain regions are extracted
from consistency analyses of multiple products. Furthermore, confusion among cover types
can be analyzed locally to aid in searching for potential informative features for land cover
mapping, although this was not investigated further in this study.

With the proposed method, the enhanced map utilities were also demonstrated by an
improved area estimation through the use of model-predicted reference class probabili-
ties. Specifically, cover type probabilities were used as auxiliary variables in models for
predicting per-pixel areal extents of candidate classes. Areas of multiple cover types were
estimated by correcting model predictions using reference sample data in a model-assisted
estimation framework. This strategy complements existing model-assisted area estimators,
which are often based on remote-sensing images and/or biophysical variables and are
mostly applied to a single theme (e.g., forest) [38]. According to Sales et al. [44], consistent
area estimates can be obtained using class membership probabilities estimates from a
random forest classification, with the error of the predicted class membership probabilities
converging to zero given a large sample and proper set of explanatory variables. This
model-based strategy can be usefully extended with the model-assisted strategy promoted
in this study.

4.2. Recommendation for Further Research

CCAErrMat may be improved by integrating it with geographically localized error
matrices for improved performances when denser reference data can be furnished. CCA
can also be improved by considering stratified modeling approaches according to dis-
tinct patterns of map-reference cover type associations. This is relevant for large-area
applications where regionalization is to be discerned concerning map-reference cover type
associations. As a further note, feature space does not need to be synthesized through CCA
only. Other kinds of synthetic feature spaces are certainly worth studying.

Land cover information fusion is a long-standing research theme. There is continuing
work on the fusion of multiple land cover products by making use of a variety of methods,
as exemplified by the relevant literature [45–51]. Other potentially useful methods are
worth exploring. For instance, in addition to original maps, class probabilities predicted can
be used as contextual information or as land cover primitives [52] for the fusion of multiple
land cover products [53], especially when in combination with accuracy characterization.
This may proceed by having individual products accuracy-characterized and thematically
aligned using reference sample data before having them fused through accuracy-based
weighting [47]. Land cover information fusion likely also benefits from exploiting a fuller
spectrum of map-reference class co-occurrence statistics, which can be computed using local
error matrices, such as map-reference cover type transition probabilities, as investigated by
Zhang et al. [23].

Change detection and analysis are becoming increasingly important nowadays [53–55]. It
is certainly worth exploring how CCAErrMat (and its variant CCACCAErrMat) is extended
from single-date applications to change detection and multi-temporal applications [56].
Both direct and indirect methods are worth exploring. The former treat changes as “from-to”
classes (using methods originally designed for single-date land cover to change detection
directly) while the latter handle single-date land cover separately followed by proper
synthesis of single-date results. For the latter, work by Zhang et al. [15] on geostatistical
modeling of spatial-temporal correlation (for local accuracy characterization in land cover
change) may be usefully extended.

In this study, we considered only discrete classes of land cover. Percent cover informa-
tion products are also important [13,57]. Numerical ecology and machine learning methods
can in principle be used for modeling percent covers of candidate land cover classes by
noting the analog between percentages (or fractions) and abundances. Although there
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seems to be no consensus on how error matrices should be constructed for percent covers,
some work has been done on error matrices for soft classifications [58]; class probabilities
can be directly used as explanatory variables for CCA, indicating CCAErrMat’s potential
extensibility. Nevertheless, further investigations are needed.

5. Conclusions

The novelty of this study lies in having proposed a method based on CCA ordination
space localized error matrices for accuracy characterization (with multiple local accuracy
indicators), analyses of map-reference cover type transitions, prediction of reference class
probabilities, and improved area estimation. For bypassing the pre-computing of map class
occurrence pattern indices in modeling, CCACCAErrMat and CNNCAAErrMat are also
proposed as useful extensions to CCAErrMat.

