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Abstract: A remote sensing (RS) platform consisting of a remote-controlled aerial vehicle (RAV) can
be used to monitor crop, environmental conditions, and productivity in agricultural areas. However,
the current methods for the calibration of RAV-acquired images are cumbersome. Thus, a calibration
method must be incorporated into RAV RS systems for practical and advanced applications. Here,
we aimed to develop a standalone RAV RS-based calibration system without the need for calibration
tarpaulins (tarps) by quantifying the sensor responses of a multispectral camera, which varies with
light intensities. To develop the standalone RAV-based RS calibration system, we used a quadcopter
with four propellers, with a rotor-to-rotor length of 46 cm and height of 25 cm. The quadcopter
equipped with a multispectral camera with green, red, and near-infrared filters was used to acquire
spectral images for formulating the RAV RS-based standardization system. To perform the calibration
study process, libraries of sensor responses were constructed using pseudo-invariant tarps according
to the light intensities to determine the relationship equations between the two factors. The calibrated
images were then validated using the reflectance measured in crop fields. Finally, we evaluated the
outcomes of the formulated RAV RS-based calibration system. The results of this study suggest that
the standalone RAV RS system would be helpful in the processing of RAV RS-acquired images.

Keywords: cropland; multispectral image; radiometric calibration; RAV; remote sensing

1. Introduction

Remote-controlled aerial vehicle (RAV)-based remote sensing systems (RSSs) are user-
friendly and provide a convenient means for the geospatial characterization of crop and
ecophysiological information during growing seasons. Therefore, this approach has been
widely used in the agricultural field [1,2]. Moreover, a RAV RSS allows for the frequent
acquisition of image data at a lower cost and with a better spatial resolution than any other
aviation RS platform [3–5]. Due to these advantages, RAV platforms are used in many
agricultural studies as spatial and temporal resolution RS tools to monitor crop growth and
field conditions [6–8].

However, an appropriate radiometric calibration method for multispectral image data
is essential to obtain reliable crop growth information before an RAV RSS can be used.
Radiometric calibration not only converts the digital numbers (DN) from a RAV RSS into
physical units such as reflectance but also ensures the reliability of RAV-based RS imagery
data. RAV images are often calibrated using invariant reference tarpaulins (tarps), as this
approach is not only accurate but also straightforward [5,9,10]. Nevertheless, calibration
tarps cannot be easily applied to multiple sections of a large field requiring various images.
Additionally, using calibration parameters from tarps measured a single time for multiple
aerial photograph data can cause errors due to differences in image acquisition time. To
address this issue, images of tarps with invariant reflection values can be taken at the same
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time or before/after the flight. Nevertheless, this approach can result in some errors in
the case of compositing multiple images for a large area due to changes in light intensity
between the tarp image and the other images taken during flights once the tarps are
excluded [11]. Moreover, employing this approach is inefficient because the reference tarps
should always be carried or included in multiple images using many replicas of the tarps.
Additionally, the reference reflectance of the tarps may inevitably change over time due to
dust contamination or color fading [12]. In turn, this can negatively affect the quality of the
calibrated image. These limitations highlight the need for the development and integration
of a calibration method into RAV RSSs.

An alternative calibration technology has been recently developed, which consists of
measuring incident solar radiation using a compact spectrum sensor comprised of a built-in
set coupled with a commercially available camera [4,11,13]. This approach can directly
correct the reflectance of objects without calibration tarps. However, the calibrated image
also contains too many uncertainties caused by atmospheric effects and noise. The sensor
mounted on an RAV may also acquire noisy data due to the vibration and tilt of the RAS
in natural flight conditions such as solar radiation and wind [14,15]. Additionally, RAS
systems with built-in cameras cannot be easily adapted or equipped with other cameras.

The most critical issue in radiometric calibration for RAV RSS images is the constant
fluctuation in light intensity. Radiometric calibration could be possible without reference
tarps if a change in DN can be quantified according to light intensity variations. Therefore,
a new approach that can be employed universally (i.e., not with a specific camera or RAV
RSS) is needed to overcome the aforementioned limitations. This study aimed to develop
an efficient RAV image calibration technology that can be applied to obtain crop growth
information in croplands. The specific objectives of this study were to (1) quantify sensor
responses of a multispectral camera that varies with light intensities, (2) define equations
for radiometric calibration that can always obtain constant reflectance without reference
tarps, and (3) apply and evaluate the accuracy of the developed radiometric calibration
method in agricultural fields using the estimated tarp reflectance (TR) and vegetation
indices.

