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Abstract: Leaf area index (LAI) and canopy chlorophyll content (CCC) are important indicators that
describe the growth status and nitrogen deficiencies of crops. Several studies have been performed
to estimate LAI and CCC using multispectral cameras onboard an unmanned airborne vehicle
(UAV) system. However, the impacts of illuminations during UAV flight and problems of how
to invert still need more investigation. UAV flights with a multispectral camera were performed
under clear (diffuse ratio 0) and cloudy illumination conditions (diffuse ratio 1) over rapeseed, wheat
and sunflower (only clear) fields. One-dimension radiative transfer model PROSAIL was run twice
to generate a clear-sky model and a cloudy-sky model, respectively. The LAI and CCC of flights
under a clear sky were inverted from the clear-sky model, and the flights under cloudy conditions
were inverted from both clear-sky and cloudy-sky models to compare the results. Moreover, three
Look-Up-Tables (LUT) were built with same input variables but different distributions of LAI. Results
showed that LAI from uniform dense LUT had better correspondence with ground measurements
for all crops (R2 = 0.51~0.69). The illumination condition had little impact on small to medium LAI
(LAI < 5) and CCC. However, the inversion of imageries during cloudy sky conditions from the
clear-sky model led to an overestimation of high LAI values.

Keywords: leaf area index (LAI); canopy chlorophyll content (CCC); UAV; multispectral camera;
look-up-table

1. Introduction

The accurate mapping of spatial variability of a field during the growing season is
an important step for precision agriculture practice [1,2]. Mapping key parameters that
are closely related to canopy status can provide useful diagnostic information about the
field, which assists in crop management, yield forecasting and environmental protection
for farmers [3].

Remote sensing-based mapping methods have been deployed by several studies on a
variety of platforms in precision farming, with satellites and full-size aircraft [4,5]. On board
optical sensors such as multispectral, hyperspectral or thermal infrared cameras acquire
bulk images of the ground. However, the satellite-based imageries are limited by coarse
spatial resolution that cannot satisfy some applications that need high spatial resolution
(such as weed detection and management), or over small fields [6], or in cloudy weather
conditions occurring at key growing dates [7,8]. Further, full-size aircraft is expensive and
the flying altitude is restricted by local policies, buildings and the natural environment.
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Therefore, there is a need to develop techniques for the rapid acquisition of high spatial
and temporal resolution data during critical crop development periods at economic costs.
A low-altitude remote sensing system by the UAV provides a practical substitute for the
platforms mentioned above [9]. These UAVs are always lightweight with a minimal cost of
flight time. Equipped with a new developed small RGB, multispectral, hyperspectral or
thermal infrared sensors, the UAV systems can monitor the crop conditions at large areas
in a high spatial (centimeter) and at key stages of plant development [3,10].

Recently, several crop key traits have been measured using sensors mounted on UAV
systems [11–14]. Among these traits, leaf area index (LAI) and chlorophyll content are two
biophysical variables that are frequently used in the precision agriculture domain. LAI
is defined as half the total green area of leaves per unit of horizontal ground area [15]. It
reflects the potential growth of the canopy and is a key variable for biomass and yield
estimation. Chlorophyll content is an important indicator of photosynthesis activity, which
is related to the nitrogen concentration in green vegetation and serves as a measure of
the crop response to nitrogen application [16]. This quantity can be calculated both at the
leaf level (leaf chlorophyll content, Cab) and at the canopy level (Canopy Chlorophyll
content, CCC) by multiplication of the leaf level chlorophyll content and LAI. Studies have
demonstrated that a direct estimation of CCC is more robust and accurate on the estimation
of canopy nitrogen content, vegetation physiological status and plant stress [5,17–19]. Map-
ping spatial variability of LAI and CCC has, therefore, been preferred for its implications
for the variation of biomass and nitrogen concentration in the field.