Results obtained from experiments in this study are summarized below. First, for
local accuracy characterization, local OAs, local UAs, and local PAs were all predicted with
reasonable accuracy using alternative methods. However, in terms of cost-effectiveness,
CCErrMat and CCACCAErrMat are preferred. Second, reference class probabilities pre-
dicted using CCAErrMat were used to augment land cover representations with primary
and alternate labels. They were also used to identify mixed pixels, which, along with
low-accuracy pixels, can be used to inform re-mapping. Third, local error matrices were
analyzed to extract training data by locating correctly classified and perfectly misclassified
pixels. Lastly, standard errors in area estimation were greatly reduced by model-assisted
area estimation using reference class probabilities predicted by CCAErrMat as auxiliary vari-
ables. The regression estimator gave rise to the greatest precision on the whole. Although
CCAErrMat was tested using GlobeLand30 land cover data over Wuhan municipality, it is
transferable to other regions and other land cover products with the understanding that
the specific results and performances are likely different over different regions and with
different products.

Through map-reference co-occurrence analyses via local error matrices, the proposed
method, CCAErrMat, provides fuller information about uncertainty in map classification,
map-reference cover type transitions (e.g., differentiation among locations correctly clas-
sified, perfectly misclassified, or prone to more complex confusion), and reference class
probabilities, which lead to further improved area estimation by building model-assisted
area estimators. The enhanced map utilities pertain not only to the maps individually, but
also collectively when they are used in combination (e.g., for change detection and data
fusion). These come at no extra cost with respect to the reference data used, which are
usually available or can be easily furnished, as in conventional accuracy assessments.
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Appendix A CCA Modeling

The following description about CCA is based on Legendre and Legendre [28] and
Wan et al. [21]. Let I and Z represent the matrices for response variables and explanatory
variables, respectively. Let fij, fi+, and f+j be the absolute frequencies, row totals, and
column totals of matrix I, respectively. Then, relative frequencies, row totals, and column
totals of matrix I, which are represented by pij, pi+, and p+j, respectively, are computed as:

pij =
fij

f++
=

fij

∑n
i=1 ∑

p
j=1 fij

(A1)

pi+ =
fi+
f++

=
∑

p
j=1 fij

∑n
i=1 ∑

p
j=1 fij

(A2)

p+j =
f+j

f++
=

∑n
i=1 fij

∑n
i=1 ∑

p
j=1 fij

(A3)

Matrix I (for sample pixels) is then transformed to matrix Q, which consists of contri-
butions to chi-squares defined for cross-tabulation of rows and columns in I:

Q =
[
qij
]
=

[
pij − pi+p+j
√pi+p+j

]
(A4)

After performing multiple regression on matrix Q against matrix Z, the regression
coefficients B is obtained as:

B =
[
Z’D(pi+

)
Z]−1Z′D(pi+)

1
2 Q (A5)

where D = diag(pi+)
1
2 , meaning that matrix D is the diagonal matrix of row sums od

matrix I. Matrix
^
Q is obtained as:

^
Q = D(pi+)

1
2 ZB (A6)

Principal component analysis is then run on matrix
^
Q, with eigenvalues Λ and eigen-

vectors U derived. Site scores O are computed as linear combinations of Z variables using
B. These site scores determine the canonical coordinates of each pixel in the canonical space
(i.e., ordination space, called feature space in this paper) defined by the canonical axes:

O(x) = Z·B·UΛ−1
2

(A7)

After calculating site scores, the CCA feature space is constructed with training sample
and test sample. Distances between samples are eigenvalue-weighted squared distance:

d2
k′x0

= (Ok′ −Ox0)
′Λ(Ok′ −Ox0) (A8)

where Ok′ and Ox are site score of reference sample pixel k’ and the target pixel x, respec-
tively, and Λ is the diagonal matrix constructed using the eigenvalues derived.