2. Materials and Methods
2.1. RAV RSS Configuration

This study was conducted using a 3DR Solo quadcopter (3D Robotics, Berkeley, CA,
USA) (Figure 1a), which is relatively stable compared to other types of RAVs such as
helicopters or fixed-wing RAVs. The RAV can hover for 20 min using a rechargeable
5200 mAh battery. The 3DR SOLO weighs 1.5 kg, and its rotor-to-rotor length is 46 cm. The
3DR Solo can automatically control both copter and camera positioning in flight.
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This camera has been widely used in other studies, making it suitable for almost any RAV 
platform [16]. The camera images were taken at approximately 12:00 ± 35 min (local time) 
to minimize errors caused by changes in sun angles. Furthermore, the camera exposure 
was set to 50% with a shutter speed of 1 millisecond to obtain consistent DN under the 
same light intensities. Finally, we acquired the aerial image with a single shot at a fixed 
hovering speed of 0 m s−1 because we captured the image in a more perfect orthoimage 
and stable hovering state. The camera image size was 2048 × 1536 with a spatial resolution 
of 1.9 cm at 50 m above the ground and 3.8 cm at 100 m. The RAV RSS images were pro-
cessed using the PixelWrench2 (Tetracam Inc., Chatsworth, CA, USA) and ENVI (Geospa-
tial Solutions, Inc., Broomfield, CO, USA) software. The projected images used in this 
study were resampled to a pixel resolution of 0.5 m for better readability. 

2.2. Reference Tarps 
Reference tarps were used to define standard equations to convert the DNs of the 

camera images into reflectance (Figure 2). Once the equations were initially defined, they 
were no longer used for radiometric calibration. The tarps were chemically treated to en-
sure the homogeneous reflectance needed for the calibration. Each tarp measured 1.0 × 2.0 
m and had constant reflectance values of 0.031, 0.21, 0.32, and 0.51 (Figure A1). Redundant 
tarps were used to accurately obtain the images of a camera targeting a reference tarp in 
a changing incident light environment. 

Figure 1. Photograph of (a) the 3DR Solo quadcopter drone and (b) spectral ranges of the three multi-
spectral sensors in the agricultural digital camera used in the study.

A Micro agricultural digital camera (ADC) (Tetracam Inc., Chatsworth, CA, USA) was
used to obtain multispectral images in the field. The three multispectral sensors acquire
images in the green (520–600 nm), red (630–690 nm), and near-infrared (760–900 nm)
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wavelengths, with a total wavelength detection capacity range of 520–900 nm (Figure 1b).
The camera weighs 90 g and spans 75 × 59 × 33 mm. Mounted on the camera are three
band sensors, each measuring 6.55 × 4.92 mm. The camera can be adjusted to control the
exposure level, capture speed, and file format to suit the user’s field environment. Each
sensor can take images at a pixel resolution of 3.12 microns. Additionally, the images
can be combined using the PixelWrench2 software (Tetracam Inc., Chatsworth, CA, USA).
This camera has been widely used in other studies, making it suitable for almost any RAV
platform [16]. The camera images were taken at approximately 12:00 ± 35 min (local time)
to minimize errors caused by changes in sun angles. Furthermore, the camera exposure was
set to 50% with a shutter speed of 1 millisecond to obtain consistent DN under the same
light intensities. Finally, we acquired the aerial image with a single shot at a fixed hovering
speed of 0 m s−1 because we captured the image in a more perfect orthoimage and stable
hovering state. The camera image size was 2048× 1536 with a spatial resolution of 1.9 cm at
50 m above the ground and 3.8 cm at 100 m. The RAV RSS images were processed using the
PixelWrench2 (Tetracam Inc., Chatsworth, CA, USA) and ENVI (Geospatial Solutions, Inc.,
Broomfield, CO, USA) software. The projected images used in this study were resampled
to a pixel resolution of 0.5 m for better readability.

