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Abstract: The automatic extraction of individual tree from mobile laser scanning (MLS) scenes has
important applications in tree growth monitoring, tree parameter calculation and tree modeling.
However, trees often grow in rows and tree crowns overlap with varying shapes, and there is also
incompleteness caused by occlusion, which makes individual tree extraction a challenging problem.
In this paper, we propose a trunk-constrained and tree structure analysis method to extract trees
from scanned urban scenes. Firstly, multi-feature enhancement is performed via PointNet to segment
the tree points from raw urban scene point clouds. Next, the candidate local tree trunk clusters
are obtained by clustering based on the intercepted local tree trunk layer, and the real local tree
trunk is obtained by removing noise data. Then, the trunk is located and extracted by combining
circle fitting and region growing, so as to obtain the center of the tree crown. Further, the points
near the tree’s crown (core points) are segmented through distance difference, and the tree crown
boundary (boundary points) is distinguished by analyzing the density and centroid deflection angle.
Therefore, the core and boundary points are deleted to obtain the remaining points (intermediate
points). Finally, the core, intermediate and boundary points, as well as the tree trunks, are combined
to extract individual tree. The performance of the proposed method was evaluated on the Pairs-Lille-
3D dataset, which is a benchmark for point cloud classification, and data were produced using a
mobile laser system (MLS) applied to two different cities in France (Paris and Lille). Overall, the
precision, recall, and F1-score of instance segmentation were 90.00%, 98.22%, and 99.08%, respectively.
The experimental results demonstrate that our method can effectively extract trees with multiple
rows of occlusion and improve the accuracy of tree extraction.

Keywords: mobile laser scanning; individual tree detection; MLS point clouds; outdoor scene

1. Introduction

The rapid development of 3D acquisition techniques has provided new data and tools
for vegetation modeling. MLS is an instrument well suited to obtaining high-precision
urban scene point cloud data (PCD). Automatically identifying and mapping trees is a long-
standing goal in the area of forest remote sensing, and there is great interest in developing
robust solutions to segmenting species with complex structures [1].

The vegetation in urban areas supports ecology by promoting biodiversity, carbon
storage and urban temperature reduction, maintaining the carbon–oxygen balance [2],
purifying the environment [3], and regulating the climate [4]. The accurate detection of
individual tree information from MLS point clouds has been a long-standing goal of remote
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sensing applications. Individual tree information can be widely used in various applica-
tions, such as urban road planning, tree 3D modeling [5], tree monitoring [6,7], tree species
identification [8], biomass estimation [9] and structural characteristics quantifying [10,11].

Recently, in most approaches, delineating individual tree from PCD has been paid the
most attention. Many scientific studies have been undertaken aiming to segment scanned
scenes into different objects [12–16] and capture the attributes of trees [17–21] (e.g., tree
height, trunk diameter and diameter at breast height), and outstanding work on 3D object
detection based on LiDAR data has been undertaken [22,23]. In this work, we focus on
the current methods used for individual tree extraction from MLS. These methods can
be roughly divided into three categories: normalized cut methods (NCut), region growth
methods and clustering-based methods.

Dong et al. [24] proposed a multilayered tree crown extraction method using graph-
based segmentation. Firstly, the tree crown height model (CHM) was constructed, and
then the trunk information was obtained by analyzing the histogram of the PCD. Then,
graph-based segmentation was performed to extract individual tree. However, noise
points around the trunk will affect the accuracy of detection. To solve the problem of the
low extraction accuracy caused by the difficulty of pole identification, Fan et al. [25,26]
proposed an individual tree extraction method based on confidence guidance. According to
the local features of poles, the confidence of trunk estimation is used to guide the order of
segmentation, and then the optimized min-cut is used to extract individual tree. However,
the extraction of individual tree is limited by the accuracy, and the earlier segmentation
clustering could undermine adjacent crown identification, meaning the accuracy will be
low in the overlapping scenes. Individual tree detection based on NCut involves manually
estimating the number of trees in a multi-tree cluster to determine the iteration termination
condition. NCut requires large storage space, time-consuming and expensive in large
scenarios and is inefficient when the PCD is dense.

