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Abstract: Satellite observations have revealed strong land surface “greening” (i.e., increases in veg-
etation greenness or leaf area index (LAI)) in the Northern Hemisphere over the past few decades.
European terrestrial ecosystems are a greening hotspot, but how they respond to land surface green-
ing, climate change, CO2 fertilization, land use and land cover change (LULCC) and other factors is
unclear. Here, we assessed how these interacting factors might be combined to alter terrestrial gross
primary production (GPP) throughout Europe during the period of 2001 to 2016 using a process-based
Farquhar GPP model (i.e., FGM). We found a more productive European terrestrial ecosystem and
most of the GPP enhancement in Europe was explained by increases in LAI (62%) and atmospheric
CO2 concentration (29%). Spatially, the spatial signature of the LAI and GPP trends both suggested
widespread (72–73% of the vegetated area) greening phenomena across Europe, among which 23.7%
and 13.3% were statistically significant (p < 0.05). The interannual trend of GPP estimated by the FGM
(0.55% yr−1) was reasonable compared with other GPP products (0.47% yr−1 to 0.92% yr−1) and the
observed LAI increasing rate (0.62% yr−1). FGM factorial simulations suggested that land surface
greening (+35.5 Pg C yr−2, p < 0.01), CO2 fertilization (+16.9 Pg C yr−2, p < 0.01), temperature warm-
ing (+3.7 Pg C yr−2, p < 0.05), and enhanced downwards solar radiation (+1.2 Pg C yr−2, p > 0.05)
contributed to the GPP enhancement, while the enhanced vapour pressure deficit (−5.6 Tg C yr−2,
p < 0.01) had significant negative impacts on GPP, especially in 2006 and 2012, when extreme droughts
struck south-eastern Europe. Meanwhile, approximately 1.8% of the total area of Europe experienced
LULCC from 2001 to 2016 and LULCC exerted a small but significant (−1.3 Tg C yr−2, p < 0.01)
impact on GPP due to decreases in the total number of vegetated pixels (−159 pixels yr−1). Although
the LULCC effect was negative, the largest increase occurred in forested land (+0.9% of total area). In
addition, the increasing trends for the annual mean LAI (0.01 m2 m−2 yr−1, p < 0.001) and total GPP
(22.2 Tg C yr−2, p < 0.001) of forests were more significant and higher than those of other vegetation
types, suggesting that European forests may continue to play important roles in combating climate
change in the future with long-lasting carbon storage potential. These results provide the first sys-
tematic quantitative analysis of the driving force of enhanced gross carbon assimilation by European
ecosystems by considering variations in leaf physiological traits with environmental adaptations.

Keywords: gross primary production (GPP); Farquhar GPP model (FGM); Europe; land surface
greening; climate change; land use and land cover change (LULCC)
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1. Introduction

Since the early 1950s, a continuous increase in the atmospheric CO2 concentration has
been reported [1]. The rapid release of greenhouse gases into the atmosphere has been
associated with global climate warming [2] and anthropogenic climate change. Climate
change is rapidly altering the vegetation structure, plant phenology, and carbon uptake
of the terrestrial ecosystems [3]. There are serious concerns that sustained global climate
change in the European continent may lead to significant impacts on plant distribution,
growth and productivity [4]. According to the national reports of the conservation status
of species and habits by the EU Habitats Directive [5], 14% of habitats are already under
pressure, and 33% of the habitats are projected to be continued threatened by climate
change in the near future. Thus, European terrestrial ecosystems are particularly sensitive
to climate change and deserve special attention [6]. Thus, a better understanding of the
response of carbon dynamics in terrestrial ecosystems across Europe is needed.

Satellite observations have indicated that the Earth has been greening during the
past three decades [7–9], especially in the middle and high latitudes in the Northern
Hemisphere [10,11]. Greening refers to increases in vegetation greenness based on spec-
tral vegetation indices (e.g., the normalized difference vegetation index) or leaf density
based on vegetation the leaf area index (LAI). Although identifying the drivers of the
observed greening is complicated, recent studies have made advances using model simula-
tion methods. On the global-scale, CO2 fertilization effects explain most of the greening
(approximately 70%) [8]. However, there are some differences in the key factors driving the
greening phenomenon on a regional scale due to heterogeneous land surfaces impacted
by human activities. For example, China and India lead the greening process [6], mainly
due to increases in forest area caused by afforestation and increases in farmland due to
agricultural intensification, respectively. Thus, land use and land cover change (LULCC) is
recognized as the main driver of the observed greening trend [7] and the enhanced terres-
trial gross primary production (GPP) in these countries [12]. LULCC is often accompanied
by changes in LAI and vegetation structure. Thus, it is difficult to distinguish the contribu-
tions of LULCC and LAI to GPP in regions where intense land use and management exist
(e.g., China and India).

Europe is among the regions with the largest greening trends, and climate change is
the major factor driving land surface greening throughout Europe [8]. Part of the observed
greening in northern Europe is due to temperature warming [13], which can prolong the
growing season length and allow biochemical and physiological processes to proceed at
faster rates [14]. In regions where widespread farmland abandonment has occurred, such
as Eastern Europe and southern and central Europe, woody regrowth also contributes to
the observed vegetation greening [15]. Compared to India and China, European vegetation
cover is relatively high (approximately 97%) and stable without strong correlation between
land surface greening and LULCC. Thus, quantifying the driving factors of GPP dynamics
in Europe can help us better understand the climate change feedback of the terrestrial
ecosystems [7].

GPP is a product of photosynthesis, which is regulated by both environmental factors
and biological processes on different temporal and spatial scales. On the leaf-scale, the
photosynthetic rate and stomatal conductance can adjust in response to environmental
changes within seconds. On the stand scale, individual plants may adjust anatomically
to changes in environmental factors due to acclimation and adaptation on longer time
scales [16]. Experimental and field evidence has demonstrated that plants adapt to prevail-
ing environmental conditions by reducing stomatal density under drought pressure [17],
elevated atmospheric CO2 [18], and low irradiance conditions [19]. Thus, understanding
the drivers of changes in GPP is a complex task, but recent studies have made advances
using terrestrial biosphere models (TBMs).