2.2. Reference Tarps

Reference tarps were used to define standard equations to convert the DNs of the
camera images into reflectance (Figure 2). Once the equations were initially defined, they
were no longer used for radiometric calibration. The tarps were chemically treated to ensure
the homogeneous reflectance needed for the calibration. Each tarp measured 1.0 × 2.0 m
and had constant reflectance values of 0.031, 0.21, 0.32, and 0.51 (Figure A1). Redundant
tarps were used to accurately obtain the images of a camera targeting a reference tarp in a
changing incident light environment.
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of the SpectroSense2+ meter. Upon confirming this significant correlation, a line quantum 
sensor was used for the correction system of a multispectral camera according to the inci-
dent light. The light intensities were measured simultaneously when the RAS acquired 
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cations at the location where the reference tarps were installed when the solar irradiance 
of the field environment was stabilized. 

Figure 2. Photograph of the equipment used for radiometric image calibration. (a) Four reference
tarps with reflectances of 0.51, 0.32, 0.21, and 0.03 from left to right; (b) a line quantum sensor (LI-COR,
Inc., NE, USA) to measure light intensity; (c) a SpectroSense2+ meter (Skye Instruments, Llandrindod
Wells, UK); and (d) a CropScan radiometer (CropScan Inc., Rochester, MN, USA).

2.3. Multispectral Radiometer

A hand-held multispectral radiometer (CropScan, Rochester, MN, USA) was used
to measure the reflectance of the reference tarps. The radiometer can accommodate up
to 16 bands in the 450–1750 nm region to measure incident and reflected radiations. The
radiometer had a 28◦ field of view for the reflected irradiation sensors and had a vertical
resolution of 1 m in height above the reference tarp to measure a 0.5 m diameter. Another
multispectral radiometer, a SpectroSense2+ (Skye Instruments, Llandrindod Wells, UK),
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was used to characterize the relationship between the light intensities and the DN of the
tarps measured with the multispectral camera. The equipment consisted of four wavebands
with upward and downward sensors from 440 to 870 nm. The down sensors recorded blue
(440 nm), green (560 nm), red (670 nm), and near-infrared (870 nm) bands together with the
up sensors. The hand-held multispectral radiometer was operated simultaneously with
the RAS-based multispectral camera mentioned above. Measurements were made at three
replications close to the field environment where the reference tarp was installed.

2.4. Quantum Sensor

The LI-191R line quantum sensor (LI-COR Inc., Lincoln, NE, USA) measures light in
the Photosynthetic Photon Flux Density (PPFD) unit expressed as µmol s−1 m−2 in the
wavelength range of 400–700 nm. Photosynthetically active radiation (PAR) was measured
to quantify the light intensity using the line quantum sensor. The sensor uses a 1 m long
rod under a diffuser. The diffuser essentially integrates infinite points over its surface into
a single value, representing light from the entire 1 m length to provide a stable quantum
response. The correlation between light intensity and multispectral bands was confirmed
by comparing the PAR value measured from incident light with the sensor value of the
SpectroSense2+ meter. Upon confirming this significant correlation, a line quantum sensor
was used for the correction system of a multispectral camera according to the incident
light. The light intensities were measured simultaneously when the RAS acquired the
aerial images using the abovementioned line quantum sensor. The LI-190R quantum sensor
(LI-COR Inc., Lincoln, NE, USA) was also used. PAR was measured at three replications at
the location where the reference tarps were installed when the solar irradiance of the field
environment was stabilized.

2.5. Radiometric Calibration

In this study, the key objective of the radiometric calibration was to quantify the DN
changes of four standard tarps with different light intensities in advance. In turn, this
enabled the estimation of the tarp DNs without the tarps by measuring only the light
intensities. Since the reflectance of the tarps does not vary, the camera reflectance image can
be estimated through the relationship between the estimated tarp DNs (ETDNs) and TRs.
In other words, a calibrated reflectance image can be obtained with the light intensities
only. For radiometric calibration of the RAV RSS images, the two types of equations
were defined.

The first equations were the relationship between the tarp DN and light intensities (see
Table 1). The DNs of the four tarps were obtained at various light intensity levels, which
were determined with fixed values of the camera sensor exposure and the shutter speed.
The same region of interest selected commonly covered more than 250 pixels starting from
the center of each tarp. While shooting with the multispectral camera, the light intensities
were measured on the ground using the line quantum sensor. We defined equations based
on the relationships between the tarp DNs obtained using the multispectral camera and
the light intensities measured using the line quantum sensor. Therefore, the equation was
obtained by quantifying between DN values of each reference tarp according to the change
in light intensity. These linear equations were obtained at various altitudes from 50 m to
100 m above the ground surface and in environments on heavy cloudy, mild cloudy, and
sunny days. We assumed that the linear equations obtained in such diverse environments
could represent images taken in unspecified environments.
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Table 1. Linear regression equations and Pearson’s correlation coefficient (r) of the tarp digital
numbers of the green (TDNGreen), red (TDNRed), and NIR (TDNNIR) wavelengths with the reference
tarp reflectances of 3.1%, 21%, 32%, and 51% obtained using the multispectral camera.