In this study, anova.cca function in the R package vegan (vegan: community ecology
package, version 2.5–4, http://vegan.r-forge.r-project.org/(accessed on 26 February 2023))
was used for forward variable selection to identify a reduced set of explanatory variables.

http://vegan.r-forge.r-project.org/(accessed
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Appendix B CNN

The CNN network architecture and optimization techniques similar to those in
Carranza-García et al. [59] were adopted for this study. As shown in Figure A1, the
CNN architecture contains two convolution layers, two pooling layers, and one fully con-
nected layer. Batch-normalization and dropout in Carranza-García et al. [59] were also
used to enhance CNN performances. Fixed-size neighborhood patch centered at each
pixel being processed was used as the input for the central pixel. As patch size influ-
ences CNN performances, optimal patch size was determined through error and trial to
maximize accuracy.
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Figure A1. The network architecture of the convolution neural network used in this research.

The training sample size is key to CNN performances. CNNs usually require a
large sample size to avoid overfitting and to achieve satisfactory performances. However,
reference sample data are expensive to collect in practice. To augment the original reference
sample data, each training image patch is rotated for seven fixed angles (45◦, 90◦, 135◦, . . . ,
315◦) to fully extract spatial features from sample image patches. Therefore, for a sample of
360 pixels, its sample size can be expanded seven folds to 2520 pixels.

Appendix C The π Area Estimator and Some of Model-Assisted Area Estimators

Define an indicator variable for area estimation as It:

It =

{
1, if a unit (pixel) say t belongs to reference class j

0, otherwise
(A9)

Estimating the area for reference class j in the population (problem domain) amounts
to estimating the population total A for indicator It (with t traversing all units in the
population). According to the π estimator, A is estimated as:

Â = ∑
s

It

πt
(A10)

where πt represents the inclusion probability of element t in the sample and for stratified
random sampling is estimated as:

πt =
nh
Nh

(A11)

where nh and Nh denotes sample count and population count of strata h, respectively. When
stratified sample data with map classes being the strata are organized in an error matrix
{nhj}, where nhj stands for sample count of strata h with reference class j, Equation (A10)
can be rewritten:

Â(j) = ∑H
h=1 Nh

nhj

nh
(A12)

where H represents the number of strata pertaining to the sample data [37].
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The variance estimator for π estimator is:

V̂
(

Â
)
= ∑

s
∑

s

1
πtp

(
πtp

πtπp
− 1
)

It Ip (A13)

where πtp is the inclusion probability that element t and element p are simultaneously
included in the sample:

πtp =

{
n(n−1)

N(N−1) , when t 6= p
n
N , when t = p

(A14)

For stratified random sampling, variance is estimated [37]:

V̂
(

Â
)
= ∑H

h=1 N2
h

1− fh
nh

s2
Ish

(A15)

where fh is sampling intensity of the strata h ( fh = nh
Nh

) and s2
Ish

sample variance with strata h:

s2
Ish

= ∑
sh

(
It − Ish

)2

nh − 1
(A16)

For difference estimator, the predicted class probability is set as a proxy of target
variable. The population total of class probabilities serves as a proxy of ultimate area
estimation. Then the difference between the proxy total and the ultimate estimation can be
estimated through difference estimator and the target variable.

Set proxy estimator as I0
t . Then, the difference is:

Dt = It − I0
t (A17)

Adding the total estimation of the difference to the proxy totals recovers area estima-
tion of target variable:

Âdi f = ∑
U

I0
t + ∑

s

Dt

πt
(A18)

where ∑
U

I0
t is the sum of auxiliary variables on the population total and ∑

s

Dt
πt

is the estimated

sum of the difference between auxiliary variable and target variable of the population totals
based on sample weighted by the inverse of inclusion probabilities [37].

Variance estimation for Âdi f is:

V̂
(

Âdi f

)
= ∑

s
∑

s

(
πtp − πtπp

πtp

)
Dt

πt

Dp

πp
(A19)

where πtp means the inclusion probability that the t′th element and p′th element are
both included in the sample. For stratified random sampling, the variance of difference
estimator is:

V̂
(

Âdi f

)
= ∑H

h=1 N2
h

1− fh
nh

(
s2

Ish
+ s2

Zsh
− 2sZIsh

)
(A20)

where s2
Ish

and s2
Zsh

represent sample variance of variable I (target variable) and variable Z
(proxy variable), with sZIsh being sample covariance between Z and I [37].