TBMs provide a powerful tool to integrate our understanding of ecosystem function-
ing on site to global scales in response to multiple factors, which can be grouped into
three categories: vegetation structure (e.g., land cover and LAI), environmental factors
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(e.g., atmospheric CO2 concentration and temperature, solar radiation, and soil moisture
and fertility), and biophysical parameters (e.g., photosynthetic capacity and stomatal con-
ductance) [12,20,21]. Although the impacts of changes in external factors on GPP have been
well studied, the impacts of changes in internal factors on GPP remain poorly understood.
For example, the maximum rate of carboxylation at 25 ◦C (Vcmax) is as a key biophysical
parameter determining leaf photosynthetic capacity and largely determines the accuracy of
GPP estimated by the photosynthesis model of Farquhar et al. [22]. Although Vcmax varies
with space and time [16], it has been widely treated as a constant parameter that varies only
with plant functional types (PFTs). TBMs with prescribed PFT-dependent Vcmax values
are theoretically inaccurate when simulating the carbon exchange between the terrestrial
ecosystem and atmosphere [23]. With advances in remote sensing technology, spatially
and temporally continuous global Vcmax datasets have been derived from remote sensing
data [24–26], providing a new opportunity to better understand the response of European
GPP dynamics to multiple external and internal factors.

The main objective of this study was to quantify the spatial and temporal dynamics
in GPP across Europe and its drivers using a process-based model with consideration
of spatial and temporal variations in Vcmax. We first estimated the long-term trend and
spatial distribution of European GPP at a medium spatial resolution and 8-day temporal
resolution. Then, we quantified the relative role of different factors on GPP. Specifically,
we aimed to answer the following questions: (a) Can the observed greening across Europe
result in a proportional increase in GPP? (b) How do land cover change and climate change
contribute to European GPP? (c) Is the widespread assumption of Vcmax as a constant
likely to affect the magnitude and long-term trend of GPP estimations using the Farquhar
model? Exploiting the availability of long-term multisource time series datasets of satellite
observations, meteorological factors, and site-level flux observations, we performed a series
of model simulations to achieve the above objectives.

2. Materials and Methods
2.1. Model Framework

We developed the Farquhar GPP model (FGM) model [12] to estimate terrestrial
ecosystem GPP on a daily time scale using eddy flux tower data from FLUXNET 2015
(https://fluxnet.org/data/fluxnet2015-dataset/, accessed on 19 February 2023) [27] and
remotely sensed data [12,28]. Based on the nonlinear response of the leaf photosynthetic
rate to solar radiation, leaves in canopies can be separated into two categories: sunlit leaves
and shaded leaves. The GPP in the FGM was estimated as the sum of the photosynthesis
rate for all sunlit leaves and shaded leaves using the two-leaf model:

GPP = Lsunlit + AnshadeLshade (1)

where Ansunlit, Anshade, Lsunlit, and Lshade are the net photosynthesis rate and LAI for sunlit
and shaded leaves, respectively.

The FGM model can estimate large-scale GPP with acceptable accuracy. The FGM
model was developed based on a site-level model, the Song et al. [29] photosynthetic
model, which can precisely simulate the GPP and evapotranspiration (ET) simultaneously
by solving the leaf photosynthetic rate using three complex equations: the Fick’s law, the
photosynthesis model of Farquhar, von Caemmerer and Berry [22], and the model for
stomatal conductance. To calculate GPP more efficiently at a high spatiotemporal resolution
on large scales, the FGM incorporates the optimal stomatal theory [30,31] to reduce the
computational demand for solving the ratio of the intercellular CO2 concentration (Ci) and
leaf photosynthetic rate. Compared with other models, FGM also considers changes in
leaf photosynthetic capacity (Vcmax) with time and space. The theoretical framework [12],
model parameters [12], model calibration and validation of the GPP estimated by the FGM
for China [12] and Europe [28] can all be found in our previous publications. For more
details about how we improved the FGM for estimation of GPP in Europe by considering
changes in Vcmax, please refer to our most recent work [28].

https://fluxnet.org/data/fluxnet2015-dataset/
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2.2. Model Calibration and Validation

Here, the FGM was recalibrated based on eddy flux tower data from FLUXNET2015
obtained at 40 sites in EuroFLUX networks. Given that temporally and spatially continuous
global Vcmax maps have been published recently, we recalibrated the FGM using one
of these up-to-date datasets. The site-level data were used to calibrate the FGM 500 m
GLASS-V5 LAI, and 500 m leaf chlorophyll content-based Vcmax from 2001 to 2016. After
data screening [28], a total of 2256 monthly records covering 9 biomes were selected. We
randomly split the flux sites and used half of the sites within each biome to calibrate
the biome-specific parameter g1, which describes instantaneous water use efficiency in
FGM [28] (Table S1). The data collected at reserved sites were used to evaluate the model
at the biome and site levels. Overall, the FGM explained 87.5% of the variations in GPP
derived from eddy covariance data, with a root mean square error (RMSE) ranging from
0.9 to 2.73 g C m−2 d−1 for different PFTs (Figure S1). The GPP estimated by FGM in
China [12] and Europe [28] was comparable to most existing remote sensing-based GPP
products. Additional details about model validation against tower-based GPP and other
GPP products can be found in previous publications [12,28].

The solid mechanisms of the process-based model, low computational demand, con-
sideration of LULCC and key environmental constraints from temperature, water pressure
deficit, and solar radiation, and an improved representation of spatial- and temporal-
dynamic Vcmax all make the FGM particularly useful for disentangling the regional climate
change impacts on GPP in Europe.