Husain et al. [27] first divided the MLS data into regular 2D grids, then vertically
sliced the grids containing candidate trees into three layers. They then created a circle
with a specified radius and obtained individual clusters by growth region before finally
merging them to obtain individual tree. Since the location of the trunk in [27] depends
on the size of the established search area, it is difficult to extract a complete trunk when
other rods are present near the trunk. Li et al. [28] proposed a dual growth method to
automatically extract individual tree from MLS data. Here, the trunk is identified via
various pole objects, and then individual tree are extracted via the dual growth method
based on the extraction of seed points. The experimental results indicate that when there
are pole objects close to a trunk, the method struggles to identify a real trunk. Luo et al. [29]
proposed a pointwise direction embedding deep network (PDE-Net) to predict the direction
vector of each tree cluster pointing to the tree center to distinguish the tree boundary. But
the effective direction prediction largely depends on the classification accuracy of the tree.
In addition, when the PCD is sparse, the correct extraction of individual tree cannot be
ensured due to the impossibility of conducting regional analysis.

When extracting individual tree, Torchta et al. [30] first divided the trees into horizontal
slices, then extracted the most qualified clusters according to the distance between points.
Areas with the minimum number of points formed clusters. The angles and distances of
the cluster centers were determined, and they finally realized the extraction of individual
tree. This method struggles to extract trees in dense tree scenes, and the performance of
individual tree extraction is limited by incomplete data. Li et al. [31] proposed a branch–
trunk-constrained hierarchical clustering method to extract individual tree from MLS data.
Ning et al. [32] presented a method of top-to-bottom individual tree extraction. First,
the appropriate feature set is obtained, and then the outdoor scenic spot cloud data are
segmented into tree points and non-tree points using support vector machines (SVM).
Then, spectral clustering is used to extract individual tree. Finally, a weighted constraint
rule is proposed to refine the individual tree clusters. The algorithm must specify the
number of clusters, and this leads to low segmentation robustness in complex scenes. The
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principal direction and region growing are used to remove the ground and building façade
information, and then the trunk and crown are extracted according to the clustering of
tree branches and the trunk–space relation. Finally, a hierarchical clustering method is
proposed to complete segmentation. However, according to the research findings, these
clustering-based methods are affected by the degree of closeness between objects [33].

Most of the existing methods can segment and extract individual tree effectively [34–41].
However, when multiple trees are connected and occluded, or trees are adjacent to other
objects in complex scenes, the individual tree extraction result will be unsatisfactory. In
these complex scenes with a variety of non-tree objects, trees and non-tree objects will be
close to each other, thus blocking or creating connections between trees, which can easily
lead to the problem of incorrect or missing recognitions. When multiple trees are occluded,
the boundaries of adjacent tree crowns are indistinguishable in the final extraction, and this
will result in inaccurate segmentation. The current method is also affected by the density of
the PCD.

For complex scenes containing multiple trees, tree crowns generally overlap and
occlude one another, but the distance between tree trunks is relatively large. As such, we
propose an individual tree extraction method for outdoor scenes based on trunk-constrained
and tree structure analysis. The main contributions of our work are as follows:

(1) A comprehensive framework combining semantic segmentation with trunk-constrained
and tree structure analysis is constructed for individual tree extraction. It can solve the
problem whereby trees are often distributed in multiple rows, and there are overlaps
between the canopies.

(2) A new method for locating tree position and crown center based on the local tree trunk
method is proposed. The real local tree trunks are identified by restricting the height,
the number of points and the angle between the trunk and the ground, the crown
centers are located by circle fitting, and complete trunks are extracted according to
region growing in relation to the proposed candidate trunk region.

(3) A novel individual tree extraction method based on distance difference and centroid
deflection angle is proposed. Exploiting tree point classification and the effective
instance segmentation strategy, the proposed method can obtain more satisfactory
individual tree extraction results.

The rest of the paper is organized as follows. In Section 2, our method for individual
tree extraction is presented. In Section 3, experiments and evaluations of the proposed
method are conducted with a real dataset, and the experiment results are discussed in
detail. Finally, conclusions are drawn, and future work is presented in Section 4.

2. Materials and Methods

In some special outdoor scenes with multiple rows of street trees, there are multiple
trees shielding each other and connected to one another. The crowns of multiple trees
generally overlap, but the distances between the tree trunks are relatively large. As such, we
propose a novel method for outdoor scenes based on trunk-constrained and tree structure
analysis. The entire pipeline of the method is illustrated in Figure 1.

