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Abstract: The development and application of predictive models to distinguish seepage slicks from
oil spills are challenging, since Synthetic Aperture Radars (SAR) detect these events as dark spots
on the sea surface. Traditional Machine Learning (ML) has been used to discriminate the Oil Slick
Source (OSS) as natural or anthropic assuming that the samples employed to train and test the
models in the source domain (DS) follow the same statistical distribution of unknown samples to
be predicted in the target domain (DT). When such assumptions are not held, Transfer Learning
(TL) allows the extraction of knowledge from validated models and the prediction of new samples,
thus improving performances even in scenarios never seen before. A database with 26 geometric
features extracted from 6279 validated oil slicks was used to develop predictive models in the Gulf
of Mexico (GoM) and its Mexican portion (GMex). Innovatively, these well-trained models were
applied to predict the OSS of unknown events in the GoM, the American (GAm) portion of the
GoM, and in the Brazilian continental margin (BR). When the DS and DT domains are similar, the
TL and generalization are null, being equivalent to the usual ML. However, when domains are
different but statically related, TL outdoes ML (58.91%), attaining 87% of global accuracy when
using compatible SAR sensors in the DS and DT domains. Conversely, incompatible SAR sensors
produce domains statistically divergent, causing negative transfers and generalizations. From an
operational standpoint, the evidenced generalization capacity of these models to recognize geometric
patterns across different geographic regions using TL may allow saving time and budget, avoiding
the collection of validated and annotated new training samples, as well as the models re-training
from scratch. When looking for new exploratory frontiers, automatic prediction is a value-added
product that strengthens the knowledge-driven classifications and the decision-making processes.
Moreover, the prompt identification of an oil spill can speed up the response actions to clean up and
protect sensitive areas against oil pollution.

Keywords: oceanic monitoring; remote sensing; synthetic aperture radar; predictive models; machine
learning; transfer learning; oil slick detection; seepage slicks; oil spills

1. Introduction

Petrogenic oil slicks can reach the sea surface seeping naturally from the seafloor by
migration through geological faults connected with source rocks [1–5]. They can also be
intentionally or accidentally discharged from offshore petroleum infrastructures, or from
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other human sources such as shipping or land-based runoff [6–8]. A recent global-scale
effort to understand the sources of chronic oiling in the oceans demonstrated that most
oil slicks come from human actions [8]. Regardless of whether the source is natural or
anthropic, crude oil and its derived products contain persistent and toxic compounds that
represent an imminent risk for marine ecosystems, bringing adverse short, medium, and
long-term environment and socio-economic impacts [1,9].

From this perspective, Earth Observation (EO) data assume an important role pro-
viding spatially and temporally consistent information for systematically monitoring the
oceans [10,11]. The expressive availability of free EO products, and the effectiveness of pow-
erful learning algorithms, combined with high-performance computing advances, bring
unprecedented opportunities to develop automatic expert systems supporting data-driven
decisions [10–12].

Remarkably, Synthetic Aperture Radars (SAR) are key-operational data providers for
oil pollution monitoring offering a synoptic view over affected sites in near-real-time, as
well as acquiring images during day and night regardless of weather conditions [6,7,13–15].
In the microwave spectrum, natural or anthropic oil slicks induce the same physical
mechanism of damping sea surface roughness, being similarly detected as dark spots, i.e.,
regions with low backscattering coefficients [2,15–21].

Particularly, the use of SAR data to detect likely seepage slicks on sea surfaces repre-
sents an important instrument for reducing exploratory risk [4,5,22], as well as for protecting
petroleum companies against penalties by events, not human-induced [22]. The location
and persistence of detected slicks can be correlated with inverse oil drifting models [23,24],
3D-seismic and other remotely sensed geophysical data increasing confidence and strength-
ening evidence of active petroleum systems. This possibility allows for searching new
exploratory frontiers in deep to ultra-deepwater, as well as provides ancillary information
for decision-making facing time and budget restrictions [4].

Since the nineties [18,25–39], Machine Learning (ML) has provided a fundamental
contribution in developing expert systems designed for oil slick detection and discrimina-
tion from other similar phenomena also known as look-alikes. Historically, the architecture
of these systems uses as a basis the discriminatory potential [18,33–41] of different radio-
metric, textural, polarimetric, geometric, and/or contextual handcrafted features extracted
from SAR data, following four usual steps [18,37]: (i) SAR pre-processing; (ii) dark spot
detection [35,38,39]; (iii) feature extraction and selection [33–36]; and (iv) oil slick classi-
fication. However, the versatility of ML to recognize patterns and learn meaningful and
consistent information for predicting the oil slick source (OSS) as natural or anthropic is
under investigation [2,22,42–44], consolidating a new and important research topic.

Traditional ML algorithms make predictions of unknown data using statistical models
trained on previously labelled (supervised) or unlabelled (unsupervised) samples. The
common assumption is that the samples employed to train and test the models in the source
domain (DS) follow the same statistical distribution of unknown samples to be predicted in
the target domain (DT). Under such an approach knowledge is neither retained nor adapted
when a new dataset, from a different geographic region with dissimilar statistical properties,
is acquired. In this case, classification and regression models need to be rebuilt and retrained
from scratch by acquiring new representative and validated samples [11,45,46].

Nevertheless, in real-world applications, when the phenomenon under consideration
is rare or unpredictable (e.g., oil spillage or natural seepage), acquiring a huge amount of
validated and labelled samples in remote offshore regions is challenging, expensive and
often impracticable. In such circumstances, Transfer Learning (TL) represents a solution
that makes it possible to extract and store knowledge from robust and validated databases,
transferring it to predict new samples from different locations [45–47].

TL is a ML’s frontier that aims to improve the generalization ability of well-trained
models under controlled domains, adapting them to be applied in different but related
domains [48]. TL utilizes labelled data more effectively, reducing the need to collect and
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annotate new training samples, making the learning process faster and more accurate,
therefore avoiding the need to rebuild predictive models from scratch [45].

The proposed objective goes beyond state-of-the-art, unprecedentedly applying robust,
validated, and well-trained models to extract knowledge from natural and anthropic oil
slicks, transferring it to predict the OSS of unknown samples employing TL. The innovative
aspects of this research also embrace the assessment of the generalization capacity of these
models to recognize patterns based only on the geometric properties of oil slicks detected
in different geographic regions, by distinct satellites, under diverse meteo-oceanographic
conditions.

To accomplish these goals, a huge and original database containing geometric patterns
extracted from more than 6000 oil slicks detected by multiple SAR sensors in the Gulf of
Mexico for 13 years is used as input. This rare and valuable dataset of labelled samples
was field validated by PEMEX (Petróleos Mexicanos based on Ciudad del Carmen, Gulf
of Mexico) and used to develop trustworthy and controlled predictive models for OSS
identification.

With the confirmation of the adaptability of these models to learn geometric patterns
and transfer them to make accurate inferences on new samples from different locations, it
is possible to save time and budget spent on the acquisition and validation of new samples
to build new models, optimizing human resources and infrastructure.

Furthermore, a critical point in intersectoral Research, Development, and Innovation
(RD&I) projects integrating academia and the private sector is to generate positive returns
on the investments carried out to develop ML systems [49]. In this sense, this project goes
further by foreseeing a broader architecture designed for the operational deployment in
the Petrobras proprietary software named GeoqView [22,43,44]. Under a ground-breaking
view, the migration from the developer to the production environment combines the data-
driven and knowledge-driven approaches, using automatic inferences to strengthen the
experts’ interpretation when searching for new exploratory frontiers.

Beyond the theoretical background (Sections 1.1 and 1.2), the article is organized
into four sections encompassing the entire lifecycle of a ML predictive system, as follows:
(Section 2) database description and methodology statement; (Section 3) results including
the development (Section 3.1) and application (Section 3.2) of the predictive models, as
well as an evaluation of their operational feasibility (Section 3.3), deployment and use
(Section 3.4). A discussion, conclusion, and reflections regarding the scientific, environmen-
tal, and socio-economic impacts of the project outcomes, as well as its future perspective,
are pointed out in Sections 4 and 5.

1.1. Oil Slick Source Identification under a Transfer Learning Approach

Regarding the development and application of predictive models for OSS identification
under a TL approach, some important definitions and notations are essential to understand
the proposed research. Particularly, the definition of task and domain is the core to extract,
learn and transfer knowledge from robust predictive models to unknown datasets.

A domain (D) is composed of two elements, a feature space X, and a marginal probabil-
ity distribution P(X), where X = {x1, . . . , xn} Є X. To accomplish the OSS identification task,
X represents the space of all instance vectors, where xi is the ith vector corresponding to
some oil slick sample, while X refers to a particular subset of learning samples intended for
training, testing or validation of the predictive models. Each xi instance within the database
is an oil slick represented by a vector compiling 26 geometric features (Section 2.1).

Generally, two domains are defined during the development and application of intelli-
gent systems: the source domain (DS) and the target domain (DT). The source domain (DS)
comprises validated and balanced oil slick samples—labelled or not—used for training
and testing predictive models, while the target domain (DT) is composed by new samples—
labelled or not—to be predicted by the model. Task (T) indicates the purpose of the samples
used in the source (TS) and in the target (TT) domains, which can be equal or different, as
well as labelled or not [45,48].
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More specifically, DS is denoted as DS = {(xS1, yS1), . . . ,(xSn, ySn)}, where each data in-
stance xS Є XS takes an associated label yS Є YS. The dataset in the DT domain represents the
unknown samples to be predicted and is similarly denoted as DT = {(xT1, yT1), . . . ,(xTn, yTn)},
where each new input sample xT Є XT will be assigned to one label yT Є YT, indicating its
source as natural or anthropic.

Therefore, considering a specific source domain DS = {XS, P(XS)} and a target domain
DT = {XT, P(XT)}, a task consists of two components: a label space Y and an objective
predictive function fT(·) denoted by T = {Y, fT(·)}. Under a TL approach, the predictive func-
tion fT(·) can be learned from the DS domain function fS(·) using the knowledge extracted
from pairs of samples {xSi, ySi} employed during the model building. Probabilistically, the
function fT(·) is used to predict the corresponding label y of a new instance xT in the DT
domain p(yT|x) [48,50].