2.3. Multisource Driving Datasets

The multisource remote sensing datasets used to drive the FGM in this study in-
cluded the 500 m × 500 m yearly land use and land cover data from the MOD12Q1
C6 product (2001–2016) [32], the 500 m × 500 m 8-day LAI data from the GLASS V5
product (2001–2016) [33–35], the 500 m × 500 m 8-day clumping index data in 2006 de-
rived from MODIS bidirectional reflectance distribution function (BRDF) data [36], the
500 m × 500 m 8-day photosynthetic capacity (Vcmax) data derived from leaf chlorophyll
content (2001–2016) [37,38], and the 5 km × 5 km daily downwards shortwave radiation
(DSR) data from the GLASS V5 product (2001–2016) [39]. We obtained the 0.5◦ × 0.5◦

6-h climate data (including air temperature and relative humidity) from the Climatic Re-
search Unit-NCEP (CRUNCEP) V7 (2001–2016) [40]. The vapour pressure deficit (VPD)
was calculated from atmospheric pressure, the minimum and maximum air temperature,
and relative humidity. Meteorological data used to drive the FGM included the mean air
temperature and VPD. In addition, site-level daily ambient CO2 concentrations observed at
the Mauna Loa Observatory (MLO) site (2001 to 2016) were used to drive the FGM. DSR
data were resampled to a spatial resolution of 500 m × 500 m with bilinear interpolation.
Climate data were aggregated to a targeted temporal resolution of 8 days and downscaled
to a spatial resolution of 500 m × 500 m with bilinear interpolation. For the 40 EuroFLUX
sites used in this study, 8-day LAI time series from 2001 to 2016 were extracted from the
GLASS LAI product [33] and interpolated to daily temporal resolution using the linear
interpolation method.

2.4. Simulation Design

To disentangle the effects of LULCC, climate change, CO2 fertilization, and photo-
synthesis capacity change on GPP, we designed a series of simulation scenarios based on
different combinations of model inputs (Table 1). First, we produced the actual ensemble
GPP dynamics by allowing all model inputs to change with time from simulations (“All”).
Then, we fixed one to three factors at the initial 2001 level and allowed all other variables
to change with time. In the second group of simulations (i.e., “S1–3”), we simulated the
LULCC and greening effects on GPP by maintaining both land use land cover (LULC) and
LAI, only LULC, and only LAI at the initial 2001 level. The third group simulated the
climate change effect on GPP by maintaining all climate factors (i.e., DSR, air temperature,
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and VPD) or one climate factor at a time at the initial 2001 level from the simulations “S4-7”.
In simulation “S8”, we simulated the CO2 fertilization effect on GPP by maintaining the
ambient CO2 concentration at the initial 2001 level at 8-day temporal scales. The fourth
group simulated photosynthetic capacity change effects on GPP by maintaining Vcmax at
the initial 2001 level from simulation “S9”.

Table 1. Scenario designs used to quantify the effects of LULCC, climate change, CO2 fertilization,
and photosynthesis capacity change on GPP based on the FGM. The symbol ‘4’ indicates that the
input variable changes over time, while the symbol ‘N’ indicates that the parameter is fixed at the level
in 2001. The LCC effect is constrained by scenarios “LULCC1” (i.e., “All”− “S1”) and “LULCC 2” (i.e.,
“All”− “S2”). The greening effect is constrained by “LULCC 1” and “LULCC 3” (i.e., “All”− “S3”).
The climate change effect is constrained by scenario “CLM1” (i.e., “All”− “S4”). The DSR, temper-
ature, and VPD change effects are constrained by scenarios “CLM2” (i.e., “All”− “S5”), “CLM3”
(i.e., “All”− “S6”), and “CLM4” (i.e., “All”− “S7”), respectively. The CO2 fertilization effect is con-
strained by the CO2 scenario (i.e., “All”− “S8”). The effects of interannual changes in Vcmax on GPP
are constrained by the Vcmax effect from PC1 (i.e., “All”− “S9”).

Group All Land Use and Land Cover
Change (LULCC) Climate Change CO2

Fertilization

Photosynthesis
Capacity (PC)

Change

Scenario All LULCC1 LULCC2 LULCC3 CLM1 CLM2 CLM3 CLM4 CO2 PC1
All All − S1 All − S2 All − S3 All − S4 All − S5 All − S6 All − S7 All − S8 All − S9

Simulation All S1 S2 S3 S4 S5 S6 S7 S8 S9
LULC 4 N N 4 4 4 4 4 4 4
LAI 4 N 4 N 4 4 4 4 4 4
DSR 4 4 4 4 N N 4 4 4 4

TEMP 4 4 4 4 N 4 N 4 4 4
VPD 4 4 4 4 N 4 4 N 4 4
CO2 4 4 4 4 4 4 4 4 N 4

Vcmax 4 4 4 4 4 4 4 4 4 N

3. Results
3.1. Spatial Pattern and Interannual Dynamics of GPP across Europe from 2001 to 2016
3.1.1. A More Productive European Terrestrial Ecosystem from 2001 to 2016

The study region covers most of the regions of Europe (excluding England, Norway,
Sweden, and Finland) and the European section of Russia. We estimated European GPP by
FGM using the “All” simulation based on multisource remote sensing data and CRUNECP
climate reanalysis data at a spatial resolution of 500 m × 500 m for the period 2001–2016.

Spatially, the annual GPP estimated by the FGM showed high values in marine and
humid subtropical regions, moderate values in humid continental regions, and low values
in Mediterranean, highlands, semiarid, subarctic, and tundra regions (Figure 1a). The
multiyear mean of European annual GPP estimated by the FGM from 2001 to 2016 was
9.4 Pg C yr−1, of which cropland contributed the most (32.1%), followed by forests (31.2%),
shrubland (26.0%), grassland (10.1%), and wetland (0.6%) (Figure 1b). It is worth noting
that the European annual total GPP showed a significant increasing trend (0.052 Pg C yr−2,
p < 0.001) from 2001 to 2016 (Figure 1b).

