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Abstract: The analysis of spatiotemporal changes of landscape patterns is of great significance for
forest protection. However, the selection of landscape metrics is often subjective, and existing com-
posite landscape metrics rarely consider the effects of spatial correlation. A more objective approach
to formulating composite landscape metrics involves proper weighting that incorporates spatial
structure information into integrating individual conventional metrics selected for building a com-
posite metric. This paper proposes an integrated spatial landscape index (ISLI) based on variogram
modeling and entropy weighting. It was tested through a case study, which sought to analyze
spatiotemporal changes in the landscape pattern in the Changbai Mountains over 30 years based on
six global land-cover products with a fine classification system at 30 m resolution (GLC_FCS30). The
test results confirm: (1) spatial structure information is useful for weighting conventional landscape
pattern metrics when constructing ISLI as validated by correlation analysis between the incorporated
conventional metrics and their variogram ranges. In terms of the range parameters of different land
cover types, broadleaf forest and needleleaf forest have much larger range values than those of other
land cover types; (2) DIVISION and PLAND, two of the conventional landscape metrics considered
for constructing ISLI, were assigned the greatest weights in computing ISLI for this study; and (3)
ISLI values can be used to determine the dominant landscape types. For the study area, ISLI values of
broadleaf forests remained the largest until 2020, indicating that forest landscape characteristics were
the most prominent during that period. After 2020, the dominance of needleleaf forest gradually
increased, with its ISLI value reaching a maximum of 0.91 in 2025. Therefore, the proposed ISLI not
only functions as an extension and complement to conventional landscape metrics but also provides
more comprehensive information concerning landscape pattern dynamics.

Keywords: landscape pattern metrics; integrated spatial landscape index (ISLI); variogram; entropy;
spatial correlation; Changbai Mountain National Nature Reserve

1. Introduction

Since the 21st century, the study of landscape patterns has gradually tended toward
the analysis of landscape spatial heterogeneity [1,2], and the research field has grown
rapidly [3,4]. A landscape pattern is defined as spatial arrangements of various landscape
elements in a range of sizes and shapes [5,6]. Landscape pattern analysis [7,8] is used to
detect and describe observed structures in landscape features (most commonly land cover)
or land use (e.g., urbanization). Following this approach, various landscape metrics, also
known as spatial pattern metrics, spatial pattern indices, or landscape pattern metrics,
are proposed and used to quantify and analyze landscape patterns [9,10]. As measurable
units of landscape composition and acting as a surrogate for change, they allow for the
description and quantification of spatial patterns and ecological processes over both space
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and time [3]. The ultimate goal of these analyses is not only to describe these patterns but
also to correlate them with the underlying ecological processes driving them.

Given numerous existing landscape metrics, it is also important to assess and select
landscape metrics well suited for an area or an application purpose. Several methods have
been developed for this, such as analytic hierarchy process (AHP) [11], fuzzy comprehen-
sive evaluation (FCE) [12], and entropy weighting [13]. AHP is widely used for selecting
the related landscape indicators and metrics. The problem of the quantification of a large
number of uncertain factors can be well solved by FCE. However, both AHP and FCE are
subjective assessment methods, with the former’s hierarchical structure and the latter’s
different levels of multiple factors not suitable for land cover pattern analyses, as seen in
this study. Entropy weighting, being an objective weighting method for ecological assess-
ment studies, determines a pattern index’s weight according to its information entropy and
has been increasingly used in research [14]. According to Shannon’s view [15], information
entropy measures the disorder degree of a landscape index. A landscape index with higher
information entropy is equivalent to its higher variation and greater contribution to the
whole system, leading to a larger weight [16].

Landscape pattern metrics are often of different orders of magnitude in terms of values
and may well be correlated, while the changes in the characteristics of the overall landscape
may also be correlated. To comprehensively describe the overall landscape patterns and
changes, different integrated landscape metrics have been proposed. Liu et al. [6] proposed
a landscape expansion index (LEI) for quantifying urban expansion and capturing the
information about the formation processes of a landscape pattern using multi-temporal
remotely sensed data. Zhang et al. [17] constructed the integrated landscape index (ILI) for
analyzing the overall landscape pattern of different shores in coastline mangrove forests
in China. Zou et al. [18] introduced a landscape fragmentation index (LFI) to assess
and analyze the spatiotemporal heterogeneity of China’s landscape fragmentation from
1980 to 2020.