Given the available database, the TS and TT tasks are the same, comprising a binary
classification that aims to assign labels Y Є {0, 1}, where 1 refers to the class seepage slick
and 0 to the class oil spill, characterizing the OSS identification task (TOSS).

The way tasks and domains are configured in the source and target will determine
the type of transfer learning. There are three settings for TL comprising the inductive,
transductive and unsupervised transfer learning, as described below [45,51].

Inductive Transfer Learning occurs when the TS and TT tasks are different (TS 6= TT)
but related, and the DS and DT domains are the same (DS = DT). In this type of TL, labelled
data are available for the DT but not necessarily for the DS domain. The availability of
labelled data in the DS domain configures a Multi-Task-Learning, and its absence is a
Self-Taught-Learning.

Unsupervised Transfer Learning considers different but related tasks (TS 6= TT) and
domains (DS 6= DT), dealing with no labelled data in both of the DS and DT domains.

Transductive Transfer Learning (TTL) considers the same tasks (TS = TT), and different
but related domains (DS 6= DT). In such a case, a lot of validated and labelled data are
available in the DS domain, whereas no labelled data are available in the DT domain.
Essentially, TTL aims to adapt the predictive function f S(·) learned from the labelled data
(xS) in the DS domain to predict f T(·) unlabelled samples (xT) in the DT domain [45,48].
Differences between the two domains (DS 6= DT) [45,46] may usually be related to: i. diverse
label spaces (YS 6= YT); ii. different feature spaces (XS 6= XT); or iii. common features
(XS = XT) with distinct marginal probability distributions (P(XS) 6= P(XT)), also known as
probability density functions (pdf ).

Within the TL settings, TTL reproduces exactly the properties of the database employed
in this research, where many validated (by field verification) and labelled oil slick samples
are available in the DS domain, while no labelled data are provided in the DT domain. Since
the tasks (TS = TT), labels (YS = YT), and feature spaces (XS = XT) are equivalent for both
domains, dissimilarities between the DS and DT domains are expressed only in terms of
marginal probability distributions (P(XS) 6= P(XT)).

In such cases, there is an inherent data distribution shift or drift between the DS and
DT domains, which requires tweaks for transfer learning [46]. Domain adaption (DA) is
one of the proper settings for this, providing different feature-representation-transfer (FRT)
methods to incorporate the source distributions P(XS) in the target distributions P(XT) by
approximating them (P(XS) ∼= P(XT)) [45–48].

Essentially, DA aims to learn a common feature structure based on the statistical
properties of the DS and DT domains and transfer this knowledge to minimize differences
between them. A successful transfer learning, i.e., a positive transfer, happens when the
information learned from the DS domain effectively improves prediction performances
when applied over the DT domain. However, when the DS and DT domains are completely
divergent, the DA may fail which produces a negative transfer, increasing uncertainties
and diminishing the inference accuracies [46,50–55].

Two DA methods are tested to assess the effectiveness of the TTL first-ever applied
for the OSS identification: Common Data Shift (CDS) and Data Interpolation (DI). CDS
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is one of the most straightforward DA ways to incorporate the source distribution in
the DT domain [46,55]. The restriction for running CDS is the need for a representative
set of samples as input for finding a reference statistical distribution for the DT domain
(P(XT)) [45]. From the operational standpoint, since individual samples can be anytime
detected during monitoring activities, DI [56] represents a strategic option allowing the
prediction of single samples by adapting them to the DS distribution. Both methods are
described as part of the methodology in Section 2.2.

Since real-world environments are nonstationary, generalizing across distributions com-
ing from different domains is challenging [46,55]. Particularly, the more the source and target
distributions differ, the less the model will be adaptable and able to be generalized [46,52].
From this perspective, to identify the operational limits of the TL methods for OSS iden-
tification, all results are compared with the traditional ML approach. This comparison is
extremely important to assess the transferability and the generalization capacity of each
developed model, and comprehend which type of DT domain causes positive or negative
transfers. This is strategic to understand the trade-offs between ML and TL, mapping the
requisites needed to successfully deploy predictive models into operational environments.

1.2. Technical and Ethical Framework for Building and Operating Predictive Models Using AI

International guidelines specify the best practices to develop and deploy trustable,
accurate and widely usable artificial intelligence (AI) systems [57–59]. The development
of the OSS predictive models pursued a user-centered and an ethical-focused approach
in compliance with these guidelines, considering as main key requirements robustness,
fairness, transparency, and human autonomy.

Since predictive models are trained to recognize patterns according to the input
data available for learning, robustness is data-quality dependent, and can be reached by
obtaining large datasets, containing representative and validated samples (Section 2.1)
with discriminative potential to develop models (Section 3.1) able to perform trustable
and accurate predictions (Section 3.2). The fairness principle is ensured by the use of
class-balanced samples (Section 2.1) to avoid biased inferences and strengthen the users’
confidence. Under a TL approach, robustness also includes an assessment of knowledge
transferability embracing the effectiveness of DA methods (Section 3.2), as well as the
generalization capacity of the models (Section 3.3) when applied in conditions different
from those used in their training.

Transparency is another important requirement for trustworthy AI-based systems
that intends to reveal inherent uncertainties of the models and sensors’ noise, respec-
tively known as epistemic and aleatoric uncertainties [11,46]. Unknown samples out-of-
distribution (OOD) produce high epistemic uncertainty by exhibiting divergent statistical
distribution (DT) regarding training samples (DS). Moreover, aleatoric uncertainty is caused
when the SAR sensors used during the training (DS) and application (DT) phases have
different configurations in terms of spatial resolution, frequency, incidence angle range,
polarization, antenna noise level, etc. Explainability refers to designing ML solutions that
are even more human-interpretable, allowing the end-users to understand decisions made
by the system, knowing the relative importance of attributes and the uncertainty levels of
each prediction through diverse measures of effectiveness (Section 2.2).

Human autonomy is guaranteed through two adopted governance mechanisms named
Human-on-the-Loop (HOL) and Human-in-Command (HIC) [57–59]. HOL aggregates the
end-user expertise to oversight, test, and evaluate—not only the quality of the input data—
but all the life cycle of a predictive model, from its development (Section 3.1) and application
(Section 3.2), until its deployment (Section 3.3) and operation (Section 3.4). Furthermore,
HIC characterizes the user autonomy to decide when and how to operationalize (Section 3.3)
and employ (Section 3.4) the predictive models in real-world applications. Box 1 provides
a guideline per section indicating the technical and ethical characteristics considered to
develop and apply predictive models under a TL approach.
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Box 1. Technical and ethical principles considered for the development, application, and operational
use of predictive models.
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2. Database Description and Methodology
2.1. Oil Slick Database

Supporting the predictive model’s development and application, a robust labelled and
validated dataset comprising oil slicks detected using SAR sensors was compiled covering
the Mexican (GMex) and American (GAm) portions of the Gulf of Mexico (GoM). Addi-
tionally, samples detected in the Brazilian continental margin (BR) were also considered.

SAR images acquired by RADARSAT-1 (RDS1), RADARSAT-2 (RDS2), and SENTINEL-
1 (SNT1) satellites were pre-processed, classified, and interpreted by remote sensing experts
from the oil and gas industry to detect seepage slicks and oil spills. In turn, the Unsu-
pervised Semivariogram Textural Classifier (USTC) was jointly used with the Iterative
Self-Organizing Data Analysis (ISODATA) to extract the oil slick polygons [41].

As detailed by Miranda et al. [41], USTC performs according to four steps: first, SAR
data pre-processing: sigma zero calibration and speckle noise reduction using the Median
filter; second, textural information: detection of the backscattering spatial variability
employing the semivariogram function; third, dark spot detection: homogeneous and
heterogeneous backscattering regions merged employing the ISODATA and using as input
the textural channels; fourth, polygons extraction: supervised selection of dark spots
validated as seepage slicks or oil spills, followed by a raster to vector operation to extract
the detailed oil slicks geometry. This standard method to extract the oil slick polygons has
been used for almost 20 years, making it possible to generate the controlled, coherent, and
validated database used in this research.

Regarding the feature space (X), each polygon has a categorical feature named Oil
Slick Source (OSS = Y) addressing label 1 for seepage slicks and 0 for oil spills. Based on
these polygons, 26 geometric features were calculated comprising 8 first-order attributes
like area, perimeter, length, width, and derivate metrics, as well as 18 s-order features
extracted from rectangular (Figure 1a), circular (Figure 1b) and convex (Figure 1c) bounding
boxes [60,61].
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Figure 1. Examples of (a) rectangular, (b) circular, and (c) convex bounding boxes processed using as
input 4 examples of oil slicks stored in the database compiled for this work.

Geometric features have been extensively used to improve the classification perfor-
mance of oil slicks detected on the sea surface by SAR data [18,33]. They are commonly
used along with radiometric and textural features to distinguish oil slicks from false
alarms [34,38,62–64], or to extract dark spots from the ocean [35,38,39]. However, their use
to discriminate seepage slicks from oil spills is recent [2,22,42–44].
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There is no rule for the number and types of geometric attributes adopted, usually
researchers apply 5 to 20 attributes [33–35,38]. As the research uses only geometric features,
an attempt was made to increase the number of attributes, totalizing 26 metrics. Table 1
provides the code, names, and acronyms, as well as the description and equations for each
first and second-order geometric attribute integrating the feature space (X).

Table 1. Geometric features description: acronyms, names, and equations.