Reference Tarp Reflectance

3.1% 21% 32% 51%

TDNGreen
y = 0.009x + 8.139
r = 0.988 **

y = 0.038x + 8.469
r = 0.999 **

y = 0.058x + 8.002
r = 0.999 **

y = 0.094x + 6.4
r = 0.998 **

TDNRed
y = 0.007x + 9.773
r = 0.988 **

y = 0.034x + 10.006
r = 0.998 **

y = 0.054x + 9.671
r = 0.999 **

y = 0.083x + 10.914
r = 0.999 **

TDNNIR
y = 0.01x + 9.151
r = 0.974 **

y = 0.027x + 8.075
r = 0.994 **

y = 0.045x+ 6.253
r = 0.996 **

y = 0.075x + 2.501
r = 0.998 **

** represents significance at a 95% probability level.

The second equations were the relationship between the estimated DN from the first
equation and the reflectance from the multispectral radiometer for the four tarps (see Table 2).
Based on the tarp DN and the light intensity, the solar radiation intensity information from
the RAV RSS images was used to create correction equations for each multispectral camera
band. The reflectance of each multispectral band image was calculated by applying the
determined equations. Comparisons were made between the DN of the tarps from the
multispectral camera and light intensity from the line quantum sensor to estimate tarp
DN. These calibration equations can quantify the DN from any camera through a simple
illuminance sensor. The differences between reflectances were compared by applying this
correction equation and an actual tarp correction to the crop field environment.

Table 2. Linear regression equations and Pearson’s correlation coefficient (r) of tarp reflectances at the
green (TRGreen), red (TRRed), and NIR (TRNIR) wavelengths with estimated reflectances at different
light intensities of 1179 µmol at the National Institute of Crop Science (NICS) and 1100 µmol and
1230 µmol at Chonnam National University (CNU).

ETDN

1179 µmol at NICS 1100 µmol at CNU 1230 µmol at CNU

TRGreen
y = 0.005x − 0.052
r = 1.000 **

y = 0.005x − 0.055
r = 1.000 **

y = 0.005x − 0.05
r = 1.000 **

TRRed
y = 0.005x − 0.062
r = 1.000 **

y = 0.006x − 0.065
r = 1.000 **

y = 0.005x − 0.06
r = 1.000 **

TRNIR
y = 0.007x − 0.084
r = 0.995 **

y = 0.007x − 0.09
r = 0.995 **

y = 0.006x − 0.081
r = 0.995 **

** represents significance at a 95% probability level.

2.6. Data Processing

Figure 3 shows the radiometric calibration processing steps involved in the RAV
RS images acquired. These image data were processed using the PixelWrench2 software
(Tetracam Inc., Chatsworth, CA, USA) and the ENVI software (Geospatial Solutions, Inc.,
Broomfield, CO, USA). The raw data were converted to each Tagged Image File Format, or
TIF, using the PixelWrench2 software. The ENVI software was used to apply the equations
to multispectral image bands in an image using the Band Math tool.



Remote Sens. 2023, 15, 1408 6 of 14

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 14 
 

 

Table 2. Linear regression equations and Pearson’s correlation coefficient (r) of tarp reflectances at 
the green (TRGreen), red (TRRed), and NIR (TRNIR) wavelengths with estimated reflectances at different 
light intensities of 1179 μmol at the National Institute of Crop Science (NICS) and 1100 μmol and 
1230 μmol at Chonnam National University (CNU). 