Previous studies on LAI and CCC estimations from satellites have mostly been con-
ducted under clear illumination conditions without the contamination of clouds. However,
in the measurements by UAV, cloud influence is an inevitable factor that cannot be ignored,
especially in regions with frequent cloud visits during the key growing stages [20–22].
Few experiments have been conducted to explore the inversion of LAI and CCC under
cloudy conditions.

Among the different methods used to retrieve LAI and CCC from reflectance, Look-
Up-Tables are quite popular since they are fast, accurate and can avoid the local minimum
that may happen on iterative convergence algorithms [23,24]. A key point that influences
the accuracy of retrieval performances is the distribution of the radiative transfer model
input parameters used to build the LUT [25,26]. The distribution of LAI is the most impor-
tant among other parameters. Ref. [12] uses uniform distribution for LAI and Gaussian
distribution for other parameters, while [27] used uniform distribution for all parameters.
Ref. [4] used the truncated Gaussian distribution for all parameters including LAI, although
using a neural network inversion algorithm. The uniform distribution can obtain more
even performances, while the Gaussian distribution set prior information on the crops,
which is good for specific crops but may not be applicable for several crop variables in
structures. Nevertheless, the uniform distribution is greatly influenced by sparse steps.
Therefore, a new distribution is necessary.

This study was conducted in the context of the French project PRECIDRONE that
aims to provide operational decision-making tools to farmers and help them spatially
optimize nitrogen fertilization and their water supply practices in the context of sustainable
agriculture. Maps of LAI and CCC were therefore important to be used as inputs of crop
models to estimate the crop nitrogen concentration and biomass. The objective of this paper
is, thus, to implement a generic algorithm to estimate LAI and CCC at field level based on
LUT, to evaluate it over different crops, and to study the influences of illumination and
distributions of input variables. We first present the study sites, the associated ground
data and the multispectral camera and UAV system. Then, the processing of the images
is described, including the generation of the orthoimages from the data acquired by the
camera, and the LAI and CCC estimation algorithm based on LUTs. The impacts of
illuminations and input variables distributions are analyzed and the relationship between
LAI and biomass, canopy nitrogen content and CCC were investigated.
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2. Materials and Methods
2.1. Experiment Sites and Ground Measurements

The experimental sites are distributed close to Toulouse, in the south-west of France.
This region experiences a typical temperate continental climate, with hot and dry summer
and cold and humid winter. Three crops were involved in this field campaign: rapeseed,
sunflower and wheat. Rapeseed is sown from mid-August to mid-September, wheat is
sown from October to November and harvested at the beginning of July, while sunflower is
a summer crop planted from mid-April to mid-May and harvested around September. For
each crop type, several fields were selected. They were under contrasted growth conditions
due to fertilization, soil type, topography or cultivar, yet dominant with lowest weed
coverage. The homogeneity of wheat and rapeseed fields was good, while the sunflower
fields’ plant densities were quite heterogeneous. On each field, one or several 1 m2 mi-
croplots were selected for ground measurements. The positions of these 61 microplots were
recorded by a GPS. The microplots were marked using bright ground control points easily
detectable on the UAV imagery. The dates for all ground measurements were close to the
UAV flights (Table 1).

Table 1. The names, coordinates, dates and weather of the UAV flights for rapeseed, sunflower and
wheat fields.