3.1.2. Proportional Increase in GPP and LAI with Rapid Forest Growth across Europe

Spatially, the interannual GPP trends (ranging between −40 and 40 g C m−2 yr−2)
showed widespread (71.6% of the vegetated area) increases in most of Europe (Figure 2a),
among which 13.3% and 2.0% of European vegetated land exhibited significant increasing
and decreasing GPP trends (p < 0.05), respectively (Figure 2c). The GPP of southern, central,
and north-eastern Europe showed a significant increasing trend, while the vegetation
productivity of a few countries (e.g., France, Ukraine, and Russia in south-eastern Europe)
showed a negative trend.
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Figure 1. Spatial and interannual dynamics in FGM GPP. (a) Sixteen-year averages of European
terrestrial GPP (g C m−2 yr−1) in contemporary climate simulated by FGM for vegetated surfaces at
a spatial resolution of 500 m × 500 m. (b) Interannual dynamics of total GPP (Pg C yr−1) for different
vegetation types. Nonvegetated areas are masked out.

Here, we used LAI to quantify greening. The spatial distribution of the GPP trend
correlated well with the vegetation greening trends (Figure 2b). The spatial signature of the
LAI trend suggested widespread (73.2% of the vegetated area) greening phenomena across
Europe (Figure 2b). Only 3.4% of European vegetated land exhibited significant browning
(p < 0.05) according to the GLASS LAI product. Approximately 23.7% of European vege-
tated land exhibited significant greening (p < 0.05) (Figure 2d) with an average greening
rate of approximately 0.0046 m2 m−2 yr−1 or 0.62% yr−1 (i.e., annual linear trend relative to
the year 2001 base; the same definition of relative changing rate for annual trend hereafter)
by the LAI (p < 0.001) (Figure 3a).
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Figure 2. Spatial patterns and interannual trends in the GPP and LAI and corresponding significance
levels. (a) Spatial pattern of the linear trend in the annual total GPP from 2001 to 2016. (b) Spatial
pattern of the linear trend in the annual mean LAI from 2001 to 2016 based on the GLASS V5
LAI product. (c) Spatial distribution of pixels with significant increasing/decreasing GPP trends.
(d) Spatial distribution of pixels with significant increasing/decreasing LAI trends. In (c,d), green
and red indicate significant land surface greening and significant land surface browning, respectively
(with a significance level of p value < 0.05).

The annual total GPP calculated by BEPS, MODIS, GLASS, VPM, and GOSIF also
showed significant positive trends and the annual GPP exhibited increasing trends ranging
from 0.47% yr−1 to 0.92% yr−1. Thus, the interannual trend of GPP estimated by the FGM
was reasonable compared with other models. In addition, the GPP annual trend estimated
by the FGM (0.55% yr−1) was very close to the greening rate (0.62% yr−1) (Figure 3a). The
mean annual LAI increased by 0.0046 m2 m−2 yr−1 (p < 0.01) over the study area. Not
accounting for the Russia region, the mainland of Europe showed a doubled greening rate
(0.01 m2 m−2 yr−1) (Figure 3b).

Among the five dominant vegetation types (i.e., forest, shrub, grass, crop, and wetland),
the increasing rates for the LAI of forests (0.01 m2 m−2 yr−1, p < 0.001) and shrubland
(0.008 m2 m−2 yr−1, p < 0.001) were more significant and higher than those for other
vegetation types (Figure 3c). Although both the increasing LAI rates and the total vegetation
cover for shrubs and forests were comparative, the increasing trend of the annual total
GPP for shrubland (12.9 Tg C yr−2, p < 0.001) was only approximately half that for forests
(22.2 Tg C yr−2, p < 0.001), while it was much lower for grass (5.6 Pg C yr−2, p < 0.001). In
contrast, the annual mean LAI and GPP for crops and wetland showed no specific trends.



Remote Sens. 2023, 15, 1372 8 of 19
Remote Sens. 2023, 15, 1372 8 of 19 
 

 

 

Figure 3. Interannual dynamics of the LAI and GPP for all of the Europe and for different plant 

functional types. (a) Comparison of interannual trends of annual total GPP based on the FGM and 

other methods (including BEPS, MOD17, CCW, GLASS V6, VPM, GOSIF, and FLUXCOM RF, 

MARS, and ANN) and the interannual trend in the mean LAI from 2001 to 2016. (b) Interannual 

dynamics of the mean LAI based on the GLASS V5 LAI product across the whole study area (in-

cluding Europe and part of Russia) or only the European mainland (excluding Russia). Interannual 

dynamics of the mean LAI (c) and GPP (d) for five vegetation types (i.e., forests, shrub, grass, crop, 

and wetland). The abbreviation LUE in (a) stands for the light use efficiency model. The labels ** 

and * in (a) represent the interannual GPP trend at significance levels of 0.01 and 0.05, respectively. 

The GPP unit Tg C in (d) is equivalent to 10−3 Pg C. 

The annual total GPP calculated by BEPS, MODIS, GLASS, VPM, and GOSIF also 

showed significant positive trends and the annual GPP exhibited increasing trends rang-

ing from 0.47% yr−1 to 0.92% yr−1. Thus, the interannual trend of GPP estimated by the 

FGM was reasonable compared with other models. In addition, the GPP annual trend es-

timated by the FGM (0.55% yr−1) was very close to the greening rate (0.62% yr−1) (Figure 

3a). The mean annual LAI increased by 0.0046 m2 m−2 yr−1 (p < 0.01) over the study area. 

Not accounting for the Russia region, the mainland of Europe showed a doubled greening 

rate (0.01 m2 m−2 yr−1) (Figure 3b). 

Among the five dominant vegetation types (i.e., forest, shrub, grass, crop, and wet-

land), the increasing rates for the LAI of forests (0.01 m2 m−2 yr−1, p < 0.001) and shrubland 

(0.008 m2 m−2 yr−1, p < 0.001) were more significant and higher than those for other vegeta-

tion types (Figure 3c). Although both the increasing LAI rates and the total vegetation 

cover for shrubs and forests were comparative, the increasing trend of the annual total 

GPP for shrubland (12.9 Tg C yr−2, p < 0.001) was only approximately half that for forests 

(22.2 Tg C yr−2, p < 0.001), while it was much lower for grass (5.6 Pg C yr−2, p < 0.001). In 

contrast, the annual mean LAI and GPP for crops and wetland showed no specific trends. 