Firstly, we extract the local features of objects from the raw PCD and undertake
semantic segmentation based on multi-feature enhancement using PointNet, which we
proposed in another work [42], to improve the accuracy of tree detection. Next, the local
tree trunks are extracted from the tree PCD via feature analysis. These local tree trunks
are then sliced vertically, and tree trunks are located by circle fitting. The center of the tree
crown can then be obtained from the position of the tree trunk. Then, the trunk candidate
region is constructed according to the tree trunk position and the radius of the fitted circle.
The completed tree trunk is obtained using region growing in the trunk candidate region,
which narrows the range of trunk extraction and thus improves efficiency. Finally, we
divide the multi-tree cluster into individual tree clusters by applying the different strategy
to points at different positions in the tree cluster.
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2.1. Tree Trunks Extraction

Since the effective extraction of an individual tree largely depends on the quality
of the tree trunk extraction, to improve the accuracy of tree trunk extraction, we must
first extract local tree trunks using feature analysis and then use circle fitting to locate the
tree trunk. Finally, we extract the complete tree trunk via region growing from the trunk
candidate region.

2.1.1. Local Tree Trunks Extraction

For the extraction of candidate local tree trunk clusters, the maximum zmax and
minimum zmin Z-coordinates are obtained from the tree PCD, and then the tree height
according to Equation (1) is calculated:

Htree = zmax − zmin (1)

The tree trunk is located at the bottom of the tree. After several experiments and
statistical analysis, we found that the results are the most accurate and effective when the
height of the local tree trunk is set at 1/7. Retain the Z-coordinate of the local tree trunk
using zmin to zmin + Htree × 1/7, and the candidate individual local tree trunk clusters are
obtained by Euclidean clustering.

The candidate local tree trunk clusters may contain some non-trunk objects, which
are necessary to remove. Fan et al. [26] assessed all the characteristics of tree trunks and
ranked the confidence of tree trunk identification to obtain the real trunk. Inspired by
this, three constraints, including the number of cluster points, the height of clusters and
whether the principal direction of the cluster is perpendicular to the ground, are proposed
to improve the extraction accuracy of the local tree trunk. That is to say, clusters with
fewer points than Nth (Nth = 50) are deleted, clusters with heights below Htree × 1/8 are
excluded, and clusters in which the angle between the principal direction of the current
cluster and the Z-axis is less than 20◦ will also be deleted. Clusters in which the height
is lower than that of the local tree trunk do not belong to the real local trunk cluster, and
we delimit the height at H = Htree × 1/8. Since the local tree trunk is perpendicular
to the ground, whether it is a linear vertical object or not can be determined from the
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angle between the principal direction of the local tree trunk cluster and the Z-axis. When
calculating the angle, the covariance matrix of the candidate local tree trunk clusters
needs to be created, and then the eigenvalues and corresponding eigenvectors of each
cluster can be obtained through PCA (principal components analysis). Given that the
scanned scene data P = {pi|i = 1, 2, . . . , N }, the k neighboring points of point pi will be
qj =

{
(xj, yj, zj)|j = 1, 2, . . . , k

}
. The local covariance matrix M of pi is constructed via:

M =
1
N

N

∑
i=1

(
pi − P

)(
pi − P

)T (2)

where N is the number of points in the point cloud, and P is the center point of the PCD,
which is calculated via P = 1/N ∑N

i=1 pi. The eigenvector corresponding to the largest
eigenvalue represents the principal direction. The angle θ between the principal direction
and the Z-axis is calculated using Equations (3) and (4):

N·V = Nx ×Vx + Ny ×Vy + Nz ×Vz (3)

θ =
cos−1(N·V)× 180◦

π
(4)

where N(Nx, Ny, Nz) is the normalized coordinate in the direction of the Z-axis, and
V(Vx, Vy, Vz) is the normalized coordinate in the principal direction. We delete the clusters
in which θ is smaller than θth, and finally derive the real local tree trunk clusters. θth
represents the angle between the principal direction of the local cluster and the Z-axis,
and it determines whether the local trunk cluster is a linear vertical object. The cluster
belongs to a linear vertical object only when the principal direction is roughly the same as
the direction of the Z-axis, but it will generally not be absolutely perpendicular, and we
delimit the θth = 20◦.

2.1.2. Tree Trunk Locating

After obtaining the real local tree trunk clusters, tree trunk positions should also be
obtained. Since the shape of the tree trunk is more or less cylindrical, and the horizontal
section is similar to a circle, the locations of tree trunk clusters can be obtained through
circle fitting.