However, the selection of landscape metrics is often subjective, and existing composite
landscape metrics rarely consider the effects of spatial correlation. In this study, we propose
an integrated spatial landscape index (ISLI) based on variogram range parameters and
entropy weighting and use it to analyze the landscape patterns of Changbai Mountain
Reserve, China, the study area chosen, more comprehensively. Experiments using six
global land cover products were carried out to analyze landscape pattern changes using
the proposed integrated metric as opposed to several conventional indices incorporated for
constructing ISLI.

The analyses were focused on: (i) highlighting the added values of ISLI, which can
identify the important landscape type, describe landscape pattern dynamics more com-
prehensively than conventional landscape metrics and transition matrices, and retain the
descriptive functionality of conventional landscape metrics integrated by ISLI; (ii) con-
firming the validity of information entropy-based weighting for constructing ISLI through
variogram modeling and correlation analysis (which is between conventional landscape
pattern metrics selected in constructing ISLI and their variogram range parameters); and
(iii) explaining the distinctions and linkages of ISLI to the conventional landscape metrics
selected for constructing ISLI.

The paper is organized as follows. In Section 2, the study area and methods for
constructing ISLI are described. Experiments with six global land cover maps are presented
in Section 3 where the experimental results and discussion are presented along with
experimental procedures. This is followed by some concluding remarks.

2. Materials and Methods
2.1. The Study Area and Datasets

The Changbai Mountain National Nature Reserve is located in the southeast of Jilin
Province (at 41◦35′N–42◦25′N, 127◦40′E–128◦16′E), and it is the most representative tem-
perate forest in the northern part of the northern hemisphere. It is the world’s largest
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temperate virgin forest reserve in the same latitude and also one of the most completely
preserved forest ecosystems in the world [19]. Its climate is characterized by cold weather
during the long winter and short, cool summers. Its annual mean temperatures range from
–7 ◦C to 3 ◦C [20]. Its elevations are between 624 and 2694 m above sea level with slope
gradients ranging from 0 to 70 degrees. It is known as the “China Water Tower” and is
home to a renowned ecological museum that is rich in natural resources. In addition, it is
crucial for controlling northeast China’s climate change. As forest land is the main body of
this terrestrial ecosystem, the security of its forest ecosystem is an important mission in the
construction of the “China-Mongolia-Russia Economic Corridor” of the “Belt and Road”
initiative. Figure 1 is an overview of the study area, in which Figure 1a is the geographic
location map of the Changbai Mountain National Nature Reserve, and Figure 1b,c are the
DEM map and slope map of this area, respectively.
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Figure 1. Overview of the Study Area: (a) geographic location of the study area, (b) DEM, and
(c) slope map.

Concerning the study area, there is currently a lack of research regarding its long-
term landscape pattern analyses. Given that it is an area rich in natural resources, is
environmentally and socially significant, and more importantly, is representative in terms
of forest landscape pattern dynamics, it was chosen as the study area, where it is appropriate
to test the validity of the proposed integrated landscape metrics.

The classification map used in this study is the Global Land Cover with a fine clas-
sification system at 30 m, which is provided by the Data Sharing and Service Portal [21],
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Chinese Academy of Sciences. The producer accuracy and user accuracy of its forest
products are superior to other similar 30 m global forest products [22,23]. As the products
cover a longer period, it is convenient for time series analysis. When compared with the
dominant land cover types in the study area, some land cover types are underrepresented
and therefore merged. This led to six major land cover types, including cropland, broadleaf
forest, needleleaf forest, mixed leaf forest, impervious surface, and water body, as shown in
Figure 2.
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2.2. An Integrated Spatial Landscape Index (ISLI)

The proposed ISLI seeks to describe spatiotemporal changes in landscape patterns by
integrating certain selected conventional landscape metrics based on information entropy
and variogram modelling to provide a more comprehensive view of the areas under study.
The weighting strategy is based on information entropy, which is itself based on correlation
analyses between individual landscape metrics and their variogram ranges.

Entropy weighting is based on the concept of Shannon entropy [15]. The greater
the information entropy of a landscape index (the greater the amount of information it
provides), the larger the weight given to the landscape index and vice versa. The method
of entropy weighting for landscape metrics works in three main steps: normalization,
information entropy calculation, and weight calculation.