Crop Field Name Center Coordinate
(N, E, ◦) Flight Date Weather

Rapeseed AURIAC 43.52, 1.82 20/01/2016 Cloudy

BAZIEGE 43.47, 1.63 13/01/2016 Clear

CARAMAN 1
43.54, 1.77 04/12/2015 Cloudy

14/01/2016 Cloudy

CARAMAN 2
43.55, 1.76 04/12/2015 Cloudy

14/01/2016 Cloudy

DELM 1
43.529, 1.66 02/12/2016 Cloudy

13/01/2016 Clear

DELM 2
43.528, 1.660 02/12/2015 Cloudy

13/01/2016 Clear

DELM 3
43.527, 1.661 02/12/2015 Cloudy

13/01/2016 Clear

GRANGETTES 1
43.478, 1.707 03/12/2015 Clear

20/01/2016 Cloudy

GRANGETTES 2
43.479, 1.708 03/12/2015 Clear

20/01/2016 Cloudy

Sunflower FRANDAT-01 43.99, 0.66 06/07/2016 Clear

FRANDAT-13 43.97, 0.65 06/07/2016 Clear

FRANDAT-27 43.98, 0.72 06/07/2016 Clear

FRANDAT-29 43.98, 0.71 06/07/2016 Clear

Wheat ST-JEAN-POUTGE-1 43.73, 0.38 05/02/2016 Clear
30/03/2016 Clear

VIC-
FEZENSAC-1

43.73, 0.31 10/02/2016 Cloudy

30/03/2016 Clear

VIC-
FEZENSAC-2 43.73, 0.29 10/02/2016 Cloudy
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Table 1. Cont.

Crop Field Name Center Coordinate
(N, E, ◦) Flight Date Weather

VIC-
FEZENSAC-4 43.74, 0.30 10/02/2016 Cloudy

VIC-
FEZENSAC-3

43.74, 0.28 10/02/2016 Cloudy

30/03/2016 Clear

Nitrogen content and fresh biomass were measured by cutting all the leaves within
each 1 m2 microplot. The sampled leaves were first weighed to obtain the green fresh
biomass, and then heated in an oven at 80◦ for 36 h for weighing the dry biomass. Finally,
the dried leaves were used for the determination of nitrogen content. The nitrogen contents
were measured for rapeseed and sunflower microplots.

The LAI measurements were taken over a homogeneous region close to the microplot
of each field. On rapeseed and wheat fields, LAI was measured using the Sony ILCE α5100L
RGB camera with 6024 × 4024 pixels inclined at 57◦ and 1.5 m far away from the ground.
Ten to fifteen photos were taken close to the microplot along the sowing direction, facing
the sun to limit shadow influences. On sunflower fields, around 10 photos were taken using
a digital camera equipped with a hemispherical lens at nadir direction. All the images were
then processed using the CAN-EYE software (https://www6.paca.inra.fr/can-eye, V6.3,
accessed on 14 May 2016) to retrieve LAI.

The leaf chlorophyll content was measured using the SPAD device [28] with a mini-
mum of 15 leaves randomly located at the top of the canopy. These SPAD raw readings
were converted into arial content of chlorophyll (µg/cm2) using the equation by [29] and
then averaged over each field.

2.2. UAV and Camera System

An unmanned aircraft drone DT18 AG was used in this campaign. It can fly for 2 h
at a speed of 60 km/h and a height ranging from 70 m to 150 m. Onboard the drone, a
MicaSense RedEdgeTM multispectral camera was mounted. It can simultaneously acquire
images in five discrete spectral bands: blue (475 nm), green (560 nm), red (668 nm), red-
edge (717 nm) and near infra-red (840 nm). The spectral resolution at a Full Width at Half
Maximum (FWHM) was 20 nm for blue and green bands, 10 nm for red and red-edge
bands and 40 nm for NIR band. The image resolution was 1280 × 960 pixels, and optical
focal length was 5.5 mm, yielding a horizontal field of view of the camera around 47.2◦.
Images were taken per second and stored in a 12-bit TIFF format.

On each field, the flight was achieved in around 10–20 min. The nominal ground
sample distance of these images was around 8 cm per pixel, with the flight altitude at 120 m.
The sky was clear and wind speed was low for a major part of the flights, but was cloudy
or partly cloudy for the other flights (Table 1).