  

Figure 3. Interannual dynamics of the LAI and GPP for all of the Europe and for different plant
functional types. (a) Comparison of interannual trends of annual total GPP based on the FGM and
other methods (including BEPS, MOD17, CCW, GLASS V6, VPM, GOSIF, and FLUXCOM RF, MARS,
and ANN) and the interannual trend in the mean LAI from 2001 to 2016. (b) Interannual dynamics of
the mean LAI based on the GLASS V5 LAI product across the whole study area (including Europe
and part of Russia) or only the European mainland (excluding Russia). Interannual dynamics of the
mean LAI (c) and GPP (d) for five vegetation types (i.e., forests, shrub, grass, crop, and wetland). The
abbreviation LUE in (a) stands for the light use efficiency model. The labels ** and * in (a) represent
the interannual GPP trend at significance levels of 0.01 and 0.05, respectively. The GPP unit Tg C in
(d) is equivalent to 10−3 Pg C.

3.2. The Difference in GPP by Including Spatiotemporal Vcmax Dynamics

The state-of-the-art TBMs generally assume a constant Vcmax for a specific PFT. One
typical parameterization method is to retrieve the optimal Vcmax from flux tower obser-
vations. The mean GPP of Europe estimated by FGM parameterized with such PFT-
specific Vcmax values [28] was 9.90 Pg C yr−1 (Figure 4a), which was 0.5 Pg C yr−1

higher than GPP estimations using the “All” simulation. Spatially, the difference in
GPP caused by changes in Vcmax exhibited heterogeneous spatial patterns in different
countries. With the new data of spatiotemporal information on Vcmax (Figure 4b), we
observed a pronounced decrease in GPP for Ukraine (−262.4 g C m−2 yr−1), Moldova
(−151.5 g C m−2 yr−1), Spain (−120.7 g C m−2 yr−1), Greece (−108.2 g C m−2 yr−1), and
Russia (−90.9 g C m−2 yr−1). In contrast, vegetation in San Marino (+133.2 g C m−2 yr−1),
the Netherlands (+128.6 g C m−2 yr−1), Luxembourg (+130.7 g C m−2 yr−1), and France
(+83.7 g C m−2 yr−1) appeared more productive (Figure 4c).
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Figure 4. Spatial pattern of differences in GPP caused by changes in Vcmax for different vegetation
types in different countries. (a) Sixteen-year averages of GPP (g C m−2 yr−1) in contemporary climate
simulated by FGM using PFT-specific Vcmax constants. (b) Spatial pattern of annual mean Vcmax and
mean seasonality of Vcmax for different PFTs. (c) Difference in GPP due to the two parameterizations
in Europe, i.e., GPP in Figure 1a minus GPP in (a). The bar chart in (c) represents the mean difference
in GPP caused by changes in Vcmax for different countries. (d) Difference in GPP for five main
vegetation types (i.e., forest, shrub, grass, crop, and wet) for different countries caused by changes
in Vcmax.

In comparison with the GPP based on PFT−specific Vcmax, major differences emerged
for the GPP for different PFTs using the “All” simulation, without a consistent bias in
any one direction (Figure 4d). When the FGM was constrained by dynamic Vcmax maps,
shrubland became more productive while forests and grassland became less productive.
The productivity of shrublands noticeably increased in San Marino (+162.2 g C m−2 yr−1),
Luxembourg (+136.8 g C m−2 yr−1), the Netherlands (+124.2 g C m−2 yr−1), Liechtenstein
(+117.1 g C m−2 yr−1), and Montenegro (+108.1 g C m−2 yr−1) (Figure 4d). The largest
reduction in forest productivity occurred in Slovenia (−86.7 g C m−2 yr−1), followed
by Bosnia and Herzegovina (−75.6 g C m−2 yr−1) and Slovakia (−63.3 g C m−2 yr−1).
Grassland productivity decreased in Albania, Spain, Montenegro, and Greece. There is a
pronounced reduction in the productivity of croplands in Ukraine (−203 g C m−2 yr−1) and
Moldova (−151.5 g C m−2 yr−1), while the productivity of marine croplands in Belgium,
Czech Republic, Poland, Hungary, Germany, and Slovakia increased moderately.

3.3. Driving Force Analysis for Interannual GPP Dynamics
3.3.1. The LULCC Effect on GPP from 2001 to 2016

To separate the effects of LULCC and the observed greening land surface, we first com-
pared the interannual GPP trends using the “LULCC1” (accounting for both LULCC and
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LAI change), “LULCC2” (only accounting for only LULCC), and “LULCC3” (accounting
for only LAI change) model simulations.

From 2001 to 2016, the vegetation cover in Europe was as high as 97% with relatively
stable land cover compositions (±1% changes in fractions of all LULC types) (Figure 5a).
However, the total number of vegetated pixels decreased by 3224 at an average rate of
−159 pixels per year (the coefficient of determination (R2) = 0.5, p < 0.01), while nonvege-
tated pixels (including urban, water, and snow and ice) increased correspondingly. Based
on the two epochs of MCD12Q1 data in the initial year 2001 and the ending year 2016, 1.8%
of the total area of Europe (excluding water, snow, and ice; same hereafter) experienced
land cover change from 2001 to 2016. The largest increase occurred in forested land (+0.9%
of total area), while all other land cover types decreased slightly (i.e., −0.3% of the total
area for shrub/crop; −0.1% of the total area for grass/barren/wetland). The proportion of
forested area to total area increased from 27.4% in 2001 to 28.3% in 2016.
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Figure 5. Land use and land cover type across Europe and LULCC and greening effects on GPP.
(a) Spatial pattern of LULCC from MCD12Q1 in 2001 and relative area proportions of different
land-use types in 2001 and 2016. All permanent ice/snow are masked out. (b) Effects of land cover
change and LAI change (i.e., greening effect) on the interannual GPP trend constrained by the “All”,
“LULCC1”, “LULCC2”, and “LULCC3” simulations. Model simulations are shown in Table 1.