Code Acronym Description

1 Area: A (km2) Area of Oil Slick (A)

2 Perimeter: P (km) Perimeter of Oil Slick (P)

3 Area/Perimeter: AtoP A/P

4 Perimeter/Area: PtoA P/A

5 MBG_Width_RA (km) Width of Bounding Rectangle (RA—Figure 1a)

6 MBG_Length_RA (km) Length of Bounding Rectangle (RA—Figure 1a)

7 MBG_Orient_RA Orientation of the Longer Side of the MBG_Length_RA (RA—Figure 1a)

8 MBG_Width_CH (km) Width of Convex Hull (CH—Figure 1c)

9 MBG_Length_CH (km) Length of Convex Hull (CH—Figure 1c)

10 MBG_Orient_CH Orientation of the Line Connecting Antipodal Pairs (CH—Figure 1c)

11 Shape Shape Index = (0.25 * P)/(A)1/2

12 Compact C = (4 * 3.1419 * A)/P2

13 Compac Reock CR = A/Area of the Bounding Circle (CIR—Figure 1b)

14 Compac Hull CH = A/Area of the Convex Hull (ACH) (CH—Figure 1c)

15 Compac RA CRA = A/Area of the Bounding Rectangle (ARA) (RA–Figure 1a)

16 Complex Complex = P2/A

17 Fractal Index FracRanding = 2 * ln(0.25 * P)/ln(A) ln = logarithm

18 Smoothness RA S = P/MBG_Length_RA (RA—Figure 1a)

19 Lenght_CH/Width_CH MBG_Length_CH/MBG_Width_CH (CH—Figure 1c)

20 ACH-A Area of the Convex Hull (ACH)—Area of Oil Slick (A)

21 PtoA_PtoARA PtoA of Slick/PtoA of Bounding Rectangle (RA—Figure 1a)

22 PtoA_PtoACIR PtoA of Slick/PtoA of Bounding Circle (CIR—Figure 1b)

23 PtoA_PtoACH PtoA of Slick/PtoA of Convex Hull (CH—Figure 1c)

24 AtoP_AtoPRA AtoP of Slick/AtoP of Bounding Rectangle (RA—Figure 1a)

25 AtoP_AtoPCIR AtoP of Slick/AtoP of Bounding Circle (CIR) (CH—Figure 1b)

26 AtoP_AtoPCH AtoP of Slick/AtoP of Convex Hull (CH) (CH—Figure 1c)

As recommended (Section 1.2), this unique handcrafted database provides validated,
labelled (Y), and balanced DS domains to develop robust, fair, and trustable predictive
models (Figure 2b,d,g). Under a TL approach, it was possible to evaluate the transferability
and generalization capacity of these models to recognize geometric patterns of unknown
oil slick samples detected in different geographic regions, employing diverse satellites
(Figure 2c,e,g). Figure 2 details the percentage of samples per class in the DS and DT
domains, showing respective geographic regions (Figure 2a) and SAR sensors used in each
study case.



Remote Sens. 2023, 15, 1496 8 of 30

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 31 
 

 

models (Figure 2b,d,g). Under a TL approach, it was possible to evaluate the transferability 
and generalization capacity of these models to recognize geometric patterns of unknown oil 
slick samples detected in different geographic regions, employing diverse satellites (Figure 
2c,e,g). Figure 2 details the percentage of samples per class in the DS and DT domains, 
showing respective geographic regions (Figure 2a) and SAR sensors used in each study case. 

 
Figure 2. (a) Database description: geolocation and satellites. Study Case 1 (DS = DT): (b) GoM as DS 
domain and (c) DT domain. Study Case 2 (DS ≠ DT): (d) GMex as DS domain and (e) GAm as DT 
domain. Study Case 3 (DS ≠ DT): (f) GoM as DS domain and (g) BR as DT domain. 

Initially, several ML algorithms were employed to train and test predictive models 
in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 
by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 
compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 
train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 
2b,f). These models were subsequently saved to transfer learning when predicting 
unknown oil slick samples in different DT domains. Afterward, the transferability and 
generalization capacity of these models were evaluated across three different application 
scenarios: 
• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new 

samples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This 
scenario has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, 
RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 
samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 
domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and 
satellites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 
of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most 
challenging scenario, comprising different domains (DS ≠ DT) in terms of geographic 
regions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; 
DT ⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

Figure 2. (a) Database description: geolocation and satellites. Study Case 1 (DS = DT): (b) GoM as DS

domain and (c) DT domain. Study Case 2 (DS 6= DT): (d) GMex as DS domain and (e) GAm as DT
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Initially, several ML algorithms were employed to train and test predictive models in
the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated
by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one
compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to
train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 2b,f).
These models were subsequently saved to transfer learning when predicting unknown oil
slick samples in different DT domains. Afterward, the transferability and generalization
capacity of these models were evaluated across three different application scenarios:

• Study case 1 (GoM
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2.2. Methodology for Predictive Models Development, Application and Deployment

The methodology is concentrated along three frameworks (F) detailed in Figure 3:
F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive
models through balanced and validated databases (DS); F2. Test environment (Figure 3b):
intend to apply the models trained in the DS domain to predict unknown samples in the DT
domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; F3.
Production environment (Figure 3e): aim to implement the validated functionalities in a
Petrobras proprietary software named GeoqView, making the system available to end-users
offering explainability and human autonomy.
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Figure 3. Methodology to develop, apply, and deploy predictive models for OSS identification using TL.

In the developer environment (Figure 3a), a complete ML processing chain is imple-
mented for building two predictive models GMex and GoM, comprising the following
steps: (i) data pre-processing, including the normal scores transformation; (ii) exploratory
data analysis; (iii) feature selection; (iv) training and testing employing Artificial Neu-
ral Network (ANN) [65], Random Forest (RF) [66], Gaussian Naive Bayes (GNB) [67],
Linear Discriminant Analysis (LDA) [68], Support Vector Machine (SVM) [69], Logistic
Regression (LR) [70], and K Nearest Neighbour (KNN) [71] algorithms; and (v) assessment
and selection of the better-developed models, saving the learned predictive functions for
future applications. Moreover, there is an extensive scientific literature explaining each
one of the ML algorithms employed in this research [70,72,73], their use in remote sens-
ing [74,75], as well as specific examples of their application for oil slicks detection using
SAR data [22,30,32,34–39,41–43,76–84].

In the test environment (Figure 3b), the developed predictive models are saved
(Figure 3d) and applied over unknown DT domains to infer each sample as a seepage
slick or oil spill employing TTL (Figure 3c). As mentioned in Section 1.1, CDS and DI are
compared with traditional ML to verify the real effectiveness of the transfer-knowledge
strategy to minimize dissimilarities between marginal distributions (P(XS) 6= P(XT)) in the
DS and DT domains. The basic assumption for an effective TL is the existence of some
explicit or implicit relationship between the feature spaces of the source (XS) and target
(XT) domains [45]. Since the 26 geometric features used as input are equally calculated
for both domains, being extracted using SAR sensors, and utilizing the same controlled
technique for designing the oil slick polygons, DS and DT are related (therefore meeting the
fundamental requirement for an effective DA).

Regarding CDS (Figure 4a), the set of samples in the DT domain (Figure 4(a1): orange
area) is merged with the DS domain (Figure 4(a1): blue area) to perform a joint N-Score
Normalization (Figure 4(a2)) in the application phase. This procedure reduces effects de-
rived from a data distribution shift or a drift between domains [46,48,52,55]. It is important
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to comment that even though the joint normalization minimizes differences between the
DS and DT domains, at the same time it changes their original distributions (Figure 4(a2)).
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Conversely, DI (Figure 4b) is performed sample by sample using the cumulative fre-
quency (CF) (Figure 4(b1)) saved for each feature in the DS domain to map a corresponding
value for a new oil slick (DT) in its respective normalized cumulative frequency (NCF) [56]
(Figure 4(b2)). Both CF and NCF are saved for each selected feature during the model
building in the DS domain, functioning like a dictionary of oil slick geometric patterns
collected over 13 years. Each new sample in the DT domain (Figure 4(b1): orange line)
is interpolated through these curves (Figure 4(b1,b2): blue lines) to find a corresponding
normalized value (Figure 4(b2): orange line). The feature AtoP was used as an example to
illustrate these methods in Figure 4.

The higher the homogeneity between domains, the higher the possibility of pattern
recognition using geometric properties. The assimilation of knowledge learned by a specific
model and its transference in the application phase (Figure 3b) can improve prediction
accuracies, indicating the transferability and generalization level of the models. The better
the adaptability of the model, the higher its potential to be implemented into an operational
environment (Figure 3e). In this last phase, validated functionalities will be integrated
within Petrobras proprietary software named as GeoqView to be tested by end-users in oil
exploration projects.

2.2.1. Measures of Effectiveness

The comparison between traditional ML and TTL methods considers several accuracy
metrics extracted from confusion matrices and cross-validation procedures. The Global
Accuracy, Sensitivity, Precision, F-Score, and Cohen Kappa are calculated based on confu-
sion matrices [85,86]. The Receiver Operating Characteristic (ROC) curve (AUC), as well
as the Accuracy Intervals (AIn) with their respective median (AIn Median) and standard
deviation (AIn Std) values, are estimated through cross-validation with a k-fold of 5.

The possibility of automatically discriminating seepage slicks from oil spills is an
important task for the oil and gas sector. From an exploration standpoint, it is preferable to
misclassify an oil spill as a seepage slick rather than the opposite. Therefore, the seepage
slicks correctly classified are set as the True Positive (TP) element in the confusion matrices.
In the same way, the AUC(s) are calculated by setting as the y-axis (ordinate) the seepage
slicks correctly classified (TP), and as the x-axis (abscissa) the oil spills misclassified as
seepage slicks (False Positive: FP). Using this configuration, confusion matrices and AUC(s)
prioritize the model’s sensitivity to identify oil slicks coming from natural sources (i.e.,
seepage slicks).

Intending to evaluate and compare the generalization capacity among each model
applied using TL, the project proposes an additional metric named the Generalization Index
(GI). This index is calculated across three steps, as described next. First, the prediction
accuracies are pondered by the classification errors calculating an average between the
Global Accuracy and F-Score for each tested method and study case: i. ML: AvgML;
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ii. TTL using CDS (AvgCDS); and iii. TTL employing DI (AvgDI). Second, the GI is
calculated by subtracting the CDS and DI averages from the ML averages as follows:
i. GICSD = AvgCDS − AvgML; and ii. GIDI = AvgDI − AvgML. Finally, for comparison
purposes, the GI(s) are plotted using a common scale from −1 to +1 showing the positive,
null, or negative generalization for each studied scenario.