2.3. Orthoimage of Multispectral Reflectance

The Pix4D software (https://pix4d.com/, accessed on 14 May 2016) was used to gen-
erate the ortho-projected multispectral reflectance image automatically from all the images
acquired during each flight. This process included the alignment of images according to the
GPS information, the reconstruction of the 3D surface model, the calibration of reflectance
of images and the generation of orthomosaic images. The reflectance images were then
calibrated using images acquired over a calibration body (isotopic white panel name) prior
to each flight [30] to obtain the reflectance images. The generated ortho-image had a spatial
resolution around 8 cm. It was then aggregated into 1 m by a simple averaging method
in order to satisfy the turbid medium assumption over each pixel required by the use of a
one-dimension canopy radiative transfer model to retrieve LAI from the reflectance [31].

https://www6.paca.inra.fr/can-eye
https://pix4d.com/
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2.4. Estimation of LAI and Canopy Chlorophyll Content

A look up table (LUT)-based inversion method was used to generate an image of
LAI and chlorophyll from the reflectance orthoimage. The LUT was built according to a
one-dimension radiative transfer model PROSAIL [32], which is a combination of canopy
radiative transfer model SAIL [31] and a leaf optical properties model PROSPECT [33].

At the canopy level, the LUT was generated by running the PROSAIL model in the
forward mode with input variables listed in Table 2. Three different LUTs were generated,
with the same input variables but different distributions.

• Gaussian LUT (LUT-G)

Table 2. Distribution of PROSAIL input variables to generate the Gaussian distribution LUT.
ALA = Average Leaf Angle inclination; HsD = Hot-spot parameter; N = leaf structure parameter;
Cab = chlorophyll content; Cdm = dry matter content; Cw = leaf water content; Cbp = brown pigment
concentration; Bs = soil brightness; skyl = diffuse ratio. More information about the variables’ values
can be found in [4].

Variable Minimum Maximum Mean Standard
Deviation Distribution

LAI 0 10 2 2 Gauss
ALA (◦) 30 80 60 20 Gauss

HsD 0.1 0.5 0.2 0.5 Gauss
N 1.2 2.2 1.5 0.3 Gauss

Cab
(µg·cm−2) 20 90 45 30 Gauss

Cdm
(g·cm−2) 0.003 0.011 0.005 0.005 Gauss

Cw 0.6 0.75 0.75 0.08 Gauss
Cbp 0 0.08 0 0.3 Gauss
Bs 0.5 2 - - Gauss

skyl 0 0 - - -

The LUT-G was defined that all input variables follow a Gaussian distribution, with
the range and distribution law shown in Table 2. The Gaussian distribution law is consistent
with the one used in [4]. In total, 55,296 combinations of input variables were generated.
Specifically, the distribution of LAI and LAI × Cab is shown in Figure 1.

• Uniform LUT (LUT-U)
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Figure 1. Distribution law of (a) LAI and (b) LAI × Cab for Gaussian LUT and uniform LUT.

The LUT-U was generated by setting the distribution of LAI to uniform within the
minimum and maximum range shown in Table 2. The other variables follow same distribu-
tion as Gaussian LUT. The final size of the LUT-U was 13,824. The distribution of LAI and
LAI × Cab is shown in Figure 1.

• Uniform dense LUT (LUT-UD)
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One limitation of LUT is that the density of input variables greatly influences the
inversion. Therefore, a dense LUT was proposed to check if the estimation would be more
accurate. Based on uniform LUT, LAI was separated into 10 categories with a step of 1,
such as 0–1, 1–2, . . . 9–10. For each category of LAI, an LUT was generated with LAI in the
uniform distribution and the other variables following same distributions as Gaussian LUT
(Table 2). Finally, 10 LUTs in the size of 13,824 cases were generated.

For the 3 LUTs, a full orthogonal experimental plan was adopted to combine the
9 input variables by splitting the whole range of variation of each variable into a small
number of classes. This allowed populating more evenly the 9 dimensions of the space of
canopy realization.