Our simulations indicated that the direct LULCC effect explained little of this varia-
tion (“LULCC2”), with a small but significant negative effect of −1.3 Tg C yr−1 (R2 = 0.61;
p < 0.01). In contrast, the greening effect alone explained approximately 92.8% of this
variation (p < 0.01; “LULCC1” and “LULCC3”) (Figure 5b). The greening effect on the inter-
annual GPP trend was 35.5 Tg C yr−2 and enhanced the total GPP by 536 Tg C yr−1, with
the largest contribution from forests (31.2%, 167.0 Tg C yr−1), followed by shrubs (25.4%,
136.4 Tg C yr−1), cropland (25.2%, 135.2 Tg C yr−1), grassland (17.6%, 94.3 Tg C yr−1), and
wetland (<1%, 3.2 Tg C yr−1) (Figure 5b).

3.3.2. The Climate Change Effect on GPP from 2001 to 2016

We further evaluated the climate change effect on the interannual GPP trends using
the “CLM1” (accounting for combined effects of changes in DSR, TEMP, and VPD), “CLM2”
(only accounting for only DSR change), “CLM3” (only accounting for only TEMP change),
and “CLM4” (only accounting for only VPD change) simulations.

The DSR showed large interannual variations according to the GLASS DSR product,
with an overall positive (but not statistically significant) change trend from 2001 to 2016
(Figure 6a). Model simulations indicated that radiation brightening (i.e., increasing DSR)
played a minor role in driving the GPP trend (+2.9 Tg C yr−2, p > 0.05; “CLM2”). In
contrast, the mean air temperature (TEMP) (+0.029 ◦C yr−1, p < 0.01) (Figure 6b) and VPD
(+1.61 Pa yr−1, p < 0.01) (Figure 6c) both increased significantly during the study period.
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The warming effect (i.e., increasing TEMP) led to a small but significant increase in GPP
(+3.7 Tg C yr−2, p < 0.05; “CLM3”), while the enhanced VPD had an even stronger negative
impact (−5.6 Tg C yr−2, p < 0.01; “CLM4”) than the warming effect (Figure 6d). The
warming effect and radiation brightening effect marginally offset the GPP decline caused
by the enhanced VPD (Figure 6d). Consequently, climate change had a small positive
impact on GPP (1.2 Tg C yr−2, p > 0.05; “CLM1”) due to the combined effects of changes in
climatic factors.
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Figure 6. Climate change effect on GPP. Interannual dynamics of (a) mean downwards solar radiation
(DSR) (w m−2), (b) mean air temperature, and (c) vapour pressure deficit (VPD) (Pa). (d) Climate
change effect on GPP constrained by the “All”, “CLM1”, “CLM2”, “CLM3”, and “CLM4” simulations.
Model simulations are shown in Table 1.

3.3.3. The Interannual Vcmax Change Effect on GPP

In our previous study, we quantified the impact of spatial and seasonal changes in
Vcmax on GPP and proved that considering changes in Vcmax could improve GPP estima-
tions [28]. Neglecting spatial and seasonal changes in Vcmax could lead to an overestimation
of both the GPP and cause substantial differences in the spatial and temporal signatures
in GPP [28]. On long-term scales, leaf photosynthetic capacity (Vcmax) can also change
with plant adaptation to climate change (e.g., global warming, radiation brightening, and
elevated CO2 concentration) to optimize photosynthesis. Thus, we further quantified inter-
annual Vcmax change effect on GPP at annual time scales using the All and PC1 simulation
scenarios to help us understand whether including interannual dynamics in Vcmax could
lead to substantial difference in GPP.

From 2001 to 2016, the annual mean Vcmax across Europe showed a small (but not
significant) increasing trend (Figure 7a). If we consider the spatial and seasonal changes
in Vcmax using the Vcmax derived from the leaf chlorophyll metric in 2001, the average
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annual total GPP for Europe was 9.42 Pg C yr−1 with a positive rate of increase of
0.052 Pg C yr−2

, which was almost equivalent to the GPP estimations from the “All”
simulation (annual GPP: 9.4 Pg C yr−1; GPP trend: 0.051 Pg C yr−2). Surprisingly, we
found that the interannual changes in Vcmax contributed little to the annual GPP trend
(−0.13 Pg C yr−2, p > 0.5) from 2001 to 2016 (Figure 7b). This suggests that FGM without in-
terannual dynamic information on Vcmax but constrained by spatial and seasonal dynamic
information on Vcmax may still provide a reasonable estimation of GPP over the limited
time period of 16 years. However, interannual changes in Vcmax may continue to affect
GPP with climate change on longer time scales.
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3.3.4. Greening Effect and CO2 Fertilization Dominated GPP Enhancement

The annual average CO2 concentration at the MLO site increased approximately
linearly from 2001 to 2016 at an average rate of 2.1 ppm yr−1 (Figure 8a). Correspondingly,
the rising ambient CO2 concentration boosted the European GPP at a rate of increase of
nearly 16.9 Tg C yr−2 (p < 0.001; “CO2”), accounting for 32.8% of the total interannual
increasing GPP trend. Accounting for the CO2 fertilization effect alone, GPP increased by
8.6% per 100 ppm (“CO2”, Figure 8a); if all the factors were included, GPP increased by
27.8% per 100 ppm (“All”; Figure 8a). By calculating cumulative GPP anomalies using
different simulation scenarios, we identified the LAI and CO2 as the key factors dominating
the GPP dynamics from 2001 to 2016. Although the climate change and interannual Vcmax
change effect on GPP is not significant (Figure 8b), they cause interannual fluctuations in
GPP (Figure 8a).