Normalization is based on the correlation between landscape metrics and their vari-
ogram range parameters. A landscape index is positively or negatively weighted, depend-
ing on the results of correlation analysis. A landscape index positively correlated with the
range is a positive normalization index; otherwise, it is a negative normalization index, as
shown in Equation (1):

positive normalization index : Z′kq =

(
Zkq −min

(
Zq

))(
max

(
Zq

)
−min

(
Zq

))
negative normalization index : Z′kq =

(
max(Zq)− Zkq

)
(max(Zq)−min(Zq))

(1)

where Zkq referes to the kth year and the qth landscape index; Z′kq is the normalized
landscape index; and max

(
Zq

)
and min

(
Zq

)
are the maximum and minimum values of the

qth index, respectively. Since entropy weighting uses logarithmic operation, the normalized
value needs to be added to a small positive number:

Z′′kq = Z′kq + A (2)

where A = 0.01 in this paper.
To compute information entropy of an index say q, we need to calculate its weight in

the kth year, i.e.,

pkq = Z′′kq/∑n
k=1 Z′′kq(k = 1, 2, · · · , l; q = 1, 2, · · · , m) (3)

where l is the number of years for analysis and m is the number of landscape index. Then,
the information entropy of index q, Hq, is calculated as:

Hq = −b∑l
k=1 pkqln

(
pkq

)
(4)

where b is an adjustment coefficient, calculated as b = 1/ln(l).
The weight of landscape index q is:

wq =
1− Hq

m−∑m
q=1 Hq

(5)

ISLI is then computed as:
ISLI = wq × Z′′kq (6)

As mentioned above, variogram range parameters are required for judging the pos-
itive and negative effects of the landscape metrics incorporated for constructing ISLI. A
variogram is defined as the variance of the difference between values of a regionalized vari-
able at two locations and characterizes the spatial continuity of a dataset. The parameters
of a theoretical model include sill, nugget, and range. Range indicates the distance beyond
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which observations are uncorrelated and represents the lag distance when the variogram
reaches its maximum value [24]. The range parameter thus indicates the range of spatial
correlation of the underlying variable [25]. If the value of the range is big, it means that the
land cover type has a bigger range of spatial correlation and similar spatial features over a
larger distance and vice versa [26–28].

A flowchart is presented in Figure 3. To provide a quick review of the study area,
land use transition matrices of different land cover types in the Changbai Mountains from
1995 to 2020 were first built. Second, landscape metrics of various land cover products in
each period were calculated, with the appropriate landscape metrics determined for the
study area based on their statistical correlation results. Third, through variogram modeling
of different land cover types, the spatial structure of land cover types in the Changbai
Mountain area was further studied. Moreover, Pearson’s correlation analyses between the
range parameters and landscape metrics were analyzed, while ISLI was constructed based
on entropy weighting. Finally, conclusions were drawn about the dynamic changes of the
landscape pattern in the Changbai Mountain National Nature Reserve.
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3. Results and Discussion
3.1. Land Cover Change

Figure 4 shows the major land cover changes in the Changbai Mountain Reserve from
1995 to 2020. We exclude minor land cover change types (less than 10,000 pixels) to show
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major changes. The gray areas are the unchanged areas, the yellow areas with the most
prominent change are the conversion areas from broadleaf forest to needleleaf forest, and
the black areas with less prominent change are the conversion areas from needleleaf forest
to broadleaf forest. Therefore, broadleaf and needleleaf forest represent the dominant types
of land cover change. The amount of grassland in the study region is so minimal that it
was also classed as cropland, which is why the long, narrow strip bordering North Korea
to the east has increased cropland.
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Land cover transition reflects land use transition and has important ecological and
social implications. Therefore, the land use transition matrix is often used to analyze
the characteristics and change trends of landscape structures at different times [29]. The
heat maps of the transition matrices of the Changbai Mountains from 1995 to 2020 are
shown in Figure 5. For more information, see Table A1 in Appendix A. From 1995 to 2000,
the newly added needleleaf forest mainly resulted from the conversion of 399.09 km2 of
broadleaf forest, and the special treatment for mixed leaf forest led to its high conversion
rate. From 2000 to 2010, the conversion ratio of cropland was as high as 35.7%, and it mainly
became broadleaf forest. Needleleaf forest gains mainly resulted from the conversion of
broadleaf forest. From 2010 to 2020, the newly added area of cropland was mainly due to
the conversion of 17.65 km2 and 16.31 km2 of broadleaf forest. Although a small amount of
cropland was also converted into broadleaf forest, and more broadleaf forest was converted
into needleleaf forest, resulting in a significant decrease in its total area. Only from 2015
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to 2020 were there minor percentage changes in the impervious surface, while there was
no conversion from 1995 to 2015. Combining the results in Figures 4 and 5, it can be seen
that the large increase in cropland and needleleaf forest is mainly due to the conversion
of broadleaf forest, while cropland is also converted into broadleaf forest and impervious
surface in a small amount. Therefore, the transition from broadleaf forest to cropland and
needleleaf forest is the main transition type in this period, and the shrinking of broadleaf
forest and the expansion of needleleaf forest are the main transition trends in this period.
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For further verification, the CA-Markov model, which has the characteristics of high
simulation accuracy and the visualization of the spatial distribution pattern [30,31], was
chosen to predict the land cover types in 2025. This method is based on the MARKOV and
CA-MARKOV modules in the software IDRISI, which is a raster-based spatial analysis
software developed by Clark Labs at Clark University. The 2010 and 2015 LC maps were
used to predict the 2020 LC maps. The Kappa statistics between the reference and predicted
2020 LC maps was 0.885, indicating that the CA-Markov model can be used to simulate land
cover change in the study area with high accuracy. The probability and transition matrix
between the 2015 and 2020 maps were then used as inputs into the CA-Markov model
to simulate land cover in 2025. The prediction result is shown in Figure A1, Appendix B.
Nevertheless, the side effects of using simulated maps in landscape pattern analysis should
be noted when interpreting the results.