 ETDN 
 1179 μmol at NICS 1100 μmol at CNU 1230 μmol at CNU  

TRGreen y = 0.005x − 0.052  
r = 1.000 ** 

y = 0.005x − 0.055  
r = 1.000 ** 

y = 0.005x − 0.05  
r = 1.000 ** 

TRRed 
y = 0.005x − 0.062  
r = 1.000 ** 

y = 0.006x − 0.065  
r = 1.000 ** 

y = 0.005x − 0.06  
r = 1.000 ** 

TRNIR y = 0.007x − 0.084  
r = 0.995 ** 

y = 0.007x − 0.09  
r = 0.995 ** 

y = 0.006x − 0.081  
r = 0.995 ** 

** represents significance at a 95% probability level. 

2.6. Data Processing 
Figure 3 shows the radiometric calibration processing steps involved in the RAV RS 

images acquired. These image data were processed using the PixelWrench2 software 
(Tetracam Inc., Chatsworth, CA, USA) and the ENVI software (Geospatial Solutions, Inc., 
Broomfield, CO, USA). The raw data were converted to each Tagged Image File Format, 
or TIF, using the PixelWrench2 software. The ENVI software was used to apply the equa-
tions to multispectral image bands in an image using the Band Math tool. 

 
Figure 3. Schematic representation of the image processing employed to correct reflectance values 
of the multispectral images. DNs, NIR, and RS represent digital numbers, near-infrared, and remote 
sensing, respectively. 
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2.7. Experimental Study Sites

Field campaigns were conducted at the paddy rice (Oryza sativa) fields of the National
Institute of Crop Science (NICS; 35◦50′N, 127◦02′E), Wanju, Chonnbuk, as well as in the
paddy rice and soybean (Glycine max) fields of Chonnam National University (CNU;
35◦10′N, 126◦53′E), Gwangju. The campaigns were conducted in the spring of 2021 and
2022 (Figure 4). Experimental fields were determined as open areas with no obstacles
around them to minimize the effect of scattering light. Data were acquired from the
field at Chonnam National University to quantify the DN for each tarp according to the
light intensities required for the development of the correction equation. The developed
correction equation was applied and evaluated using 2021 and 2022 data from the CNU
and NICS fields.
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Figure 4. Location map and pseudo-colored aerial photographs of (a) paddy rice fields at the National
Institute of Crop Science, Wanju, Chonbuk Province and (b) paddy rice and (c) soybean fields at
Chonnam National University, Gwangju, Republic of Korea. The pseudo-colored aerial images were
projected using green, red, and near-infrared wavebands obtained using a Micro agricultural digital
camera (Tetracam Inc., Chatsworth, CA, USA).

3. Results
3.1. Definition of the Equations for Radiometric Calibration

The light intensities and the DN of four tarps were highly correlated in three multi-
spectral bands (Figure 5). The Pearson’s correlation coefficient (r) values for the green, red,
and NIR bands ranged from 0.988 to 0.999, 0.988 to 0.999, and 0.974 to 0.998, respectively
(Table 1). Based on these relationships, linear equations were defined to estimate the tarp
DN from light intensities without using actual tarps (Figure 6). With light intensities of
1179 µmol at the NICS sites and 1100 and 1230 µmol at the CNU sites, the estimated DN
and reflectance for the four tarps showed high correlations, with r values ranging from
0.995 to 1 (Table 2). Two types of equations were defined from these correlations, the first
described the relationship between the light intensities and the TDN, and the second was
the ETDN to TR conversion equations.
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Figure 6. Relationships between reference tarp reflectance values and estimated tarp digital number
values (from Figure 4) of the four reference tarps for green (560 nm), red (660 nm), and NIR (830 nm)
under different light intensities of (a) 1179 µmol at the National Institute of Crop Science (NICS) and
(b) 1100 µmol and (c) 1230 µmol at Chonnam National University (CNU). TR: tarp reflectance; ETDN:
estimated tarp digital numbers.

3.2. Assessment of the Calibrated RAS Images

The radiometric calibration through the two types of equations defined above was
applied to the RAV RS images. The calibrated RAV RS images closely agreed with the
corresponding reference images calibrated using the tarps at the light intensities of 1179,
1100, and 1230 µmol. Figure 7 illustrates the comparisons in the reflectance values. The co-
efficient of determination (R2) values between the estimated and measured tarp reflectances
were 1.000 unanimously, whereas the RMSE values were for the green, red, and NIR bands
ranged from 0.003 to 0.013, 0.002 to 0.01, and 0.006 to 0.017, respectively (Table 3).
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Figure 7. Comparisons of the estimated tarp reflectances (ETR) and measured tarp reflectances (MTR)
using the RAV RSS for green (560 nm), red (660 nm), and NIR (830 nm) under different light intensities
of (a) 1179 µmol at the National Institute of Crop Science (NICS) and (b) 1100 µmol and (c) 1230 µmol
at Chonnam National University (CNU). Four reference tarps with reflectances of 3.1%, 21%, 32%,
and 51% were used.