Therefore, the GI shows the distance or the gain in terms of the models’ performance
using TL strategies. In such a way, the higher the GI the greater the transferability, thus the
generalization ability of the model, which characterizes positive transfers. The closer to
zero, the less the TL contributes to improve the prediction accuracies, causing a null effect.
Finally, the more negative the GI, the higher the data divergence between domains, making
the models’ generalization unfeasible by worsening instead of improving the accuracies.

3. Results

The obtained results are organized according to the following sections (Figure 5):
Section 3.1. Development environment: development of predictive models in GMex and
GoM; Section 3.2. Test and validation environment: evaluation of the models’ perfor-
mance applied to predict new samples in the GoM (3.2.1), GAm (Section 3.2.2), and BR
(Section 3.2.3). Section 3.3. Operational environment: assessment of the models’ generaliza-
tion and the protocols’ definition to implement the validated applications in the Petrobras
proprietary software GeoqView. Section 3.4. Operational test: real test led by end-users to
verify the effectiveness of the processing platform using the best predictive model to infer
the OSS of new oil slicks using TL.
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3.1. Predictive Models Development

Since the quality of input data is crucial for a successful prediction model, a feature
selection was conducted to identify the presence of multi-correlated, redundant, and
spurious attributes. To accomplish this, correlation matrices were calculated aiming to
exclude variables with correlation above the cut-off of 0.99. Table 2 provides the code and
acronyms (Table 1) of selected features from the GMex (XSGMex) and GoM (XSGoM) feature
spaces, including their order of importance estimated employing RF.
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Table 2. Code, acronym, and importance order of selected features estimated for: (a) GMex (XSGMex)
and (b) GoM (XSGoM). See Table 1 for feature descriptions.

(a) GMex Geometric Feature Space (XSGMex) (b) GoM Geometric Feature Space (XSGoM)

No Code Acronym Importance Order N o Code Acronym Importance Order

1 2 Perimeter 11.90 1 6 MBG_Length_RA 11.62

2 20 ACH-A 9.27 2 1 Area 10.24

3 16 Complex 8.47 3 20 ACH-A 8.30

4 1 Area 8.27 4 17 Fractal Index 7.21

5 18 Smoothness RA 6.54 5 5 MBG_Width_RA (km) 6.77

6 25 AtoP_AtoPCIR 6.31 6 2 Perimeter 6.64

7 7 MBG_Orient_RA 5.93 7 18 Smoothness RA 6.17

8 22 PtoA_PtoACIR 5.63 8 19 Lenght_CH/Width_CH 6.04

9 17 Fractal Index 5.39 9 3 AtoP 6.00

10 10 MBG_Orient_CH 5.16 10 12 Compact 5.53

11 5 MBG_Width_RA 5.13 11 10 MBG_Orient_CH 5.37

12 26 AtoP_AtoPCH 4.49 12 14 Compac Hull 5.12

13 3 AtoP 4.46 13 7 MBG_Orient_RA 5.09

14 13 Compac Reock 4.43 14 13 Compac Reock 4.96

15 19 Lenght_CH/Width_CH 4.35 15 25 AtoP_AtoPCIR 4.94

16 14 Compac Hull 4.26

Analysing the GMex feature space (X), 16 out of 26 geometric features were selected
and used for the models’ training and testing (Table 2a), while for the GoM only 15 features
remained (Table 2b). This is important since the features in the target (XT) domain are
defined according to the features selected in the source (XS) domain.

Except for one additional attribute selected by the GMex model (Table 2a: Code
26), 13 out of 15 attributes were commonly selected by both models, presenting different
importance orders. This result indicates the coherence of the selection process, as well
as highlights the most relevant geometric properties for the OSS pattern recognition. In
this case, the first six most important features for the GMex (Table 2a) and GoM (Table 2b)
models are shown; those coded as 1, 2 and 20 are recurrent. Attributes 16, 22, and 26 are
selected by the GMex model (Table 2a) but not by the GoM model (Table 2b), and attributes
6 and 12 are selected by the GoM model (Table 2b) but not by the GMex model (Table 2a).

Model 1: A balanced set of 4130 oil slick samples, each one comprising a set of
16 geometric features (Table 2a: XSGMex), were used as input to develop the GMex predictive
models for OSS identification. To accomplish this, 80% of the DS domain was intended
for training (Tra) and 20% for testing (Tes) employing 7 ML algorithms: RF, GNB, KNN,
ANN, LDA, LR, and SVM. Figure 6 provides the confusion matrices and global accuracies
reached per ML algorithm.
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Table 3a synthesizes the main test accuracies per algorithm extracted from the confu-
sion matrices: global accuracy, Cohen Kappa, precision, sensitivity, and F-Score. Table 3b
provides metrics from the cross-validation calculated using 5 k-folds: accuracy intervals
(AIn), including their respective median values (AIn Median), and standard deviations
(AIn Std). To facilitate the models’ evaluation, the areas under the receiver operating
characteristic curve (AUC) are also available.

Table 3. GMex: (a) accuracies of the confusion matrices, and (b) cross-validation metrics including
the AUC(s) per ML algorithm.

ML
Algori-thms

(a) Test Accuracies: Confusion Matrix (b) Cross Validation: K-Fold = 5

Global
Accuracy

Cohen
Kappa Precision Sensitivity F-Score Accuracy

Interval (AIn)
AIn

Median AIn Std AUC

LR 77.12 54.24 77.16 75.06 77.11 71.03~81.70% 76.36 2.67 83.67

ANN 76.51 53.02 76.88 70.70 76.43 68.80~77.87% 73.33 2.27 79.40

SVM 76.39 52.78 77.39 66.83 76.17 68.85~83.88% 76.36 3.76 82.41

LDA 76.15 52.30 76.32 72.15 76.11 66.05~86.68% 76.36 5.16 83.25

RF 75.18 50.36 75.43 70.22 75.12 67.90~79.98% 73.94 3.02 82.38

GNB 74.46 48.91 74.46 73.61 74.45 70.01~77.87% 73.94 1.96 83.36

KNN 72.03 44.07 72.25 67.07 71.96 65.95~79.51% 72.72 3.39 79.90

During the test phase, the GMex model achieved the highest global accuracy around
77% employing LR, and the worst around 72% using KNN. The higher performances are
similar and concentrated at the first 5 tested algorithms, ranging between 75% and 77%
for global accuracy, precision, and F-Score (Table 3a). The same behaviour is observed for
Cohen Kappa with metrics ranging around 50% and 54%.

Evaluating the AIn (Table 3b), it is worth noting that the distance between the min-
imum and maximum accuracies for each algorithm characterizes no over-fitting for the
GMex models. In general, the ranking of the better AIn medians per algorithm coincides
with the order of the better global accuracies, except for the ANN algorithm.

Since the True Positive (TP) rate refers to correctly classified seepage slicks (Section 2.2.1),
the higher the AUC the better the potential of the GMex model to identify these events.
The measured AUC(s) (Table 3b) confirmed the 5 first ML algorithms as the best choices
(except for the ANN), keeping the trend observed for the global accuracies.

Model 2: A balanced set of 6279 oil slick samples, each one comprising a set of
15 geometric features (Table 2b: XSGoM), were used to build the GoM predictive models.
Coherently, the same percentage of training and test samples (Tra: 80%; Tes: 20%), as well
as the same 7 ML algorithms and accuracy metrics were employed (Figure 7).
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accuracies per algorithm.

During the test phase, the evaluation metrics evidenced that the highest global ac-
curacy achieved by the GoM models was 75.24% employing SVM, while the worst was
72.69% using GNB (Table 4a). Similarly, to GMex models, for all metrics extracted from
the confusion matrices (Table 4a), the higher performances are concentrated on the first
5 algorithms with rounded global accuracies, precision, sensitivity, and F-Score ranging
between 74% and 75%, and Cohen Kappa between around 47% and 50%.

Table 4. GoM: (a) accuracies of the confusion matrices and (b) cross-validation metrics including the
AUC(s) per ML algorithm.

ML
Algori-thms

(a) Test Accuracies: Confusion Matrix (b) Cross Validation: K-Fold = 5

Global
Accuracy

Cohen
Kappa Precision Sensitivity F-Score Accuracy

Interval (AIn)
AIn

Median AIn Std AUC

SVM 75.24 49.95 75.20 78.39 75.21 71.75~77.25% 74.50 1.37 81.53

RF 74.68 48.72 74.63 78.98 74.61 71.95~78.64% 75.30 1.67 80.94

ANN 74.20 47.84 74.16 77.66 74.16 65.72~77.93% 71.83 3.05 81.43

LDA 73.89 47.01 73.83 79.12 73.78 70.10~78.11% 74.10 2.00 80.49

LR 73.89 47.07 73.83 78.54 73.80 66.28~77.94% 72.11 2.92 80.77

KNN 73.09 45.70 73.07 75.62 73.08 70.41~75.40% 72.91 1.25 77.93

GNB 72.69 45.30 73.00 71.53 72.75 70.88~74.94% 72.91 1.02 79.69

According to the AIn (Table 4b), the distance between the minimum and maximum
accuracies does not characterize over-fitting in the GoM models. The ranking of the better
AIn medians coincides with that of the global accuracies, except for the ANN and LR
algorithms. The AUC(s) indicate the 5 first algorithms as the more sensitive, preserving the
same behaviour of the global accuracies.

In summary, the GMex models trained and tested using samples detected by RDS2
achieved a maximum global accuracy around of 77% using LR, while the GoM models
were around 75% using SVM and samples from satellites RDS1 and RDS2. Considering
that the lower the AIn Std the higher the risk of over-fitting, results are consistent once
the lower AIn Std(s) from GMex and GoM (Tables 3b and 4b) models coincided with the
algorithms that returned the worst classification performances (Tables 3a and 4a), GNB and
KNN except for KNN in Table 3b.