Land surface greening and elevated CO2 had significant positive effects of 35.5 Pg C yr−2

and 16.9 Pg C yr−2, respectively (Figure 8b). Climate change exerted minor (statistically
insignificant) impacts on the GPP increase (+1.2 Pg C yr−2) but played important roles
in driving the interannual GPP dynamics (Figure 8a). In contrast, LULCC had a small
but significant negative effect (−1.3 Pg C yr−2; p < 0.001) for the long-term GPP trend.
Although the interannual Vcmax change effect on the GPP trend was minor (Figure 8b), it
played a minor role in driving the annual dynamics (Figure 8a). Among all the factors, the
LAI contributed most significantly to the GPP interannual trend, followed by CO2, VPD,
air temperature, and LULCC (Figure 8b).
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Figure 8. Dominant factors driving the interannual dynamics in GPP from 2001 to 2016. (a) Combined
effects of LAI change, CO2 fertilization, climate change, and interannual Vcmax change on annual
GPP trends constrained by simulation scenarios of the “All”, “LULCC3”, “CO2”, “CLM1”, and “PC1”
simulation scenarios. (b) Trends in total GPP simulated by the FGM in ten different simulation
scenarios. Model simulations are shown in Table 1. The labels ** and * in (b) represent the GPP
interannual trend at significance levels of 0.01 and 0.05, respectively. The R2 in (b) represents the
regression coefficient for the interannual GPP trend from 2001 to 2016.

4. Discussion

Here, we quantitatively analysed how land cover change, climate change, CO2 fer-
tilization, and photosynthetic capacity change contributed to European GPP dynamics
in Europe from 2001 to 2016. Despite some fluctuations, the annual total GPP exhibited



Remote Sens. 2023, 15, 1372 14 of 19

a significant increasing trend (51.5 Tg C yr−2, p < 0.01) across Europe from 2001 to 2016
(Figure 1b). This increasing GPP trend suggests a considerable role of the European vege-
tation in the terrestrial carbon cycle, which is in agreement with current expectations for
the northern middle-high latitude ecosystem. Many studies have provided evidence of
increasing vegetation productivity across the Northern Hemisphere, though these studies
have attributed the annual increasing GPP trend to different reasons, such as warming
temperatures, elevated atmospheric CO2 concentrations, and land surface greening. How-
ever, the role of land cover change and Vcmax change in dominating terrestrial carbon
assimilation is still not well understood. Thus, we discuss four aspects of the primary
findings: (a) the enhancing VPD offset the GPP enhancement caused by warming; (b) the
greening effect and CO2 fertilization dominated the GPP increase across Europe in the last
decade; (c) consistent increases in GPP based on different GPP models; and (d) the Vcmax
change effect on GPP.

The annual mean temperature in the study area increased from 2.7 to 3.3 ◦C from 2001
to 2016 at an annual rate of +0.029 ◦C yr−1 (p < 0.01) (Figure 6b). Temperature warming
is considered a dominant factor affecting GPP increases in the Northern Hemisphere [41].
Although a strong correlation existed between TEMP and GPP since they both increased
during the study period, we could not conclude that the GPP increase in Europe was
caused by the warming effect. In this study, we found only a small positive warming effect
(+3.7 Tg C yr−2, p < 0.05) (Figures 7d and 8b), accounting for 7% of the GPP annual increas-
ing trend, which was much smaller than the reported value (~40%) based on regression
methods [41]. The warming effect could enhance GPP by prolonging growing seasons
and increasing photosynthetic capacity. However, the warming effect could also cause
a reduction in GPP by strengthening water stress and causing stomatal closure [42,43].
Extreme droughts could profoundly impact ecosystem functions and result in a reduction in
GPP [44]. During the study period, there were three extreme droughts in the south-eastern
Europe in 2003, 2007, and 2012. The GPP reductions in 2003 and 2012 were largely linked
to extreme droughts in Europe. The annual mean temperature was relatively low in 2006
(Figure 6b), and the warming effect offset the GPP decline caused by the enhanced VPD in
2007 (Figure 6c,d).

The global average CO2 concentration has increased, on average, by 1.8 ppm per year
since 1992 [45,46]. Another frequent explanation for the increase in GPP is an elevated
atmospheric CO2 concentration [47,48]. Assuming spatially uniform and annually increas-
ing CO2 for large-scale GPP estimation has been proven to be reasonable [49]. Due to the
lack of spatially explicit CO2 concentrations over Europe, we utilized daily CO2 concen-
trations from the Mauna Loa Observatory (MLO) instead. In this study, CO2 fertilization
was identified as the second key factor contributing to the GPP increase (Figure 8a). In
response solely to CO2 fertilization, the GPP increased by 8.6% (i.e., 0.78 Pg C yr−1) per
100 ppm (Figure 8a), which was slightly smaller than the CO2 fertilization effect on total
net primary productivity according to free air CO2 enrichment (FACE) experiments (10 to
13%) [30,50]. However, if all the factors were included, the GPP would increase by 27.8%
per 100 ppm (i.e., 2.53 Pg C yr−1) (Figure 8a) across Europe, which was much higher than
the sensitivity of vegetation productivity to elevated CO2 at the global scale (ranging from
10% to 18.6%) [6,51–53]. This could be explained by land surface greening across Europe,
which could further enhance the GPP.

From 2001 to 2016, we found widespread LAI increases (i.e., greening) across Europe
(Figure 2b,d) according to the GLASS LAI product, in accordance with the widely reported
global greening phenomenon [7,8,21]. The mean annual LAI increased by 0.0046 m2 m−2 yr−1

(p < 0.01) over the study area (Figure 3). FGM factorial simulations suggested that increases
in LAI was the dominant factor (62%, 35.5 Pg C yr−2) contributing to the interannual
GPP increasing trend in Europe (Figures 5b and 8). On the global-scale, GPP showed no
proportional increase from land surface greening [43]. However, the FGM simulations
indicated proportional increases in GPP (0.55% yr−1) from the greening terrestrial ecosys-
tem across Europe (Figure 3a). Although substantial discrepancies exist in different LAI
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products [54,55], the magnitude and annual anomaly of GLASS LAI has been proven to
be within a valid range [7,54]. The annual total GPP calculated by BEPS (0.62% yr−1),
MODIS C6 (0.67% yr−1), GLASS V6 (0.47% yr−1), and GOSIF (0.58% yr−1) also showed
significant increasing trends (Figure 3a), which were close to our estimates (0.55% yr−1).
Although these products were produced based on various LAI products, their higher con-
sistent trends (Figure S2a) indicated that employing GLASS LAI as input could reasonably
simulate the interannual variations in European GPP trends. In addition, the annual GPP
dynamics estimated by FGM correlated well with those estimated by BEPS, GOSIF, VPM,
and GLASS V6 GPP products (Figure S2b). While general agreement existes between FGM
estimations and other GPP products, the current version of the FGM does not consider
nitrogen deposition [56], soil moisture or drought [57], and ozone pollution [58], thus in-
evitably introducing some uncertainty into European GPP estimations; this topic warrants
future research.