Ground points may be misclassified as tree trunks, so to ensure the accuracy of location
identification, it is necessary to eliminate the influence of noise data. The local tree trunk
clusters are vertically divided into five layers (as shown in Figure 2), and then circle fitting
is performed for the middle three layers only. Circle fitting is a circle detection method
based on the RANSAC model of maximization checking, and circle curve fitting is based
on the least squares approach. The circle equation is shown in Equation (5), which can be
further expanded to obtain Equation (6).

(x− a)2 + (y− b)2 = r2 (5)

x2 + y2 − 2ax− 2by + a2 + b2 = r2 (6)

Here, (x, y) is the point of the local tree trunk cluster, (a, b) is the center of the fitted
circle and r is the fitted circle radius. Let A = 2a, B = 2b and C = a2 + b2 − r2. Then,
Equation (6) can be simplified to Equation (7).

x2 + y2 − Ax− By + C = 0 (7)
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To ensure the minimum fitting error, it is necessary that the partial derivative of each
parameter be 0, which satisfies the minimum of γ in γ = ∑

(
x2 + y2 − Ax− By + C

)
. We

then calculate the center (a, b) and radius r of the fitted circle according to the least squares
fitting method.

a =
A
2

, b =
B
2

, r =
√

a2 + b2 − c (8)

After circle fitting, the fitted center and radius of the local tree trunk clusters can be
calculated. Take (a, b) to be the center of the tree trunk and r to be the radius of the tree
trunk, and finally, the position of the tree trunk can be located. Our approach also ensures
that trunks can be positioned correctly even when they have irregular shapes (the selection
portion of Figure 2). In our proposed method, the final position is obtained by averaging
the center of the fitted circle from the three layers of the local tree trunk, and this reduces
the influence of irregular trunks.

2.1.3. Trunks Extracted by Region Growing

After locating the position of the tree, the complete tree trunk needs to be extracted
from the tree PCD. To reduce the scope of the segmentation region and improve the accuracy
of segmentation, we construct the trunk candidate region, and the trunk is obtained by
region growing in the trunk candidate region. The trunk extraction process is displayed in
Figure 3 below.
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(1) For a trunk tru1, take o1 as its center and expand the range of ∆r× r1 in the horizontal
direction to construct the trunk candidate region. The radius of the candidate region
is ∆r (∆r = 5) times the trunk’s radius r1. Therefore, for all tree points ti ∈ T, if the
horizontal distance from ti to o1 satisfies dH(ti, o1) ≤ ∆r× r1, then ti is added to the
candidate region bu f1, and dH is calculated via Equation (9):

dH(ti, o) =
√
(tix − ox)

2 + (tiy − oy)
2 (9)

(2) The eigenvalue (λ1 > λ2 > λ3 ≥ 0) and eigenvector (v1, v2, v3) of the point in bu f1
are obtained from the PCA and e3 represents the normal vector. The curvature σ1 is
calculated by Equation (10), and the curvature is sorted in ascending order.

σ1 =
λ1

λ1 + λ2 + λ3
(10)

(3) We create an empty sequence S of seed points and an empty cluster Clu, and then
select the point with the smallest curvature from bu f1 and place it in set S.

(4) Take the first seed point from S and search for its neighboring points. If the angle
between the normal vector of the neighborhood point and the normal vector of the
seed point is less than the smooth threshold Sth = 1/9π, the current point is added to
the clu1, and then we judge whether the curvature of the neighboring points is less
than the curvature threshold Cth = 0.12. If it is lower, it will be added to S until all
neighborhood points are processed.

(5) Delete the first seed point from S and repeat step (4). Cluster clu1 is segmented when
S is empty.

(6) Select the first unsegmented point from the sorted curvature data to act as the seed
point, and then repeat the above steps until all the points are segmented, to derive
cluster Clu = {clui|i = 1, 2, . . . , Nclu }. In this way, the extraction of complete tree
trunks in the trunk candidate region is obtained.