3.2. Landscape Metrics of Different Land Cover Types

Landscape metrics reflect landscape structures and quantitatively describe spatial
characteristics. Remote sensing images, which serve as the information carrier for the
landscape pattern, can express information about the landscape pattern efficiently and
quantitatively [32]. The specific landscape metrics employed for this study are shown in
Appendix C (see Table A2). Based on the characteristics of the study area, this paper focuses
on analyzing the spatial pattern of the landscape in terms of quantity, shape characteristics,
and aggregation [33].
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FRAGSTATS 4.2 is currently the most frequently used landscape index calculation
software, which can be used to quantify landscape structure. Due to the existence of a large
number of redundant landscape metrics that are not relevant to the study, landscape metrics
are selected according to the following three principles [17,34]: (a) whether the landscape
index has clear ecological significance; (b) whether the landscape index can reflect the
landscape pattern characteristics within the study area; and (c) to ensure low redundancy
among those selected. According to the above principles, we used Pearson’s correlation
analysis to evaluate the relationship between the landscape metrics in Appendix D (see
Tables A3–A5). In statistics, the covariance of two sets of data is generally divided by
the standard deviation of the corresponding data series to obtain Pearson’s correlation
coefficient [35,36]. If the absolute value of the correlation coefficient is greater than 0.75,
then there is a significant correlation (at the significance level of 0.01) between the landscape
metrics [37].

Seven landscape metrics were determined, including PLAND, LSI, SHAPE_MN,
FRAC_AM, DIVISION, IJI, and COHESION. The values of the landscape metrics are shown
in Figure 6. PLAND quantifies the proportional abundance of each patch type in the
landscape. The PLAND values of broadleaf forest and needleleaf forest mean that the two
land cover types dominated the landscape. LSI provides a standardized measurement of
the total edge or edge density that adjusts for the size of the landscape and reflects the
complexity of the overall landscape. The LSI values show that the landscape shapes of
impervious surfaces and water bodies are relatively regular, while broadleaf forest and
needleleaf forest are more complex. SHAPE_MN offers a fundamentally patch-centric
perspective of the landscape structure, which can reflect the human disturbance and
complexity of the landscape. The SHAPE_MN values of cropland are the largest, and
this means that cropland is most affected by human beings and has the highest shape
complexity compared with other land cover types. FRAC reflects shape complexity across a
range of spatial scales (patch sizes), and FRAC_AM weights FRAC by patch area, revealing
the fractal rules of the landscape. The values of FRAC_AM are the largest for broadleaf
forest and needleleaf forest, indicating that the two have the most complex geometric
shapes and the least human interference. Division is interpreted as the probability that
two randomly chosen pixels in the landscape are not situated in the same patch of the
corresponding patch type and characterizes the fragmentation of the landscape distribution.
It can be seen from DIVISION values that the separation degree of broadleaf forest is
increasing and that of needleleaf forest is decreasing. Compared with the other four land
cover types, the spatial distribution of broadleaf forest and needleleaf forest are more
concentrated. IJI emphasizes the degree of adjacency to other adjacent patch types. IJI
emphasizes the degree of adjacency to other adjacent patch types. The IJI values of cropland
and water body are the largest, indicating that they are more adjacent to other land cover
types of patches, while needleleaf forest and broadleaf forest are less adjacent to other
types. COHESION is used to quantify the natural connectivity of landscape patches, thus
reflecting the level of heterogeneity in the landscape. The COHESION values of broadleaf
forest and needleleaf forest are the largest, which further indicates that the two land cover
types are dominant land cover types with the largest natural connectivity and the most
concentrated distribution.
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3.3. Variogram Structure Analysis