Since the GMex and GoM models running with GNB and KNN concentrated the worst
performances (Figure 8a,b) they were disregarded in the application phase (Section 3.2),
while the best predictive functions fS(.) learned employing SVM, RF, LDA, LR, and ANN
(Figure 8a,b) were saved to be applied in different scenarios.
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3.2. Predictive Models Application: Recognition of Geometric Patterns under a Transfer
Learning Approach

Once a huge amount of labelled and validated samples is accessible in the DS do-
mains, it is expected that the predictive models developed in GMex and GoM can transfer
knowledge to different DT domains, overcoming prediction accuracies performed by tra-
ditional ML. To verify this hypothesis, three different scenarios considering unknown oil
slick samples (DT) from different geographic regions, satellites, and meteo-oceanographic
contexts are used as input, which allows an evaluation of the level of transferability and
the generalization capacity of these models for the OSS identification.

3.2.1. Study Case 1: GoM
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In this experiment, the predictive functions f S(.) trained, tested, and saved for GoM
models employing ANN, RF, SVM, LDA, and LR were domain adapted fT(.) and applied
to predict 698 unknown samples coming from the same geographic region and utilizing
the identical set of satellites (DS = DT) (Figure 2b,c). Table 5 provides global accuracies
(GA), sensitivity, and an F-Score for each prediction employing three different learning
strategies: i. non-transfer learning: traditional ML (Table 5a); ii. TTL: common data shift
(CDS) (Table 5b); and iii. TTL: data interpolation (DI) (Table 5c).

Table 5. GA, sensitivity, and F-Score for: (a) traditional ML, (b) TL: CDS; and (c) TL: DI.

Applied
Prediction

Models

GoM Models (DS) Applied to GoM Samples (DT)

(a) Traditional
Machine Learning

(b) Transfer Learning: Common
Data Shift

(c) Transfer Learning: Data
Interpolation

GA Sensitivity F-Score GA Sensitivity F-Score GA Sensitivity F-Score

SVM 75.93 80.79 78.52 75.93 81.84 78.73 75.93 81.84 78.73

ANN 75.07 77.89 77.28 75.79 79.74 78.19 75.93 79.74 78.29

RF 75.07 80.00 77.75 75.21 80.53 77.96 74.93 80.00 77.65

LDA 74.07 81.05 77.29 74.21 81.58 77.50 74.21 81.84 77.56

LR 74.21 80.79 77.33 73.64 80.53 76.88 73.35 80.53 76.69

Maximum 75.93 81.05 78.52 75.93 81.84 78.73 75.93 81.84 78.73

Minimum 74.07 77.89 77.28 73.64 79.74 76.88 73.35 79.74 76.69

Median 75.07 80.79 77.33 75.21 80.53 77.96 74.93 80.53 77.65

Std 0.75 1.30 0.53 1.00 0.86 0.70 1.12 1.00 0.78

As observed, the knowledge transferred from the DS domain to the DT domain does
not induce any improvement in terms of performance. The increment regarding traditional
ML was null, with the maximum GA 75.93% for all methods (Table 5a–c). Additionally,
the maximum, minimum, and median values of sensitivity (around 81%) and F-Score
(around 79%) are similar among all evaluated methods (Table 5a–c). The best results of
GA, sensitivity and F-Score are equal and were achieved by the GoM model employing
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SVM, running with a traditional ML or a TL approach (Table 5 and Figure 9a). Using as an
example the best model configuration (DI and SVM), Figure 9b provides the geolocation of
the seepage slicks that were correctly (True Positives: TP) and incorrectly predicted (False
Negatives: FN).

Therefore, when the feature spaces (XS = XT) and marginal probability density func-
tions (P(XS) = P(XT)) between domains are similar, coming from the same geographic
regions and detected by the same satellites, the transferability is practically null. In these
cases, the obtained performances are equivalent (Figure 9a), adapting the domains or not,
i.e., the TL methods make no improvements in terms of OSS predictions, being not affected
neither by epistemic nor aleatoric uncertainties. This study case demonstrates that when
the source and target learning tasks (TS = TT), as well as their domains (DS = DT), are the
same or very similar to each other, the TL becomes a traditional ML problem [45] with
operational implications analysed in the next Section 3.3.
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The best predictive functions f S(.) trained, tested, and saved for GMex models using
ANN, RF, SVM, LDA, and LR were domain adapted fT(.) and applied to predict 1738 un-
known seepage slicks detected in the GAm (Figure 2d,e). In addition to the fact that the
oil slicks in the DS and DT domains come from diverse geographic regions (DS 6= DT),
the samples used during the models’ training and application were detected by different
but similar satellites, namely RDS2 (DS) and RDS1 (DT). Table 6 synthesizes GA and the
F-Score for predictions undertaken in the GAm, comparing traditional ML (Table 6a) with
CDS (Table 6b) and DI (Table 6c). Since in this study case all samples in the DT domain are
seepage slicks, GA and sensitivity are equivalent.

Considering as baseline for comparison the predictions carried out without transferring-
knowledge (Table 6a; Figure 10a: red line), CDS and DI (Table 6b,c) outperformed traditional
ML with GA above around 70% and the F-Score mostly above around 80% for all tested
algorithms. The maximum, minimum, and median values of GA (70.71; 67.78; 68.76) and
the F-Score (83.86; 79.56; 82.57) employing CDS (Table 6b), as well as GA (79.80; 74.86; 76.81)
and the F-Score (88.77; 85.62; 86.89) running DI (Table 6c) are significantly higher than all
metrics obtained by traditional ML (Table 6a; Figure 10a red line). Therefore, both TTL
methods boosted an effective TL improving the OSS prediction accuracies through positive
transfers (Figure 10a: solid and dashed blue lines), showing the DI as the most effective
TL for all algorithms (Figure 10a: blue solid line). Figure 10b provides the geolocation of
the seepage slicks correctly (True Positives: TP) and incorrectly predicted (False Negatives:
FN) given the best learning strategy and ML algorithm (DI and LR).
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Table 6. GA and F-Score for different strategies: (a) traditional ML, (b) TL: CDS, and (c) TL: DI.

Applied
Prediction

Models

GMex (DS) Models Applied to GAm Samples (DT)

(a) Traditional
Machine Learning

(b) Transfer Learning:
Common Data Shift

(c) Transfer Learning:
Data Interpolation

GA F-Score GA F-Score GA F-Score

LR 52.13 68.53 70.25 83.86 79.80 88.77

LDA 50.63 67.23 68.81 82.33 78.19 87.76

RF 49.08 65.84 68.76 82.57 76.81 86.89

ANN 51.73 68.18 67.78 79.56 76.47 86.66

SVM 51.27 67.78 70.71 83.24 74.86 85.62

Maximum 52.13 68.53 70.71 83.86 79.80 88.77

Minimum 49.08 65.84 67.78 79.56 74.86 85.62

Median 51.27 67.78 68.76 82.57 76.81 86.89

StD 1.19 1.05 2.28 1.65 1.86 1.19
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As reported, even without any prior knowledge about the geometry and behaviour
of the slicks in the GAm, the transferability of the GMex models was high, returning, in
the best case, almost 80% of seepage slicks as correctly recognized. The increment in GA
was roughly 28% for the best case (DI with LR), and approximately 16% for the worst case
(CDS with ANN) adopting TTL. Therefore, it is valid to conclude that predictive models
trained in the DS domain (GMex) generalized well over the DT domain (GAm), overcoming
dissimilarities between marginal distributions (P(XS) 6= P(XT)) and single samples.

3.2.3. Study Case 3: GoM
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lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR

In the third study case, the best predictive functions f S(.) trained, tested, and saved
for GoM models employing ANN, RF, SVM, LDA, and LR were domain-adapted fT(.)
and applied to predict 421 new samples of natural and anthropic oil slicks detected in
BR (Figure 2f,g). In this case, the DS and DT domains are different (DS 6= DT) not only by
using different satellites to detect the samples employed to develop the models (DS: RDS1
and RDS 2) and to infer the OSS (DT: RDS1, RDS2, and SNT1), but also by considering
geographic regions completely distinct. Table 7 summarizes the obtained performances
comparing traditional ML (Table 7a) with CDS (Table 7b) and DI (Table 7c).
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Table 7. GA, sensitivity, and F-Score for: (a) traditional ML; (b) TL: CDS, and; (c) TL: DI.

Applied
Prediction

Models

GoM Models (DS) Applied to BR Samples (DT): All Satellites

(a) Traditional
Machine Learning

(b) Transfer Learning: Common
Data Shift

(c) Transfer Learning: Data
Interpolation

GA Sensitivity F-Score GA Sensitivity F-Score GA Sensitivity F-Score

LR 56.06 56.94 68.05 65.08 73.41 77.56 66.51 75.14 78.67

LDA 57.48 58.96 69.51 64.85 73.12 77.37 66.03 74.57 78.30

ANN 54.63 56.65 67.24 64.37 71.97 76.85 64.61 72.25 77.04

SVM 58.91 63.58 71.78 63.42 71.39 76.23 63.90 71.97 76.62

RF 55.82 58.67 68.58 64.61 71.68 76.90 63.66 71.39 76.35

Maximum 58.91 63.58 71.78 65.08 73.41 77.56 66.51 75.14 78.67

Minimum 54.63 56.65 67.24 63.42 71.39 76.23 63.66 71.39 76.35

Median 56.06 58.67 68.58 64.61 71.97 76.90 64.61 72.25 77.04

Std 1.65 2.78 1.74 0.64 0.90 0.52 1.27 1.68 1.03

Consistently with previous results, TTL (Table 7b,c) overpasses the traditional ML
approach (Table 7a, Figure 11a: red line) for all metrics and methods, returning GA above
63% and F-Score over 76%. Synthesizing, the maximum, minimum, and median values
of GA (65.08; 63.42; 64.61), sensitivity (73.41; 71.39; 71.97) and F-Score (77.56; 76.23; 76.90),
respectively, employing CDS (Table 7b), as well as GA (66.51; 63.66; 64.61), sensitivity (75.14;
71.39; 72.25) and F-Score (78.67; 76.35; 77.04) performing DI (Table 7c) are higher than all
accuracies achieved by traditional ML (Table 7a).
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maximum increment reached 28%. Since the oil slicks detected in the DS domain do not
encompass all sets of satellites used to detect in BR the target samples (DT), further analysis
was conducted to evaluate how features extracted from different SAR sensors affect the
performance of the GoM models in the Brazilian continental margin.
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To accomplish this the GoM models were applied to predict samples in BR using
the best TL strategy (DI) considering all satellites together (Table 8b), and sorting out
RDS (Table 8c) from SNT1 (Table 8d). To maintain a baseline for comparison, the GA(s)
and F-Score(s) obtained by all satellites using traditional ML are also inserted (Table 8a;
Figure 12: solid black line). The increment or decrement in terms of performances per
satellite is highlighted through a subtraction between GA(s) and F-Score(s) obtained by DI,
from those obtained by traditional ML (Table 8: DifGA; DifFSc).