2.2. Individual Tree Extraction
2.2.1. Tree Crown Center Calculation

To extract an individual tree, it is necessary to analyze the positional relation between
the remaining points and the center of the tree crown. The center of the tree crown is
generally located vertically above the tree trunk. As such, use the averages of the X- and
Y-coordinates of the tree trunk to be the approximate coordinates of the crown’s center.
We delete the trunks from the tree PCD, and the average Z-coordinates of the remaining
points are taken as the Z-coordinates of the crown center. Further, the crown centers are
marked the same label as the trunks. The calculated coordinates of all central crown points
are denoted as E = {ei|i = 1, 2, . . . , Ne }, where Ne is the number of central crown points.
Figure 4a,b displays different views of crown centers.
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2.2.2. Individual Tree Extraction by Distance Difference and Centroid Deflection Angle

According to the located crown centers, the tree crown cluster can be further divided
into individual tree crown clusters or multi-tree crown clusters. A cluster containing only
one center is defined as an individual tree crown cluster. In contrast, clusters containing
multiple crown centers are defined as multi-tree crown clusters and must be further seg-
mented. The most challenging task of individual tree extraction is to segment multi-tree
crown clusters. We must first remove the trunks from the tree PCD and then undertake an
analysis of the spatial distance and local density to determine the point’s location. Different
strategies to deal with points in different positions (core, boundary and intermediate points)
have been proposed and are detailed below.

Generally, points closer to the center of a tree’s crown are more likely to belong to that
tree. However, in a dense scene with large differences in shape and size, only considering
the spatial distance may assign points with wide crown to trees with narrow crown. To
overcome this challenge, points near the crown center (core points) are identified and
segmented by the distance difference. The distances from unsegmented points to the
centers of all tree crowns are sorted in ascending order, and then the difference between the
minimum distance and the sub minimum distance is calculated as the “distance difference”.
First, we calculate the distance difference. If the distance difference is greater than the
distance threshold Dth, this means that the distance from the current unsegmented point
to the closest crown center is far less than the distance to the sub closest crown center.
Therefore, the current unsegmented point can be considered as a core point and assigned
to the tree with the closest crown center. If the opposite case pertains, and the distances
between the current unsegmented point and two crown centers are similar, the current
point is considered as a non-core point. Based on this approach, all core points and non-core
points can be segmented.

For points near the external boundary of a crown, the local density of points constitut-
ing the crown should be higher than that of points outside the crown. As such, the crown
boundary can be clearly distinguished by analyzing the local density of the points in the
boundary (boundary points) and the centroid deflection angle. We set the neighborhood
search radius to Rs and identify the point with a number of neighbors below MinPts as the
boundary point. We calculate the centroid of the current boundary point and it is generally
located between the boundary point and the center of the crown. Therefore, the boundary
point belongs to the tree, the centroid declination angle of which is small. The centroid

declination angle is the angle θ11 between
→

b1k1 and
→

b1e1. In Figure 5, θ11 is significantly
smaller than θ12, and b1 belongs to tree1. Finally, the segmentation of all boundary points is
achieved by analyzing the centroid declination angle.
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Ultimately, the remaining points (intermediate points) of the crown are obtained by
deleting the core and boundary points from the unsegmented points, and they are further
processed using the distance difference and centroid deflection angle. Before dividing the
intermediate points, we first derive the centers of the closest crown and the sub closest
crown. Then the similarity between intermediate points and the crown centers is computed.
The lower the similarity, the smaller the distance to the current center of the crown. When
moving from the intermediate point to the centroid, the direction is towards the side of the
current crown center, and finally the intermediate point is assigned to the tree that has a
crown center with minimum similarity.

The segmentation process of individual tree is as follows:

(1) The set of unsegmented points is C = {ci|i = 1, 2, . . . , Nc }, and Nc is the number of

unsegmented points. The spatial distance d1i from point c1

(
cx

1 , cy
1, cz

1

)
∈ C to each

crown center ei

(
ex

i , ey
i , ez

i

)
∈ E is achieved according to Equation (11). All distances are

sorted in ascending order—the minimum distance is d11, the sub minimum distance
is d12, and the corresponding crown centers are e1

(
ex

1 , ey
1, ez

1

)
and e2

(
ex

2 , ey
2, ez

2

)
.

d1i =

√
(cx

1 − ex
i )

2 + (cy
1 − ey

i )
2
+ (cz

1 − ez
i )

2 (11)

(2) The distance difference is D12 = d12− d11. If D12 > Dth, assign c1 to the tree with e1. If
D12 < Dth, add c1 to the remaining unsegmented point set U = {ui|i = 1, 2, . . . , Nu }.
Nu is the number of remaining unsegmented points. Repeat steps (1) and (2) for all
points in set C, and obtain the segmentation results of all core points.