For wheat fields, 5–10 soil samples were collected in the field and the reflectance was
measured in the lab. For the other fields, as no spectrum acquisition was performed, we
manually selected several soil pixels from the orthoimage at 8 cm resolution by assuming
that the reflectance in the blue, green, red and NIR bands continuously increased and the
NDVI was smaller than 0.2. These ground measured or image selected soil reflectance
profiles were compared with a soil database, which includes the reflectance of a large
range of soil types [34]. The five closest soil profiles were extracted from the database.
A soil brightness factor was then multiplied to the five selected soil profiles to simulate
further variations of soil reflectance due to roughness, directional effects of observations
and moisture. The same soil reflectance will be used for all three LUTs.

For all three LUTs, the PROSAIL model was run in a forward direction two times
using different diffuse ratio values (skyl = 0 or 1). The model with skyl = 0 is called
‘clear-sky model’ in the following context, and the other with skyl = 1 is called ‘cloud-sky
model’. Note that there is no ground measurement of diffuse ratio since it is not easy in an
operational way.

To decrease the size and dimension of the LUT, the viewing angle was set to nadir
only since we only consider orthoimages. For each combination of variables, the canopy
reflectance was simulated and aggregated to each band according to the spectral response
function of the multispectral camera.

For each pixel of the resampled orthoimage (1 m spatial resolution), a cost function
was generated to calculate the RMSE between measured surface reflectance and simulated
reflectance in the LUT (Equation (1)). The relative reflectance with the NIR band was used
in order to minimize the illumination variation between calibration and flight acquisitions
(Verger et al., 2014).

J =
∑4

i=1 (
BRFi

BRFNIR
− B̂RFi

ˆBRFNIR
)

2

4
(1)

where BRFi and B̂RFi are measured and simulated reflectance on band i.
J was sorted and the first 50 smallest cases were found. For LUT-G and LUT-U, the

median values of corresponding LAI and chlorophyll were calculated and used as the
inverted results for the pixel. For LUT-UD, the LAI value was firstly estimated from LUT-U,
e.g., LAI0. Then, a dense LUT in the range of [LAI0 + 0.5, LAI0 − 0.5] was searched. The
measured reflectance of the pixel was compared with the ones in the specific dense LUT
using the cost function (Equation (1)), as shown above. The median values of LAI and Cab
of the first 50 smallest cases from the dense LUT were used as the results for the pixel. CCC
was computed as LAI × Cab.

3. Results
3.1. Impacts of the Distribution of Input Variables for LUT Generation

LAI retrieved from Gaussian LUT, uniform LUT and uniform dense LUT were com-
pared with ground measurements for rapeseed, wheat and sunflower. For all three LUTs,
the points under cloudy conditions were inverted by the LUT generated from the dif-
fuse model, and the points under clear conditions were inverted by the LUT from the
direct model.
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Results showed that the LAI from three LUTs correlated better with ground measure-
ments for rapeseed and wheat than sunflower (Figure 2, Table 3). This is mainly because of
the heterogeneity of sunflower fields, which influences the representativeness of ground
measurements compared with UAV flights. For rapeseed, the Gaussian LUT and uniform
LUT have similar performances, while the uniform dense LUT shows a better RMSE of 0.36
and a higher correlation of 0.69. For sunflower, the uniform dense LUT greatly improves the
inversion accuracy compared to Gaussian LUT by RMSE of 0.07. For wheat, the estimated
LAI from dense LUT showed the best correspondence (R2 = 0.62) but highest variation
(RMSE = 1.23) compared with those from Gaussian distribution. Gaussian LUT had small
distributions at LAI larger than five; therefor, there are no high estimations compared to
the other LUTs.
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Figure 2. Comparison of inverted LAI from three LUTs (Gaussian, Uniform and Uniform Dense)
with the ground measurements. Symbols in red correspond to UAV flights under clouds conditions,
and symbols in blue correspond to those under clear illuminations.

Table 3. Statistics of inverted LAI from three LUTs (Gaussian, Uniform and Uniform Dense) with
ground measurements (R2 and RMSE in bracket).