The reflectance values of the DNs in response to the different incident radiation
conditions were estimated and applied to the aerial images. As expected, the estimated
and corrected reflectances showed close agreement (Figure 8). The R2 values between the
estimated and corrected reflectances for the field images at different light intensities of
1179 µmol at NICS and 1100 µmol and 1230 µmol at CNU were all 1.000 (Table 4). Moreover,
the RMSE values were 0.01, 0.01, and 0.04, respectively. We also found that the estimated
aerial images for each waveband closely matched the corrected aerial images. This was
especially noticeable in the red wavelength range compared to the green and NIR ranges
(Figure 9).
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Table 3. Coefficient of determination (R2) and root mean square error (RMSE) between the estimated
tarp reflectances at the green (ETRGreen), red (ETRRed), and NIR (ETRNIR) and measured tarp re-
flectances (MTR) at different light intensities of 1179 µmol at the National Institute of Crop Science
(NICS) and 1100 µmol and 1230 µmol at Chonnam National University (CNU).

MTR

1179 µmol at NICS 1100 µmol at CNU 1230 µmol at CNU

ETRGreen

R2 = 1.000 **
RMSE = 0.009
Bias = −0.006

R2 = 1.000 **
RMSE = 0.004
Bias = −0.004

R2 = 1.000 **
RMSE = 0.006
Bias = −0.004

ETRRed

R2 = 1.000 **
RMSE = 0.003
Bias = −0.001

R2 = 1.000 **
RMSE = 0.002
Bias = 0.002

R2 = 1.000 **
RMSE = 0.007
Bias = −0.006

ETRNIR

R2 = 1.000 **
RMSE = 0.013
Bias = −0.01

R2 = 1.000 **
RMSE = 0.01
Bias = 0.006

R2 = 1.000 **
RMSE = 0.017
Bias = −0.016

** represents significance at a 95% probability level.
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Figure 8. Estimated versus corrected reflectances for the field images obtained using the RAV RSS
for green (560 nm), red (660 nm), and NIR (830 nm) under different light intensities of (a) 1179 µmol
at the National Institute of Crop Science (NICS) and (b) 1100 µmol and (c) 1230 µmol at Chonnam
National University (CNU).
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Table 4. Coefficient of determination (R2) and root mean square error (RMSE) between the estimated
reflectances at the green (ERGreen), red (ERRed), and NIR (ERNIR) and corrected reflectances (CR)
for the field images obtained using the RAV RSS at different light intensities of 1179 µmol at the
National Institute of Crop Science (NICS) and 1100 µmol and 1230 µmol at Chonnam National
University (CNU).

CR

1179 µmol at NICS 1100 µmol at CNU 1230 µmol at CNU

ERGreen

R2 = 1.000 **
RMSE = 0.011
Bias = −0.01

R2 = 1.000 **
RMSE = 0.008
Bias = −0.008

R2 = 1.000 **
RMSE = 0.006
Bias = −0.006

ERRed

R2 = 1.000 **
RMSE = 0.004
Bias = −0.003

R2 = 1.000 **
RMSE = 0.001
Bias = −0.001

R2 = 1.000 **
RMSE = 0.004
Bias = −0.003

ERNIR

R2 = 1.000 **
RMSE = 0.011
Bias = −0.009

R2 = 1.000 **
RMSE = 0.008
Bias = 0.006

R2 = 1.000 **
RMSE = 0.012
Bias = −0.007

** represents significance at a 95% probability level.
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Figure 9. Deviation field map images between estimated and corrected reflectances for green
(560 nm), red (660 nm), and NIR (830 nm) under different light intensities of (a) 1179 µmol at
the National Institute of Crop Science (NICS) and (b) 1100 µmol and (c) 1230 µmol at Chonnam
National University (CNU).
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4. Discussion