The common theoretical variogram fits the function model: spherical model, expo-
nential model, Gaussian function model, and logarithmic function model. Regionalized
variables of a variogram are selected from existing theoretical models. According to the
weighted fitting strategy in the sense of least squares and the number of point pairs as
weight coefficients, this paper determines that the fitting model used is a nested structure,
that is, a free combination structure of a nugget model with an exponential model, spherical
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model, or a Gaussian model. The geostatistical modeling of mixed leaf forest could not
be performed because the area between 1995 and 2005 was too small (see Table A1 in
Appendix A for details). Broadleaf forest and needleleaf forest are the dominant landscapes
in the study area, and because there are too many variogram parameters (five land cover
types with six periods, and each land cover type has three variogram parameters, for a
total of ninety parameters), and therefore, Table 1 simply includes a list of the variogram
parameters of the two dominant land cover types, and the nested structure of the nugget
model and exponential model are used to fit the data. The variograms of five typical land
cover types in the Changbai Mountain Reserve in 2020 are shown in Appendix E (see
Figure A2). As the lag distance h of the abscissa increases, the variation degrees of typical
land cover types increase significantly. When the abscissa reaches the parameter range, the
ordinate of the variogram tends to be in a stable state, indicating that the overall fitting
effect is adequate.

Table 1. Fitting Parameters of Variograms for Broadleaf Forest and Needleleaf Forest.

Year Land Cover Type Nugget Model Exponential Model

Nugget Sill Range

1995
Broadleaf 0.32 0.28 3576.6

Needleleaf 0.29 0.31 3847.8

2000
Broadleaf 0.30 0.34 3636.0

Needleleaf 0.30 0.33 4002.6

2005
Broadleaf 0.30 0.35 3933.0

Needleleaf 0.26 0.36 3819.6

2010
Broadleaf 0.31 0.34 4049.7

Needleleaf 0.30 0.33 4073.7

2015
Broadleaf 0.28 0.32 4194.6

Needleleaf 0.29 0.31 5243.4

2020
Broadleaf 0.38 0.32 4073.7

Needleleaf 0.39 0.29 3556.5

Figure 7 shows range parameters for different land cover types from 1995 to 2020.
The ranges of broadleaf forest and needleleaf forest are much higher than those of the
other three land cover types, reflecting that the two land cover types have bigger spatial
structure sizes and similar features. The main reason is that both are dominant landscapes
in the study area, spread throughout the study area, and their spatial aggregation is the
largest, so the range values are more reliable. Moreover, the water body area type is almost
homogeneous under normal circumstances and should be relatively smooth. However,
due to its small overall coverage area and dispersion, except in the Changbai Mountain
Tianchi area, the range values are smaller than those of broadleaf forest and needleleaf
forest. Furthermore, the ranges of cropland are the smallest among all land cover types.
This means that this type ranges has the smallest spatial structure size and is the most
complex. Although the total area of cropland is larger than that of impervious surface, as
shown in Table A1 in Appendix A, the spatial structure of cropland is more complex due
to its scattered and fragmented distribution, while the structure of impervious surface is
relatively concentrated.
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3.4. Analysis with the Proposed ISLI

The calculation of ISLI starts with variogram modelling (which is described in
Section 3.3), followed by a correlation analysis between landscape metrics and their cor-
relation ranges. Table 2 shows Pearson’s correlation coefficients. Since there are five land
cover types over a period of six years participating in correlation analysis, the degree of
freedom of the correlation coefficient significance test is 30. When the significance level
α = 0.01, range parameters were significantly positively correlated with PLAND, LSI, and
FRAC_AM but significantly negatively correlated with SHAPE_MN and DIVISION. When
the significance level α = 0.05, range parameters were significantly positively correlated
with COHESION but significantly negatively correlated with IJI. Therefore, there is a sta-
tistically significant correlation (either positive or negative) between range parameters
and the selected landscape metrics, which were further used to construct the proposed
composite index ISLI. It is evident from Table 2 that the area ratio to the landscape, the
landscape complexity, and the degree of aggregation all affect how big and complicated
the spatial correlation range (spatial structure size) in the region is. The range of spatial
correlation is less where the patches are scattered with different neighboring patch types.