Rapeseed Sunflower Wheat

Gaussian 0.65 (0.39) 0.42 (0.37) 0.58 (0.83)
Uniform 0.65 (0.39) 0.49 (0.31) 0.55 (1.17)

Uniform Dense 0.69 (0.36) 0.51 (0.30) 0.62 (1.23)

3.2. Impacts of Illumination Conditions

The impacts of illumination conditions were firstly studied using the modelling
method. Reflectance under clear-sky conditions (skyl = 0) and under cloudy-sky con-
ditions (skyl = 1) were simulated using the PROSAIL model, with same input variables
shown in Table 2. LAI and Cab for reflectance under each illumination condition were
inverted using the uniform dense LUT (simulated under clear sky condition). Then, the
inverted LAI and Cab were compared with the original input ones. Figure 3 shows that
LAI from both input reflectance were similar at small values, but LAI from reflectance
under the cloudy-sky condition shows higher values and more saturations. On the other
hand, Cab from two reflectance is similar, although the one from the cloudy-sky condition
showed slightly scatterings.

The influence of the illumination condition was also assessed using actual ground
measurements over UAV flight acquired on Vic-4 wheat field under cloudy conditions.
The uniform dense LUT was used in the inversion. The results showed that the estimated
LAI from the clear-sky model were consistent with those from the cloudy model at small
and medium LAI values (LAI < 5), but they were larger than the latter at high LAI values
(Figure 4a–c). For Cab, the differences between using the clear-sky model or cloudy model
are not obvious, except for some pixels at high values (Cab > 65 µg·cm−2). Under cloudy
conditions, the leaves tend to show lower reflectance at NIR band and higher reflectance
at red band than under clear-sky condition. Therefore, the inversion using the clear-sky
model should obtain higher LAI values to satisfy the lower NIR reflectance.
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The comparison with ground measurements further demonstrates the influence of
using a clear-sky model on the measurement under cloudy conditions. Figure 5 shows
that the validation accuracy is improved greatly for wheat after using the cloudy model
on measurements under cloudy conditions when LAI is larger than 5 (Figure 5a,b, RMSE
decreases from 1.98 to 1.23). However, changing the model on cloudy pixels has small
influences on small LAIs of rapeseed (LAI < 5, Figure 5d). This is consistent with the results
observed by [12]; that the illumination has minor effects on the inversion of small LAI when
the normalization in the cost function is used. The cloudy pixels still show overestimation
to some extent at high LAI values (LAI > 5), even if the diffuse model is used. This might
also be because of the saturation of reflectance at high values. The higher LAI values are
generally much more difficult to estimate due to the reduction in sensitivity of reflectance
to LAI.
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3.3. Comparison with Ground Canopy Nitrogen Content

The relationship between UAV estimated canopy chlorophyll content and ground
measured canopy nitrogen content was studied in Figure 6. For rapeseed, the estimated
canopy chlorophyll is very well correlated with ground nitrogen content, indicating that
the estimated value from UAV flights can be used to predict the ground nitrogen when the
ground data are not available. For sunflower, the relationship between canopy chlorophyll
and ground nitrogen shows some scattering, although a good correlation is observed
(R2 = 0.52). This might be because of the heterogeneity of the sunflower fields, which leads
to big variations between the microplots for nitrogen measurements and the one for LAI
measurements.
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3.4. Comparison with Ground Biomass

Figure 7 illustrates that the LAI estimated from UAV flights has a very good correlation
with the ground measured fresh biomass quantity for rapeseed and wheat, indicating that
the LAI can be used to describe the variation of fresh biomass in the field. For sunflower, the
correlation is low, mainly because of the extreme high biomass values for low LAI canopy
(LAI < 1, biomass > 1500 g/m2) from two measurements. The heterogeneity of sunflower
fields produces the large discrepancy. After removing the two points, the R2 increases from
0.2 to 0.52, indicating the potential to estimate biomass from LAI for sunflower.
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4. Discussion