(3) For U, the neighborhood points are obtained using the search radius Rs. If the num-
ber of neighborhood points is less than MinPts, the point is added to the bound-
ary point set B = {bi|i = 1, 2, . . . , Nb }, and then the centroids of the boundary
points are calculated from the neighborhood points. The centroids set is defined
as K = {ki|i = 1, 2, . . . , Nk }, where Nk is the number of centroids.

(4) The vector
→

D(e1, b1) = e1 − b1, and
→

D(k1, b1) = k1 − b1. The angle θ11 of
→

D(e1, b1) and
→

D(k1, b1) is computed according to Equations (12) and (13).

θ11 = cos−1(

→
D(e1, b1)·

→
D(k1, b1)

‖
→

D(e1, b1)‖‖
→

D(k1, b1)‖
) (12)

Here, ‖
→

D(e1, b1)‖ and
→

‖D(k1, b1)‖ are the moduli of vectors
→

D(e1, b1) and
→

D(k1, b1).
The radian value is converted to an angle value via Equation (13).

θ11 =
θ11 × 180.0

π
(13)

Then the vector
→

D(e2, b1) = e2 − b1 and the angle θ12 of
→

D(e2, b1) and
→

D(k1, b1) is also
estimated. If θ11 < θ12, assign b1 to the tree with e1, otherwise assign b1 to the tree
with e2, and repeat step 4) until all boundary points are segmented.

(5) The intermediate point set Q =
(
qi
∣∣i = 1, 2, . . . , Nq

)
is obtained by deleting the core

points and boundary points, and the distance d11 from q1 to e1 is calculated by step 1).

The distance d12 from q1 to e2, and the angles θ11 between
→

q1k1 and
→

q1e1 and θ12

between
→

q1k1 and
→

q1e2 are determinedrespectively based on 4). Normalize the distance
and angle using Equations (14) and (15).

d11 =
d11

d11 + d12
, d12 =

d12

d11 + d12
(14)
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θ11 =
θ11

θ11 + θ12
, θ12 =

θ12

θ11 + θ12
(15)

The similarity Sim(e1) between q1 and e1 and the Sim(e2) between q1 and e2 are
obtained by Equations (16) and (17), respectively, where α and β are the weight of distance
and the angle.

Sim(e1) = αed11 + βeθ11 , Sim(e2) = αed12 + βeθ12 (16)

α + β = 1 (17)

If Sim(e1) < Sim(e2), assign q1 to the tree with e1. In contrast, assign q1 to the tree
with e2, and repeat step 5.

The crown points of an individual tree are labeled via the above processing steps.
Therefore, the crown and trunk points with the same label are combined to obtain the
individual tree, as displayed in Figure 6.
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3. Results

To verify the effectiveness of this method, we use the Paris-Lille-3D dataset [43] to
conduct experiments, and compare the results with those of the clustering method [44]
and the 3D Forest method [30]. Our method is implemented on Windows 10 using an Intel
i5-8500 CPU and a single NVIDIA GeForce GTX 1660Ti GPU.

3.1. Paris-Lille-3D Dataset

Paris-Lille-3D (Figure 7) is a dataset and a benchmark used for point cloud classifica-
tion. The data are produced by a mobile laser system (MLS) applied to two different cities
in France (Paris and Lille). The scanned road length is about 2 km and includes about 140
million points. The point cloud has been labeled entirely by hand, with 50 and 9 classes
that are used by the research community for automatic point cloud segmentation and clas-
sification algorithms, respectively. We conduct experiments using crude classification into
the following categories: ground, buildings, bollards, poles, trashcans, barriers, trees, cars,
and vegetation. The trees in this paper are mainly macrophanerophytes with independent
trunks. Vegetation with no individual trunks (e.g., bushes) is not considered as the target
objects. Since the non-tree objects in the dataset are complex and diverse, the dataset is
directly classified into nine categories.
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3.2. Analysis of Individual Tree Extraction Results

The basis of the proposed method is to remove the ground, buildings and other non-
tree objects via Ning et al.’s method [42]. In this step, the values of the parameters used
are all identical to those in [42], except that the number of output categories is nine rather
than two, because the number of output categories is determined according to the standard
semantic segmentation of the dataset. The five raw scenes are displayed in Figure 8, and
the semantic segmentation results are illustrated in Figure 9.
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In Figure 9, all the categories are represented using different colors: red represents
trees, and anything not red represents non-tree objects. We then remove all the other objects
from the dataset to derive all the tree PCD.