Table 8. GA, F-Score, DifGA, and DifFSc for predictions carried out employing DI for BR samples
detected considering different sets of satellites: (a) all satellites ML; (b) all satellites TL; (c) RDS; and
(d) SNT1.

Applied
Prediction

Models

Traditional ML Transductive Transfer learning: Data Interpolation (DI)
(a) All Satellites (b) All Satellites (c) RADARSAT (d) SENTINEL-1

GA F-
Score GA F-

Score DifGA DifFSc GA F-
Score DifGA DifFSc GA F-

Score DifGA DifFSc

LR 56.06 68.05 66.51 78.67 10.45 10.62 87.16 93.14 31.10 25.09 34.15 40.00 −21.91 −28.05
LDA 57.48 69.51 66.03 78.30 8.55 8.79 86.77 92.92 29.29 23.41 33.54 39.11 −23.94 −30.40
ANN 54.63 67.24 64.61 77.04 9.98 9.80 83.66 91.10 29.03 23.86 34.76 39.55 −19.87 −27.69
SVM 58.91 71.78 63.90 76.62 4.99 4.84 84.82 91.79 25.91 20.01 31.10 35.43 −27.81 −36.35

RF 55.82 68.58 63.66 76.35 7.84 7.77 82.49 90.41 26.67 21.82 34.15 39.33 −21.67 −29.26
Maximum 58.91 71.78 66.51 78.67 10.45 10.62 87.16 93.14 31.10 25.09 34.76 40.00 −19.87 −27.69
Minimum 54.63 67.24 63.66 76.35 4.99 4.84 82.49 90.41 25.91 20.01 31.10 35.43 −27.81 −36.35

Median 56.06 68.58 64.61 77.04 8.55 8.79 84.82 91.79 29.03 23.41 34.15 39.33 −21.91 −29.26
Std 1.65 1.74 1.27 1.03 2.16 2.24 2.00 1.17 2.10 1.97 1.43 1.85 3.03 3.52
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together, as well as RDS and SNT1 missions individually.

It was clear that even employing TL when processing samples from all satellites
together, the prediction accuracies in BR were pulled down due to the influence of the SNT1
samples, and do not surpass 66.51% of GA (Table 8b; Figure 12: solid and dashed blue lines
with blue markers).

Regarding the RDS samples (Table 8c), the patterns learned from the DS domain
effectively improved performances in the DT domain, thus characterizing a substantial
positive transfer (Figure 12: solid and dashed blue lines with green markers). The TL
was successfully validated returning the higher positive differences obtained by the RDS
samples (Table 8c), achieving approximately 31% of maximum increments for GA (Table 8c:
DifGA) and nearly 25% for the F-Score (Table 8c: DifFSc). Results are impressive, since even
without any prior knowledge of the geometric behaviour of the oil slicks in BR, the GoM
model recognized 87% of the seepage slicks detected by RDS sensors using DI and LR.
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Conversely, the GoM models trained with RDS samples failed to predict SNT1 samples
in BR (Table 8d), provoking negative transfers (Figure 12: red area) with all accuracies
(Figure 12: solid and dashed red lines) below those obtained by traditional ML (Figure 12:
black line). This ineffective transferability of knowledge to SNT1 samples was evidenced
by the meaningful decrements around −28% for GA (Table 8d: DifGA) and nearly −36%
for F-Score (Table 8d: DifFSc).

The GoM
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BR application is an example of an aleatoric uncertainty generating an
epistemic uncertainty (Section 1.2). In this case, SAR sensors with different configura-
tions in terms of spatial resolution in the DS (RDS: 50m) and DT (SNT1: 10m resized
for 20m) domains produced geometric features with statistical distributions so divergent
(P(XS) 6= P(XT)) that it became unfeasible for both DA and TL. The impact of samples de-
tected by SAR sensors with highly diverse spatial resolutions are exemplified, for instance,
through oil slicks with equal areas (RDS & SNT1 = 1.52 km2) and similar shapes (RDS: 3.3;
SNT1: 4.7) that returned perimeters completely different (RDS: 16.25 km; SNT1: 23.6 km),
impacting all derivative geometric features. Consequently, the SNT1 samples in the DT
domain were so out-of-distribution that the maximum GA using TL was 35%, below that
provided by the traditional ML (59%), thus characterizing a negative transfer (Figure 12:
red area).

Fundamentally, the more similar the DS and DT domains are in terms of statistical
properties, the better will be the DA, thus the effectiveness of the TL approach. Therefore,
the GoM
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BR application suggests that—once employing SAR sensors with similar
configurations—it is possible to transfer knowledge from a model trained and tested in a
specific geographic region to predict with excellent performance unknown oil slicks located
elsewhere, even under distinct meteo-oceanographic conditions.

Despite the fact that both TTL methods presented a successful DA when handled with
different domains, it is important to highlight that the DI achieved better performances
as seen in Scenarios 2 and 3 (Figure 3). A likely explanation is that the DI predicts one
sample at a time, adapting the DT domain to the DS domain, and preserving the original
statistical properties of the oil slicks in the DS domain. Conversely, in the joint normalization
performed by CDS, both distributions are mutually adapted minimizing the derived effects
from data shift and/or drift ((P(XS) 6= P(XT)), but changing the original pdf(s). It seems
that, by predicting sample by sample, the DI avoids the epistemic uncertainty between
divergent pdf(s), resulting in better accuracies as shown in Tables 6 and 7. Therefore, since
the DI performed better than the CDS, and the use of all satellites together masks the
effect of different SAR sensors, the next Sections 3.3 and 3.4 prioritized the utilization of DI
considering the BR samples per satellite.

3.3. Moving Transfer Learning into the Real World

Moving predictive models into the real world is challenging, not just because it
involves the statistical performances of these models (Sections 3.1 and 3.2), but also a
broader architecture designed for operational deployment.

In this context, to minimize interpretability risks implicit in the ML processing chain,
the learned results are integrated to define a technical and scientific protocol to opera-
tionalize the TL for the OSS prediction. To accomplish this, a comparison (Figure 13a:
GoM
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BR) among performances
reached by the models during the development (Tables 3 and 4) and application phases
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and flexibility of the models to learn patterns and generalize them (Figure 13d) across
similar and different domains using TL.



Remote Sens. 2023, 15, 1496 21 of 30

Remote Sens. 2023, 15, x FOR PEER REVIEW 22 of 31 
 

 

the models’ development (Figure 13b: solid blue line; 13c: solid and dashed blue lines). 
Coherently, the highest GI index of 1.00 (Table 9c) was obtained by the GoM ⇥ BR: RDS 
application (Figure 13d: solid blue line with green markers) employing DI and LR. Likely, 
the transferability of geometric properties from the DS to the DT domain is boosted when 
using the same SAR sensors in both domains, allowing well-fitted data projections, 
minimizing differences, and improving prediction accuracies. Another good result for a GI 
of 0.88 (Table 9b) was reached by applying a GMex model over GAm samples using DI 
and RF (Figure 13d: solid orange line). Probably, the use of similar but different satellites 
in the DS (RDS2) and DT (RDS1) domains affected this result. 

Lastly, when domains are dissimilar (DS ≠ DT) presenting high-divergent statistical 
properties (P(XS) ≠ P(XT)), as seen in the GoM ⇥ BR: SNT1 application, the GA(s) and 
sensitivities (Figure 13c: solid and dashed red lines) are significantly lower than those 
obtained during the models’ building (Figure 13c: solid and dashed blue lines). As 
aforementioned, aleatoric and epistemic uncertainties affect these predictions making the 
DA unfeasible, resulting in the worst GI (−1.00) employing CDS and SVM (Table 9d; 
Figure 13d: dashed red line with blue markers). 

 
Figure 13. Comparison among performances reached by developed models and predictions using 
DI: (a) GoM ⇥ GoM; (b) GMex ⇥ GAm; (c) GoM ⇥ BR per satellite; and (d) Generalization Index 
(GI) for GoM ⇥ GoM, GMex ⇥ GAm, GoM ⇥ BR: RDS and GoM ⇥ BR: SNT1 comparing CDS and 
DI. 

Consistently with previous analyses, for all positive transfers the GI(s) are higher 
than zero, and the DI method generalized better than the CDS. On the contrary, for the 
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Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 
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Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 30 
 

 

 

Figure 2. (a) Database description: geolocation and satellites. Study Case 1 (DS = DT): (b) GoM as DS 

domain and (c) DT domain. Study Case 2 (DS ≠ DT): (d) GMex as DS domain and (e) GAm as DT 

domain. Study Case 3 (DS ≠ DT): (f) GoM as DS domain and (g) BR as DT domain. 

Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

GAm; (c) GoM

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 30 
 

 

 

Figure 2. (a) Database description: geolocation and satellites. Study Case 1 (DS = DT): (b) GoM as DS 

domain and (c) DT domain. Study Case 2 (DS ≠ DT): (d) GMex as DS domain and (e) GAm as DT 

domain. Study Case 3 (DS ≠ DT): (f) GoM as DS domain and (g) BR as DT domain. 

Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR per satellite; and (d) Generalization Index (GI)
for GoM

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 30 
 

 

 

Figure 2. (a) Database description: geolocation and satellites. Study Case 1 (DS = DT): (b) GoM as DS 

domain and (c) DT domain. Study Case 2 (DS ≠ DT): (d) GMex as DS domain and (e) GAm as DT 

domain. Study Case 3 (DS ≠ DT): (f) GoM as DS domain and (g) BR as DT domain. 

Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

GoM, GMex

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 30 
 

 

 

Figure 2. (a) Database description: geolocation and satellites. Study Case 1 (DS = DT): (b) GoM as DS 

domain and (c) DT domain. Study Case 2 (DS ≠ DT): (d) GMex as DS domain and (e) GAm as DT 

domain. Study Case 3 (DS ≠ DT): (f) GoM as DS domain and (g) BR as DT domain. 

Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

GAm, GoM

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 30 
 

 

 

Figure 2. (a) Database description: geolocation and satellites. Study Case 1 (DS = DT): (b) GoM as DS 

domain and (c) DT domain. Study Case 2 (DS ≠ DT): (d) GMex as DS domain and (e) GAm as DT 

domain. Study Case 3 (DS ≠ DT): (f) GoM as DS domain and (g) BR as DT domain. 

Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR: RDS and GoM
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Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR: SNT1 comparing CDS and DI.

Table 9 provides the generalization index (GI) calculated employing CDS (GICDS) and
DI (GIDI) for all studied cases: (a) GoM
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Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

GoM; (b) GMex
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Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

GAm; (c) GoM
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Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR with
RDS and (d) GoM
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domain. Study Case 3 (DS ≠ DT): (f) GoM as DS domain and (g) BR as DT domain. 

Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR with SNT1.

Table 9. GI from CDS (GICDS) and DI (GIDI) for different scenarios: (a) GoM

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 30 
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domain and (c) DT domain. Study Case 2 (DS ≠ DT): (d) GMex as DS domain and (e) GAm as DT 

domain. Study Case 3 (DS ≠ DT): (f) GoM as DS domain and (g) BR as DT domain. 

Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

GoM; (b) GMex
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Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

GAm;
(c) GoM
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domain. Study Case 3 (DS ≠ DT): (f) GoM as DS domain and (g) BR as DT domain. 

Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR with RDS; and (d) GoM
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by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 
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train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR with SNT1.

ML
(a) GoM
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GICDS GIDI GICDS GIDI GICDS GIDI GICDS GIDI

LR 0.07 0.07 0.63 0.87 0.87 1.00 −0.79 −0.72

ANN 0.12 0.12 0.53 0.79 0.94 0.95 −0.68 −0.68

LDA 0.10 0.10 0.63 0.87 0.91 0.94 −0.84 −0.79

RF 0.10 0.09 0.68 0.88 0.90 0.88 −0.72 −0.74

SVM 0.09 0.09 0.66 0.76 0.83 0.83 −1.00 −0.95

Minimum 0.07 0.07 0.53 0.76 0.83 0.83 −1.00 −0.95

Maximum 0.12 0.12 0.68 0.88 0.94 1.00 −0.68 −0.68

When the DS and DT domains are the same (DS = DT), presenting similar statistical
properties (P(XS) = P(XT)) as seen in the GoM
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• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

GoM application, the GA(s) and sensitivi-
ties (Figure 13a: solid and dashed red lines) are similar to those obtained during the models’
building (Figure 13a: solid and dashed blue lines). In these cases, the OSS inferences are
not affected by aleatoric or epistemic uncertainties, and the models’ generalizations are
practically null (Table 9a), with GI(s) varying around zero employing CDS (Figure 13d:
dashed grey line) or DI (Figure 13d: solid grey line).

As seen in GMex
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by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 
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narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

GAm and GoM

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 30 
 

 

 

Figure 2. (a) Database description: geolocation and satellites. Study Case 1 (DS = DT): (b) GoM as DS 

domain and (c) DT domain. Study Case 2 (DS ≠ DT): (d) GMex as DS domain and (e) GAm as DT 

domain. Study Case 3 (DS ≠ DT): (f) GoM as DS domain and (g) BR as DT domain. 

Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 
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• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR: RDS, when domains are dissimilar
(DS 6= DT), with different but related pdf(s) (P(XS) 6= P(XT)), the GA(s) are usually greater
(Figure 13b: solid red line; Figure 13c: solid red line with grey markers) than those obtained
during the models’ development (Figure 13b: solid blue line; 13c: solid and dashed blue
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lines). Coherently, the highest GI index of 1.00 (Table 9c) was obtained by the GoM
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• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 
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DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR:
RDS application (Figure 13d: solid blue line with green markers) employing DI and LR.
Likely, the transferability of geometric properties from the DS to the DT domain is boosted
when using the same SAR sensors in both domains, allowing well-fitted data projections,
minimizing differences, and improving prediction accuracies. Another good result for a GI
of 0.88 (Table 9b) was reached by applying a GMex model over GAm samples using DI and
RF (Figure 13d: solid orange line). Probably, the use of similar but different satellites in the
DS (RDS2) and DT (RDS1) domains affected this result.

Lastly, when domains are dissimilar (DS 6= DT) presenting high-divergent statistical
properties (P(XS) 6= P(XT)), as seen in the GoM
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BR: SNT1 application, the GA(s) and sen-
sitivities (Figure 13c: solid and dashed red lines) are significantly lower than those obtained
during the models’ building (Figure 13c: solid and dashed blue lines). As aforementioned,
aleatoric and epistemic uncertainties affect these predictions making the DA unfeasible,
resulting in the worst GI (−1.00) employing CDS and SVM (Table 9d; Figure 13d: dashed
red line with blue markers).

Consistently with previous analyses, for all positive transfers the GI(s) are higher
than zero, and the DI method generalized better than the CDS. On the contrary, for the
negative transfers, CDS and DI returned similar generalization with GI(s) below zero.
Employing DI or CDS, the integrated analysis of all measures of effectiveness revealed
key configurations for a successful migration of robust and validated applications to an
operational environment (OE). Under a TL approach, these configurations are synthesized
in Box 2 and comprise three specific behaviours.

Box 2. Protocol to migrate predictive models for OSS identification from developer environments to
operational environments employing TL.
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Operational use feasible employing TL: protocol useful for different but
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In these cases, the knowledge learned by the models is positively transferred to infer
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traditional ML. The GI(s) are always positive and such predictive systems (GMex
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Operational use unfeasible: protocol applied to completely different
domains (DS 6= DT), i.e., models developed and applied in different geographic regions,
under distinct meteo-oceanographic conditions, employing satellites with incompatible
configurations, and using samples with high-divergent statistical distributions. In these
cases, it is not possible to adapt domains or to transfer knowledge. The transferability
is negative and the prediction accuracies with TL are worse than those obtained with
traditional ML. The GI(s) are negative and such predictive systems (GoM

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 30 
 

 

 

Figure 2. (a) Database description: geolocation and satellites. Study Case 1 (DS = DT): (b) GoM as DS 

domain and (c) DT domain. Study Case 2 (DS ≠ DT): (d) GMex as DS domain and (e) GAm as DT 

domain. Study Case 3 (DS ≠ DT): (f) GoM as DS domain and (g) BR as DT domain. 

Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR: SNT1)
cannot be operationalized, unless new samples are acquired for training new models to
recognize geometric patterns extracted from SNT1.

The requirements mapped in this protocol offer explainability and human autonomy,
empowering the end-users to make decisions about when and how to apply and migrate
predictive models to OE(s). Taking this protocol as a baseline, applications with operational
potential were implemented in a proprietary software named GeoqView, making the
functionalities available to end-users for testing.

3.4. Operationalizing Predictive Models for OSS Identification: Real-World Case Integrating TL
and Inverse Oil Drifting Models

Artificial intelligence is a powerful means of performing analyses that would be hu-
manly impossible, processing simultaneously large data sets and recognizing relationships
among geometric patterns of oil slicks detected in different geographic regions. However,
when prospecting new exploratory frontiers, automatic systems cannot reproduce the
interdisciplinary and highly specialized view of experts when integrating SAR imagery,
field data, inverse oil drifting models, and geophysical surveys [4,5]. In this sense, the
operational test adopted a broader view, integrating the data-driven and knowledge-driven
approaches, using automatic predictions to add value and confidence to the interpreters‘
analysis.

To accomplish this, remote sensing experts from the oil and gas sector used the
GoM
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BR application (DI and LR) implemented in the GeoqView software to infer au-
tomatically the OSS of 69 oil slicks carefully interpreted by them as seepage slicks. As
synthesized in Figure 14, from 69 interpreted samples 54 (78%) were correctly predicted as
seepage slicks (Figure 14a blue points; 14b) and 15 (22%) were incorrectly recognized as oil
spills (Figure 14a red points; 17b). Coherently (Figure 14b), 76% of the correctly predicted
samples were detected by RDS sensors, the same used for building the GoM model, while
87% of the incorrectly predicted samples were detected by SNT1, a satellite not considered
during the training. Remarkably, considering only RDS samples, 41 out of 43 seepage slicks
were correctly inferred achieving 95% of global accuracy, whereas for SNT1 samples only
13 (50%) from 26 seepage slicks were correctly predicted.
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Sequentially, an inverse oil drifting model (IODM) was used to estimate, for each
seepage slick, the inverse oil slick trajectory from the sea surface to the ocean bottom
(Figure 14a blue lines) [23,24]. When three or more seepage slicks converge to the same
seafloor area, a detailed investigation is conducted for seeking the geologic structures and
faults probably connected with active petroleum systems [23,24].

In this real-operational test, out of the 17 convergence regions (CR) identified by IODM,
5 had all the interpreted seepage slicks (100%) confirmed by the automatic predictions, and
6 returned prediction accuracies were greater than or equal to 75% (Figure 14c). A map
ranking the CR per the number of slicks interpreted as seepage slicks and confirmed by the
automatic predictions represents key information to guide decision-making, pointing out
priority regions to concentrate investments during the exploratory phase.