The other model-assisted estimator considered is the regression estimator. For this
study, regression estimator uses linear regression of auxiliary variables as a proxy of target
variable I. The coefficient of regression is estimated using sample data. For each pixel, the
regression model is expressed as:

E(It) = β1 + β2Zt (A21)
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V(It) = σ2 (A22)

where β1 and β2 are coefficient of regression and σ2 is the variance of the t’th unit. It is
the target variable, and Zt (t = 1, 2, . . . , N) is the auxiliary variable. Then, coefficients of
regression are estimated as β̂1 and β̂2.

Then, regression area estimator is as follows:

Â = N
(

Is + β̂2
(
ZU − Zs

))
(A23)

where N is the population size and Is is the sample mean of target variable, with ZU and
Zs being population mean of auxiliary variable and sample mean of the auxiliary variable,
respectively. The variance of area estimation is:

V̂
(

Â
)
=

N2(1− f )
n(n− 1) ∑

s

((
It − Is

)
− β̂2

(
Zt − Zs

))2
, (A24)

as described in Särndal et al. (1992) [37].
Model-assisted survey estimation is described in McConville et al. [60]. In this study,

R package mase [60] was applied for model-assisted area estimation, along with package
survey [61].

Appendix D Some of Experiment Results

Appendix D.1 An Error Matrix Estimated for the Original Map

The aforementioned error matrix for the original land cover map is shown in Table A1.
It was estimated using the full model-training sample of 3000 pixels, reporting an OA of
74.0%, a Tau coefficient of 0.696 and a Kappa coefficient of 0.601 [62].

Table A1. Error matrix and accuracy assessment for the original map based on the full model-training
sample set (cell proportions and accuracy measures in %).

Map Class
Reference Class

Cultivt Forest Grass Wetland Water Artfct Bare Strata
Accuracy UA

Cultivt (E) 0.2 4.5×10−2 6.4×10−2 3.5×10−2 0.1 0.1 2.5×10−2 36.7
71.8Cultivt (O) 43.4 2.5 1.8 2.3 5.8 3.6 0.8 72.1

Forest (E) 0.3 0.4 0.2 0.1 0.4 0.1 3.0×10−2 26.4
73.1Forest (O) 0.8 8.3 0.8 0.2 0.3 0.1 3.8×10−2 79.3

Grass (E) 0.1 0.1 0.3 3.7×10−2 0.1 3.1×10−2 6.1×10−3 38.3
48.3Grass (O) 0.3 0.2 1.3 4.6×10−2 0.4 0.2 0.1 51.2

Wetland (E) 2.7×10−4 0 5.3×10−4 1.1×10−2 9.1×10−3 0 0 53.8
69.1Wetland (O) 0.1 1.0×10−2 2.0×10−2 1.0 0.3 0 0 69.3

Water (E) 2.3×10−2 7.5×10−3 1.3×10−2 3.0×10−2 0.2 0 0 71.0
85.4Water (O) 0.4 0.1 0.6 0.6 12.5 0.1 0.4 85.6

Artfct (E) 2.0×10−2 3.9×10−2 1.6×10−2 0 1.6×10−2 0.1 6.1×10−3 52.0
83.1Artfct (O) 0.2 0.1 0.4 0 0.1 6.2 0.4 84.0

Bare (E) 7.2×10−3 9.6×10−3 8.2×10−3 0 4.8×10−4 0 1.3×10−2 33.8
45.1Bare (O) 9.0×10−3 1.2×10−2 1.3×10−2 0 1.6×10−3 0 3.7×10−2 51.1

PA 95.1 73.0 29.5 22.9 62.8 59.8 2.9 73.9

Appendix D.2 Variable Selection and Optimum k for k Nearest Neighbors

Explanatory variables selected and optimum k for k nearest neighbor in Method CCA-
separate are shown in Table A2 for re-mapping and for local accuracy mapping using
360 sample pixels and 1020 sample pixels.
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Table A2. Selected explanatory variables and optimum k for KNN (Method CCA-separate).