Table 1 lists the relevant parameters extracted from individual tree in different scenes.
Dth represents the distance difference threshold, which is derived from the shapes and
structures of trees. Rs represents the neighborhood search radius, which is used to obtain
the number of neighborhood points, and MinPts represents the minimum number of
neighborhood points. The values of Rs and MinPts depend on the density of the PCD. α
and β are used to balance distance and angle which represent the weights of the distance
and the angle, respectively.

Table 1. Parameters of individual tree extraction.

Scene Dth Rs MinPts α β

Scene1 1.8 3.0 1800 0.8 0.2
Scene2 1.8 3.0 1800 0.8 0.2
Scene3 1.8 3.0 1800 0.8 0.2
Scene4 2.0 3.0 1800 0.8 0.2
Scene4 1.8 3.0 1800 0.8 0.2
Scene5 2.5 4.0 10,000 0.7 0.3
Scene5 2.5 2.0 400 0.9 0.1

The individual tree extraction process is displayed in Figures 10–12. Figure 10 illus-
trates the process applied to Scene 1, Scene 2 and Scene 3. Multi-tree clusters are obtained
by semantic segmentation and Euclidean clustering (Figure 10a). The trunks are obtained
by feature analysis, circle fitting and region growing (Figure 10b). Next, according to the
trunk location and the trunk candidate region, the crown centers are obtained (Figure 10c),
wherein red represents the crown centers. Finally, extraction is completed via the method
of distance difference and centroid deflection angle (Figure 10d). Individual tree can be
extracted based on our method, and the overlapping and occluded canopy boundaries
can be clearly distinguished. Figure 10d indicates that our method can effectively extract
individual overlapping trees, and tree boundaries can be successfully segmented via the
analysis of distance difference and centroid deflection angle.

Figure 11 illustrates the individual tree extraction process as applied to multi-tree
clusters in Scene 4. The scene in Figure 11a contains 11 overlapping trees. The correct trunks
are extracted via circle fitting and region growth (Figure 11b). The crown centers extracted
in Figure 11c essentially represent the center of the tree crown. Our method can be used to
extract individual tree from a scene in which the trees are irregularly arranged (Figure 11d).
All 11 trees in the scene can be correctly extracted, and only a few segmentation points are
misclassified. The boundary points of the crown are also correctly identified.

Figure 12 illustrates the individual tree extraction process applied to two multi-tree
clusters in Scene 5. In Figure 12, although there is a small amount of data missing in the
dataset, our method can also extract the individual tree completely. The experimental
results demonstrate that our method is robust to extract individual tree in a scene with
dense trees and a small amount of missing data. Most of the trees are correctly segmented,
and the boundary points are clearly identified in cases of occlusion and connection.

3.3. Comparative Analysis of Experimental Results

To evaluate the performance of our method as applied to individual tree extraction, it
is compared with the methods of [30,44].
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Figure 10. Individual tree extraction process of Scene 1, Scene 2 and Scene 3. (a) The PCD of trees.
(b) Trunk extraction results. (c) Crown center extraction results. (d) Individual tree extraction results.

Figures 13–16 illustrate the experimental results of individual tree extraction for
Scene 2, Scene 3, Scene 4 and Scene 5, respectively. The clustering method [44] and 3D
Forest method [30] achieved inaccurate boundary segmentation when extracting individual
connected trees from Scene 2, Scene 3 and Scene 4, as shown in the selected box portion
of Figure 13a. Figure 13b shows the extraction results from reference [30]. It can be seen
from the box annotation that there are some points with incorrect boundaries. Figure 14
presents the segmentation results for Scene 3. Regarding the four connected trees marked
by the boxes in Figure 14a,b, following both the clustering method of [44] and the 3D
Forest method [30], some tree points are misclassified, and the tree boundary is not clear
enough. Misclassified segmentation points are shown in the boxes of Figure 15a,b.By
contrast, our method can extract connected trees, and most of the tree points are correctly
segmented. For complex outdoor scenes with multiple rows of occluded and overlapping
trees, the methods of [44] and [30] are prone to over-segmentation and under-segmentation,
as shown by the segments in the black boxes in Figure 16a, the individual tree are over-
segmented into multiple clusters, and multiple trees are incorrectly segmented into one
tree. Our method, based on distance difference and centroid deflection angle, can more
accurately and effectively extract individual tree from complex scenes. Our boundary
segmentation results of connected trees are more accurate, and the segmentation points of
misclassification are fewer.