Without any land cover transitions from 2001 to 2016, the stable areas still displayed a
significant greening trend with an increasing LAI rate of 0.008 m2 m−2 yr−1 (Figure 9), sug-
gesting that most of the European greening was largely due to climate change. In addition,
the mean LAI increasing trend for change areas (0.01 m2 m−2 yr−1) was approximately 30%
larger than that for stable areas, suggesting that LULCC contributed to approximately 20%
of the observed greening in Europe. This result could possibly be explained by the aban-
donment of agricultural land in Eastern Europe and mountain areas in recent decades [59].
The return of woody vegetation at the expense of the loss of cropland enhanced land
surface greening corresponded well to the regions where the annual LAI dynamics showed
significant greening trends (Figure 2). LAI dynamics are a complex interplay of climate
change and land cover change. Because of the relatively high and stable vegetation cover
across Europe from 2001 to 2016 (Figure 4a), the FGM was generally able to separate the
greening effect from the LULCC effect in Europe. Prior to this study, MODIS LAI data
also detected widespread greening across Europe during the period of 2001 to 2015 [15].
Although different sources of LAI data were used, we obtained similar findings. We further
quantified the contribution of land surface greening to GPP across Europe by different
vegetation types.
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Figure 9. Interannual dynamics of LAI for land cover change areas and stable areas. Stable and
change areas in land cover are identified by stacking 16 epochs of MCD12Q1 data together. Pixels
were labelled as stable areas only if they were always classified as the same land cover type for
16 years; otherwise, pixels were labelled as change areas.



Remote Sens. 2023, 15, 1372 16 of 19

Previous studies on decoupling GPP dynamics from climate change, CO2 fertilization,
and land cover change were based mainly on light use efficiency models and process-based
models and, in most cases, without the inclusion of spatial and temporal dynamics in
Vcmax [25], hampering reliable simulations of photosynthesis–climate interactions with a
fine spatial resolution or on a long-term scale. Many studies have demonstrated that the
Vcmax changes with both space and time (Figure 4b). Our previous work showed that,
compared with GPP using dynamic information on Vcmax derived from leaf chlorophyll
content, the conventional method of fixing Vcmax using the calibrated Vcmax or TRY-based
Vcmax overestimated the annual GPP of Europe by 0.5 to 2.9 Pg C yr−1 or 5 to 31% and
overestimated the interannual increasing GPP trend by 0.007 to 0.01 Pg C yr−2 or 14 to
20%, respectively [28]. Changes in photosynthetic capacity occur since plants acclimate
their leaf chemistry in response to climate change, such as global warming and elevated
CO2 concentrations [60]. For the limited period of 16 years, the interannual dynamics
in Vcmax across Europe had minor impacts on GPP (Figure 4b). However, Vcmax may
continue to change on longer time scales due to plant adaptation, especially in light of
continuous rising CO2 concentrations and global warming [61]. In this study, the Vcmax
change effect on GPP was only based on one typical Vcmax product derived from leaf
chlorophyll content. Recently, several global-scale Vcmax products with different time
spans and based on different remotely-sensed metrics (e.g., solar-induced chlorophyll
fluorescence, SIF) have been distributed [24–26]; however, these products have contrasting
patterns, which highlights the need for further validation of Vcmax based on time-series
experimental studies and the development of mechanistic Vcmax models.

5. Conclusions

By applying a process-based Farquhar GPP model (FGM) with multisource datasets
ranging from 2001 to 2016, we showed a widespread and pronounced increase in GPP
across Europe during this period. The spatial pattern of land surface greening matched
well with the spatial pattern of enhanced GPP. We included spatiotemporal information
on leaf photosynthetic capacity (i.e., Vcmax) derived from leaf chlorophyll content in the
FGM model. Factorial simulations suggested that the observed land surface greening and
rising CO2 concentration tremendously boosted the annual total GPP across Europe. In
contrast, the LULCC and enhanced VPD had significant negative impacts on GPP, which
were neutralized by the positive effects of temperature warming and radiation brightening.
Consequently, the combined impacts of LULCC, land surface greening, CO2 fertilization,
and climate change were strongly positive. Changes in Vcmax with both space and time
are not well represented in current TBMs and result in uncertainties in GPP estimations.
Although the interannual change effect of Vcmax was minor in the limited 16-year study
period, considering the spatial and seasonal variations in Vcmax significantly improved
GPP estimations at the regional scale. Thus, the process-based model simulation approach
developed in this work should improve our understanding of the terrestrial ecosystem
photosynthetic response to climate change across Europe.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/rs15051372/s1: Figure S1: Model validation accuracy for nine PFTs:
(a) CRO, (b) DBF, (c) SH, (d) EBF, (e) GRA, (f) MF, (g) ENF, and (h) WET; Figure S2: Intercomparison of
(a) interannual dynamics in GPP estimated by the FGM and other methods, including one empirical
model, four light use efficiency (LUE) models, three machining learning methods, and one process-
based biophysical model. (b) Scatter plots between the FGM GPP and other GPP products. As listed
in Table S2, the GOSIF GPP product was derived from the empirical relationships between GPP and
SIF. The CCW, MOD17, VPM, and GLASS products are estimated based on LUE models. FLUXCOM
GPP products are estimated by three machine learning approaches, including an artificial neural
network (ANN), the multivariate adaptive regression splines method (MARS), and the random forest
method (RF). In addition, one process model-based GPP product (i.e., BEPS) is also included; Table S1.
Accuracy of model calibration and validation and the calibrated g1 for nine plant functional types
(PFTs); Table S2. Information on nine GPP products for intercomparison.
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