Re-mapping
Sample Sets Selected Variables k

360 pixels mapclass1+mapclass2+mapclass3+mapclass4+mapclass5+ 20
1020 pixels mapclass6+hom3+con3+het3+dom3+ent3+p1w3+p2w3+ 47

Local accuracy mapping
(360 sample pixels)

Selected Variables k

OA ent3+mapclass6+mapclass5+p6w9+mapclass4+p5w7+p2w5 43
UA Cultivt p6w7 3
UA_Forest con3+patch5+hom3 8
UA_Grass con5+patch2 10

UA_Wetland patch3+patch4+dom3+p5w3+con3+het3+patch1+p2w7 7
UA_Water p1w7+het5+het7+area+patch3+con9 6
UA_Artfct p8w3 20

UA_Bare
con5+het5+patch4+dom3+het7+p9w3+ent5+patch2+area+
patch5+patch1+dom7+con3+p6w9+ent3+p2w3+patch3+

hom9+het9+p2w5+p2w7+p1w9+hom3
7

PA Cultivt mapclass1+p1w3+p1w5+p1w7+p1w9 1
PA_Forest mapclass2+p1w3+p1w5+p1w7+p1w9 1
PA_Grass mapclass3+p1w3+p1w5+p1w7+p1w9 1

PA_Wetland mapclass4+p1w3+p1w5+p1w7+p1w9 1
PA_Water mapclass5+p1w3+p1w5+p1w7+p1w9 1
PA_Artfct mapclass6+p1w3+p1w5+p1w7+p1w9 1
PA_Bare mapclass7+p1w3+p1w5+p1w7+p1w9 1

Local accuracy mapping
(1020 sample pixels)

Selected Variables k

OA ent3+mapclass5+mapclass6+lsihet2_3+mapclass4+
mapclass1+p6w9+p5w7+POINT_Y+hom9+p5w3+p5w9 37

UA Cultivt ent3+het3+p5w9+p6w5 21
UA_Forest hom9+patch5+p3w9+p8w3+con3 40
UA_Grass p1w5+dom5+dom9+patch2+area 44

UA_Wetland p6w3+patch4+patch3+patch1+p3w9+p1w3 36
UA_Water p1w3+dom3+p3w5+patch6+p2w3 14
UA_Artfct patch4+dom3+p8w5+hom3+p8w3 19
UA_Bare patch3+p1w3+hom5+area 14

PA Cultivt mapclass1+p1w3+p1w5+p1w7+p1w9 1
PA_Forest mapclass2+p1w3+p1w5+p1w7+p1w9 1
PA_Grass mapclass3+p1w3+p1w5+p1w7+p1w9 1

PA_Wetland mapclass4+p1w3+p1w5+p1w7+p1w9 1
PA_Water mapclass5+p1w3+p1w5+p1w7+p1w9 1
PA_Artfct mapclass6+p1w3+p1w5+p1w7+p1w9 1
PA_Bare mapclass7+p1w3+p1w5+p1w7+p1w9 1

Method CCAErrMat is actually the same as CCA-separate when used for re-mapping.
Thus, explanatory variable selection and optimum k are the same as shown in Table A2.
However, when used for local accuracy mapping, optimum k’s need to be found for
CCAErrMat, as shown in Table A3, where results with sample sets of 360 pixels and 1020
pixels are in Table A3, respectively.

Table A3. Optimum k for k nearest neighbors for local accuracy characterization (method CCAErrMat).

360
Sample Pixels OA UA

Cultivt
UA

Forest UA Grass UA
Wetland UA Water UA Artfct UA Bare

K 12 8 6 8 10 23 23 7
PA

Cultivt PA Forest PA Grass PA
Wetland PA Water PA Artfct PA Bare

K 6 24 2 1 5 1 5

1020
Sample Pixels OA UA

Cultivt
UA

Forest UA Grass UA
Wetland UA Water UA Artfct UA Bare

K 42 50 22 2 48 12 46 48
PA

Cultivt PA Forest PA Grass PA
Wetland PA Water PA Artfct PA Bare

k 1 24 2 1 5 1 5
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