The present study demonstrated that our proposed approach can be used to more
conveniently and stably acquire reflectance images using an RAV RSS without having
to use reference tarps whenever an RAV RS image is taken. Light intensity variations
constitute the most critical challenge in the radiometric calibration of RAV RS images and
most RS data measured in the field [17–21]. In this study, we quantified the changes in
camera DNs in response to different light intensities. Unless the atmosphere is completely
cloudless, the incoming light intensities will vary with time. Particularly, in the study
sites evaluated in our experiments, very few days were completely cloud-free during the
crop growing season, which was attributed to the summer monsoon season [22,23]. In the
previous radiometric calibration using the reference tarps, several tarps had to be measured
simultaneously, and the time was recorded when the RAV RS image was taken [18,24–26].
Theoretically, the intrinsic reflectance of tarps does not change, but the original tarp colors
fade depending on the management condition and time [17]. However, it is inefficient to
carry the tarps all the time considering the faded colors. To address these limitations, our
approach can respond to changes in light intensities and solve the color fading problem
of calibration tarps by estimating the DN of the tarps through equations by analyzing the
relationship between the intrinsic DN of the tarps and the light intensities at the study sites
in advance.

A line quantum sensor was used in the present study to obtain light intensities, but the
camera lacked sensitivity in the NIR range (approximately 800 nm). Nevertheless, reliable
results were obtained because the spectral response according to the light intensity was
similar for the same target [27]. The NIR spectral range used in this study was 760−900 nm.
The LI-191R line quantum sensor measures the solar radiation with the PPFD unit of
µmol s−1 m−2 in the wavelength range of 400−700 nm. Since the spectral bands of green
(520−600 nm) and red (630−690 nm) are included in the wavelength range of the line
quantum sensor, they were closely matched. However, we assume that accuracy was
somewhat lower than the other bands in the case of the light intensity of 1230 µmol at
CNU since the NIR band was not enclosed within the measurement wavelength range
of the LI-191R line quantum sensor. Furthermore, PAR sensors are widely utilized in
the agricultural field because they can measure or estimate the fraction of absorbed PAR,
photosynthesis, and the leaf area indices of crops [28]. Better results could be obtained if the
user adopts sensors that can measure light intensities in all possible wavelengths or more
dependable optical sensors with a wide range of wavebands. Additionally, we analyzed
the relationships between PAR wavelength and radiation and found high correlations for
each waveband. However, using stable reference tarps with a constant reflectance in all
wavelength bands is more important than the light sensor itself. Although the reflectance
of our tarps tended to decrease slightly as the wavelength increased (see Figure 6), reliable
results were obtained. Better results could be obtained if an optical sensor suitable for
calibration is employed and multiple reference tarps with different intrinsic reflection
values are used with a library.

Although the proposed approach can be used to radiometrically calibrate RAV RS
images with high efficiency, there were still some limitations or inconveniences. The RAV
RS images used in this study were acquired near noon. Given that the reflected light also
changes depending on the solar zenith angle [23,29], a data library must be built at various
angles to further increase usability. When acquiring a large area, particularly at a time other
than noon, the effect on the solar zenith angle should be considered [30,31]. Furthermore,
the shutter speed and exposure of the camera were fixed to obtain a quantitative value
according to the light intensities. These settings may result in dark images in low-light
environments (e.g., uniform cloud atmosphere) due to the camera noise, which may reduce
the sensitivity of the camera for the targets. Moreover, despite being beyond the scope of
this study, the dark images could be improved by performing correction processing of the
camera noise [32–34]. Additionally, when replacing cameras, the libraries must be updated
to match the characteristics of the new camera. However, considering the situations
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described above, building a library in advance may require a considerable amount of time
and effort. Our proposed approach could thus be used to acquire surface reflectivity more
efficiently and stably than other methods that rely on tarp-based calibration.

5. Conclusions

Our study sought to develop a standalone RAV RS-based calibration system without
the need to lay out reference tarps by quantifying the sensor responses of a multispectral
camera. The calibrated aerial images were successfully validated and evaluated. The
radiometric calibration approaches proposed herein provide a viable approach to multi-
spectral camera image correction using already available equipment at a time when the
utility of RAVs is increasing. Additionally, our calibration approach can be applied to
other currently available multispectral cameras or multispectral sensors. Finally, our
results suggest that RAV-based RS image reflectance can be quantitatively estimated using
radiometric calibration based on light intensity information.

Author Contributions: Conceptualization, J.K. and T.S.; methodology, S.J. and T.S.; software, T.S.;
validation, S.J. and T.S.; formal analysis, T.S.; investigation, J.K., T.S. and S.J.; resources, J.K.; data
curation, S.J. and T.S.; writing—original draft preparation, T.S. and J.K.; writing—review and editing,
J.K. and S.J.; visualization, T.S.; funding acquisition, J.K. All authors have read and agreed to the
published version of the manuscript.
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