Remote Sens. 2023, 15, 1567 14 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

(a)

(b)

(c)

(d)
 

Figure 10. Individual tree extraction process of Scene 1, Scene 2 and Scene 3. (a) The PCD of trees. 

(b) Trunk extraction results. (c) Crown center extraction results. (d) Individual tree extraction re-

sults. 

 

Figure 11. Individual tree extraction process of Scene 4. (a) The PCD of trees. (b) Trunk extraction 

result. (c) Crown center extraction result. (d) Individual tree extraction result. 

(a)

(b)

(c)

(d)

Figure 11. Individual tree extraction process of Scene 4. (a) The PCD of trees. (b) Trunk extraction
result. (c) Crown center extraction result. (d) Individual tree extraction result.
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To verify the effectiveness of the proposed method, we quantitatively analyze the
experimental results through six indicators. TP (true positive) represents the number of
correctly extracted individual tree, FN (false negative) represents the number of undetected
individual tree (that is, when an individual tree and other nearby trees are divided into the
same tree), and FP (false positive) indicates the number of non-trees detected as trees (that
is, a point cluster that is not a tree is regarded as a tree). TP, FN and FP represent correct
segmentation, under-segmentation, and over-segmentation, respectively. P (precision) is
the precision rate, indicating the proportion of correctly extracted trees out of all detected
trees. R (recall) is the recall rate, indicating the proportion of correctly extracted trees out of
all actual trees. F (F1-score) is a comprehensive index used to evaluate the overall accuracy
of tree extraction. The values of P, R and F are calculated according to Equation (18).

P = TP
TP+FP

R = TP
TP+FN

F = 2× P×R
P+R

, (18)
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Table 2 lists the quantitative comparison results of three methods in four scenarios. It
can be seen that the 3D Forest method has the lowest accuracy among the three methods.
The 3D Forest method is prone to under-segmentation when trees are connected with other
objects. The clustering method is superior to the 3D Forest method, but it still shows over-
segmentation and under-segmentation of trees. Compared with the clustering method [44]
and the 3D Forest method [30], our proposed method is the most effective. For those
overlap of tree crowns in Figure 15c, the precision, recall and F1-score of the proposed
method are 100%, 92.86% and 96.30% respectively, which is higher than 3D Forest method
and clustering based method.
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Table 2. Quantitative comparison results on four scenes.

Scene Method TP FN FP P R F

Scene 2
Clustering method [44] 3 2 2 0.6000 0.6000 0.6000

3D Forest [30] 5 0 2 0.7143 1 0.8333
Ours 5 0 0 1 1 1

Scene 3
Clustering method [44] 6 0 0 1 1 1

3D Forest [30] 5 1 3 0.6250 0.8333 0.7143
Ours 6 0 0 1 1 1

Scene 4
Clustering method [44] 11 3 8 0.5789 0.7857 0.6666

3D Forest [30] 5 9 9 0.3571 0.3571 0.3571
Ours 13 1 0 1 0.9286 0.9630

Scene 5
Clustering method [44] 12 8 8 0.6000 0.6000 0.6000

3D Forest [30] 12 8 8 0.6000 0.6000 0.6000
Ours 20 0 0 0.6000 1 1

Average
Clustering method [44] - - - 0.6947 0.7464 0.7167

3D Forest [30] - - - 0.5741 0.7976 0.6262
Ours - - - 0.9000 0.9822 0.9908

4. Conclusions

In this paper, we have proposed a new method based on trunk constraints and struc-
ture analysis to extract individual tree from complex outdoor scenes. Benefiting from the
effectiveness of the trunk extraction from the candidate trunk region, the accuracy of the
located tree crown center position and the robustness of the crown points segmentation
strategies in different position. Experimental results derived from the five scenes in the
Paris-Lille-3D dataset demonstrate that the proposed method can extract individual tree ef-
fectively. Compared with the clustering-based method and 3D Forest method, the proposed
method negates the influence of crown overlapping and under-segmentation. Overall, the
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precision, recall and F1-score of our proposed segmentation approach applied to the cited
datasets are 90.00%, 98.22%, and 99.08%, respectively.

In future work, we will improve the robustness of the method by applying it to a
dataset with a large amount of missing data and forests. Additional deep learning should
also be explored with the goal of improving tree classification accuracy. Further, the fusion
of orthophoto images and LiDAR point clouds would provide a better means of greatly
improving the efficiency and accuracy of urban tree detection, especially for larger-scale
urban scenes.
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