We proposed a generic inversion algorithm to estimate LAI and CCC over crop fields
using UAV multispectral imageries. Since the distribution of LAI has large impacts on the
inversion, we compared LUT with different LAI distribution and studied the impacts on
inversion results. Compared with Gaussian LUT and uniform LUT in the size of 13,824, the
dense uniform LUT has a much larger size (10 × 13,824). This is beneficial to biophysical
inversion because the accuracy of model retrieval depends on the size of LUT [35], e.g., [36]
generated an LUT of 100,000 sets to obtain a good estimation of LAI. Moreover, we proposed
a new method to generate a dense LUT by setting LAI into several categories and adding
more LAI in each category. This could improve the representativeness of LAI evenly
and contribute to better inversion results. Nevertheless, the distribution of chlorophyll
content and other input variables might also have impacts on the final inversion results.
Additionally, the impacts of distribution of these variables on different inversion algorithms,
e.g., neural network and LUT, also need more investigations.

Unlike optical satellite observations that are only available under ideal clear sky
conditions, the illumination conditions during UAV flights for breeding and precision
agriculture purposes can vary, e.g., clear-sky, overcast or with moving clouds [21,22]. It is
not practical to only collect data under one specific illumination condition in real natural
environments. Building a generic algorithm to estimate accurate and stable LAI and CCC
under various illumination conditions is, therefore, important. To our knowledge, the
effects of clouds on UAV multispectral imagery have attracted attention in the last few
years. However, most of the studies were focused on spectral reflectance or vegetation
indices [20,22]. Notably, fewer studies were conducted on the impacts of illumination
variation on biophysical variables inversion. We conducted preliminary investigations on
this aspect. However, only ideal clear conditions and totally cloudy sky were considered
in this study. In the future, more investigations on impacts of illumination under various
cloud cover conditions will be conducted and an applicable solution for the LAI and Cab
retrieval will be proposed. Moreover, the diffuse ratio of radiation on each wavelength
should be measured at the ground level and used as input for the model inversion, in order
to improve the inversion accuracy. The accuracy of incorporating a diffuse ratio to the
modelling and inversion processes should be studied further.

The results in this study indicate that canopy nitrogen content can be predicted
well from canopy chlorophyll content, which is consistent with findings from previous
studies [5,37]. However, more research is still needed to investigate whether the correlation
can be improved for heterogeneous fields and crops with complex structures, e.g., sunflower.
Furthermore, phenological stages also have impacts on the relationship between canopy
chlorophyll content and canopy nitrogen content [38], which was not considered in this
study and needs further investigation in the future. LAI retrieved from UAV multispectral
imageries are indicative for biomass estimations, as presented in recent studies [13]. The
simple linear equations generated from available measurements could be used to generate
a spatial map of crop biomass. More ground measurements are, therefore, required to
evaluate the accuracy of biomass maps, especially over plots not included in the correlation.
Furthermore, the building of the relationship between biomass and yield is actually the
interested target for real crop management and production.
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5. Conclusions

This study proposed a method to generate a field map of LAI and CCC through PRO-
SAIL radiative transfer model inversion based on an LUT method using UAV multispectral
imageries. Three different distribution laws of LAI were evaluated as inputs to PROSAIL
to generate the training database. The results showed that the dense uniform distribution
provides the best estimations of LAI, validated by ground measurements, compared to
uniform distribution and Gaussian distribution. The impacts of illumination conditions
(e.g., clear or cloudy) on LAI and CCC estimations were then evaluated. The best retrieval
strategy was found when using the clear sky PROSAIL model (diffuse ratio = 0) for UAV
flights under clear sky conditions, and using the cloudy sky model (diffuse ratio = 1) for
flights under cloudy sky conditions. The impacts of using the clear sky model for flights
under cloudy illuminations were more obvious for large LAI (LAI > 5). We also demon-
strated that CCC could be a good indicator for canopy nitrogen content estimations, and
that LAI is meaningful for ground biomass mapping over the whole field.
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