4. Discussion

Comparing the obtained results with past research on the topic is difficult, since the
majority of published papers are dedicated to discriminate oil spills from look-alikes, or to
extract dark spots from SAR sensors [25–40]. Part of available research used SAR data to
discover, map and catalogue sources of seepage slicks around the globe, extracting infor-
mation regarding shape, dimensions, spatial recurrence, and other characteristics [2–5,44].
However, discriminating seepage slicks from oil spills using SAR sensors and ML is a new
and promising research area.

Previous studies [42,87,88] carried out with oil slicks carried out detection by using
RDS sensors, integrating radiometric with geometric features, and employing LDA to
discriminate seepage slicks from oil spills; a maximum accuracy of 70% was achieved.
These studies developed and applied the classification models to infer samples acquired
in the same geographic region and detected with the same SAR sensor, characterizing a
traditional ML approach.

The present research not only applied a traditional ML approach in scenario 1, but
also went further to test—in an unprecedented way—TL for transferring knowledge from
validated models for inferring the OSS of new samples detected in different geographic
regions (scenarios 2 and 3). Other novelty aspects are: (i) the employment of only geometric
features to discriminate seepage slicks from oil spills, considering a higher diversity of
attributes when compared with previous studies [35]; (ii) the creation of a new metric named
the Generalization Index to evaluate the relative transferability of developed predictive
models when applied over distinct geographic regions; (iii) the evaluation of the effects
provoked by different SAR sensors (RDS and SNT1), comprising different configurations in
terms of image beam modes, noise equivalent sigma zero, and spatial resolutions. Results
were promising since, besides corroboration with ML and TL theory, they provided concrete
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evidence of the feasibility to adapt different domains when employing TL in an operational
way. Figure 15 illustrates a comparison between the maximum global accuracy achieved by
previous works with the results obtained in this research project.
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The promising results reflect the technical and ethical guidelines [57–59] adopted
to develop, apply, and deploy predictive models for OSS identification. The end-user’s
co-assessment inserted the stakeholders’ perspective in all phases of the project which
allowed the development of transparent, robust, and fair models validated through several
measures of effectiveness (Section 2.2). The HOL mechanism guaranteed the transparency
of results through several measures of effectiveness, aggregating the end-user’s expertise
to oversee and test the systems’ development, deployment, and operational use. Moreover,
the audits undertaken by experts from the oil and gas industry ensured the robustness and
quality of the dataset, making possible the development of trustworthy predictive models.
Sets of balanced and validated oil slicks (Figure 2) as input ensured fairness, avoiding
biased inferences, improving the discriminative potential of the models, and boosting the
TL across different domains.

5. Conclusions

The employment of controlled feature spaces (XS) as input in the DS domain allowed
the development of two predictive models well-trained to recognize representative geo-
metric patterns of natural and anthropic oil slicks: (1) the GMex model, achieving a test
accuracy of 77% using RDS2; and (2) the GoM model, attaining 75% by employing RDS1
and RDS2.

In an unprecedented way, these models were successfully applied to predict the OSS
in different DT domains using TL. When domains are the same (DS = DT), with equivalent
statistical properties (GoM
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GoM), the models’ transferability and generalization are
practically null, and the maximum prediction performances are identical using TL or
ML (75.93%). In such cases, the operational deployment is viable without the need to
adapt domains or retrain the models with newly validated samples. However, when
domains are different (DS 6= DT), it is discernible circumstances in which the knowledge
learned by the model is positively transferred to unknown samples, adapting domains
and improving prediction performances (GMex
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known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR: RDS = 87%) were much higher than those provided by usual ML
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Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

GAm = 52%; GAGoM
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Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR: RDS = 59%). Consequently, the positive generaliza-
tions (GIGoM
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Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR: RDS = 1.00; GIGMex
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Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

GAm = 0.83) for the first time ever showed the
adaptability and flexibility of these well-trained models to learn and transfer geometric
patterns to make inferences in different domains. These outcomes suggest the existence
of an explicit and/or implicit relationship between the geometric properties of oil slicks
detected in distinct geographic regions, making it unnecessary to acquire new labelled
samples, or to retrain the models from scratch.

Nevertheless, the transferability and generalization capacity of predictive models are
limited when the SAR sensors used in the DS and DT domains have different configura-
tions, characterizing a negative transfer. Since the domain adaptation was unfeasible, the
operational use of the GoM
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Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR: SNT1 application is not recommended. Its maximum
accuracy using TL (GAGoM

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 30 
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domain and (c) DT domain. Study Case 2 (DS ≠ DT): (d) GMex as DS domain and (e) GAm as DT 

domain. Study Case 3 (DS ≠ DT): (f) GoM as DS domain and (g) BR as DT domain. 

Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR: SNT1 = 35%) was lower than that provided by traditional
ML (GAGoM
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Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR = 59%), and its generalization was negative (GIGoM

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 30 
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Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR: SNT1 = −1.00).
Results revealed not only the adaptability and responsiveness of these models to

operate in different scenarios with outstanding performances, but also their limitations
grounding the creation of an unprecedented protocol for operational deployment of TL
aiming at OSS identification. This protocol complies with the HIC mechanism, making the
potential and limitation of the TL methods human-interpretable, and reinforcing human
autonomy by boosting the confidence of end-users to decide when and how to apply the
automatic inferences.

Despite the uncertainties embedded in any statistical inference process, this protocol
was validated by a real-operational test (GoM
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Initially, several ML algorithms were employed to train and test predictive models 

in the DS domain. The first one used 4130 samples of seepage slicks and oil spills validated 

by Pemex in the GMex and detected by the RDS2 satellite (Figure 2d). The second one 

compiled 6279 samples of seepage slicks and oil spills detected in the GMex and GAm to 

train wider models over the entire GoM, employing RDS1 and RDS2 satellites (Figure 

2b,f). These models were subsequently saved to transfer learning when predicting un-

known oil slick samples in different DT domains. Afterward, the transferability and gen-

eralization capacity of these models were evaluated across three different application sce-

narios: 

• Study case 1 (GoM ⇥ GoM): GoM models applied to predict the OSS of 698 new sam-

ples of seepage slicks and oil spills detected in the GoM (Figure 2b,c). This scenario 

has similar domains (DS = DT) in terms of geographic regions (DS ⇥ GoM; DT ⇥ GoM) 

and satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT ⇥ [RDS1, RDS2]); 

• Study case 2 (GMex ⇥ GAm): GMex models applied to predict the OSS of 1738 new 

samples of seepage slicks detected in the GAm (Figure 2d,e). This scenario has different 

domains (DS ≠ DT) in terms of geographic regions (DS ⇥ GMex; DT ⇥ GAm) and satel-

lites employed for detection (DS ⇥ RDS2; DT ⇥ RDS1); 

• Study case 3 (GoM ⇥ BR): GoM models applied to predict the OSS of 421 new samples 

of seepage slicks and oil spills detected in the BR (Figure 2f,g). This is the most chal-

lenging scenario, comprising different domains (DS ≠ DT) in terms of geographic re-

gions (DS ⇥ GoM; DT ⇥ BR), satellites employed for detection (DS ⇥ [RDS1, RDS2]; DT 

⇥ [RDS1, RDS2, SNT1]), and meteo-oceanographic conditions. 

2.2. Methodology for Predictive Models Development, Application and Deployment 

The methodology is concentrated along three frameworks (F) detailed in Figure 3: 

F1. Developer environment (Figure 3a): aim to build robust, fair, and trustable predictive 

models through balanced and validated databases (DS); F2. Test environment (Figure 3b): 

intend to apply the models trained in the DS domain to predict unknown samples in the 

DT domain comparing ML with TL (Figure 3c,d), looking for transparency and confidence; 

F3. Production environment (Figure 3e): aim to implement the validated functionalities in 

BR) confirming 95% of the seepage slicks
classified by the interpreters when using same satellites (RDS), and only 50% when using
different satellites (SNT1).

Therefore, this RD&I project for the first-time remarkably evidenced that it is fully
possible to operationalize predictive systems using TL to identify the OSS of unknown
samples acquired in different geographic regions, under distinct meteo-oceanographic
contexts, using satellites with compatible configurations, and considering only geometric
properties. The integration of data-driven and knowledge-driven approaches are powerful
and have shown how AI-based systems can be used not to replace, but to add confidence
to the experts’ interpretation, strengthening their technical reports and decision-making.

Beyond the reported scientific benefits, important economic and environmental im-
pacts were achieved by the project outcomes. The main economic impact offered by TL
is the concrete possibility to save time and budget with the collection, validation, and
labelling of new samples, as well as with the re-training of new models. Furthermore, since
there is no similar software available in the market, an expert system like that, architected
to operate within corporative environments and to process confidential data sensitive for
the oil and gas industry, represents a profitable investment with a guaranteed return.

From the exploratory point of view, oil and gas companies can use the convergence
regions joint with seepage slicks automatically confirmed as hot-spots to aggregate value
to the blocks during bidding rounds. Automatic predictions can also be strategically em-
ployed to create a ranking of these regions per importance order, supporting the exploratory
activities planning, thus optimizing time, costs, human resources, and infrastructure. The
possibility of minimizing the confusion between seepage slicks and oil spills represents
a value-added product that can contribute to reducing geologic risks when seeking ac-
tive petroleum systems associated with present-day oil generation and migration in new
exploratory frontiers.

Additionally, in offshore oil exploration and production fields, where seepage slicks
and oil spills can simultaneously occur, well-trained models to discriminate natural from
anthropic events using SAR sensors can protect the oil industry against penalties for
pollution events. On the other hand, the prompt identification of an oil spill can speed up
the response actions to clean-up and protect sensitive areas against oil pollution.

Lastly, as unreported oil slicks are considered in new cycles of training and testing,
the predictive models increasingly become more effective in recognizing known and novel
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geometric patterns, transferring knowledge between domains, thus improving their gener-
alization and prediction accuracies. The continuous increment of the database with newly
validated oil slick samples constitutes a future priority for the project, embracing different
regions of interest for the petroleum industry and other SAR sensors. Another promising
future perspective is testing further DA methods, such as dimensionality reduction, aiming
to optimize the TL to different DT domains, hence boosting the models’ generalization
capacity.
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