Table 2. Pearson’s Correlation Coefficients of Range Parameters and Selected Landscape Metrics.

Index PLAND LSI SHAPE_MN FRAC_AM COHESION DIVISION IJI

Correlation coefficient 0.774 ** 0.595 ** −0.568 ** 0.490 ** 0.461 * −0.543 ** −0.370 *

** The correlation is significant at the 0.01 level (double tail); * The correlation is significant at the 0.05
level (double tail).

The estimated correlation coefficients shown in Table 2 were used to assess the positiv-
ity or negativity of the specified landscape metrics, as described in Equation (1). The entropy
based weighting method described in Section 2.2 was applied to calculate the weights
of landscape pattern metrics selected, allowing for computing ISLI using Equation (6).
Figure 8 shows the results of weights for different land cover types from 1995 to 2025.
Since the degrees of dispersion of DIVISION and PLAND are greater, their weights are
larger. Table 3 shows Pearson’s correlation coefficients between ISLI and the selected
landscape pattern metrics, indicating that DIVISION and PLAND are the most crucial
metrics in comprehending ISLI. The ideal forest landscape model in the study area should
have a large proportion of forest to the total area, a large degree of natural connectivity, a
significant agglomeration of spatial distribution, and high overall landscape complexity,
as indicated by PLAND, LSI, COHESION, and DIVISION, respectively. As a result, the
proposed ISLI seems to be able to retain the descriptions concerning the landscape pattern
by the conventional landscape metrics incorporated in the construction of ISLI due to its
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high (positive or negative) correlation with PLAND, LSI, COHESION, and DIVISION.
Moreover, the positive and negative correlations between the selected landscape metrics
and ISLI are consistent with what can be seen when examining the results in Tables 2 and 3.
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Table 3. Pearson’s Correlation Coefficients of ISLI and Selected Landscape Metrics.

Index PLAND LSI SHAPE_MN FRAC_AM COHESION DIVISION IJI

Correlation coefficient 0.972 ** 0.793 ** −0.030 ** 0.715 ** 0.742 * −0.830 ** −0.698 *

** The correlation is significant at the 0.01 level (double tail). * The correlation is significant at the 0.05
level (double tail).

There is a question regarding whether the weights obtained from the study area can
be generalized to the other zones. The weights are influenced by the landscape metrics
chosen for constructing ISLI, by their range parameters, and by the correlations between
them. If two zones have similar landscape patterns and the same kinds of land cover types,
it is likely that the landscape metrics, their range parameters, the correlation between the
metrics and their ranges, and, thus, their weights, would be similar. In this case, the weights
calculated for an area may be transferrable between similar landscapes. Otherwise, matrices
weights should be calculated anew to further determine the corresponding ISLI values.

Figure 9 shows the results of ISLI for different land cover types. It can be seen that
ISLI values of broadleaf forest and needleleaf forest are greater than those of other land
cover types, indicating that the two have the most concentrated spatial distribution, are
naturally connected, and have the lowest proximity to other patches during the relevant
years. On the other hand, other land cover types have smaller ISLI values, meaning that
their spatial distributions are relatively scattered and complex.
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Although the shrinking of broadleaf forest and the expansion of needleleaf forest are
the main trends of land cover change, and the area of needleleaf forest exceeded that of
broadleaf forest after 2020, the ISLI values of broadleaf forest were still the largest until 2020,
indicating that its landscape characteristics were the most dominant. Moreover, from 1995
to 2025 (as expected), the ISLI values of needleleaf forest were on the rise (ranging from
0.39 to 0.91), indicating that its spatial distribution was more concentrated, the landscape
complexity was greater, the natural connectivity was higher, and its dominance in landscape
pattern characteristics was larger. From 2020 to 2025, the landscape dominance of needleleaf
forest can be seen to gradually increase and the ISLI values of needleleaf forest will reach a
maximum in 2025. Although the ISLI values of broadleaf forest range from 0.94 to 0.52 from
2015 to 2025, showing a downward trend, its values are still much higher than those of
other land cover types, except needleleaf forest. Therefore, the proposed ISLI can identify
the dominant landscape types in specific periods and is more informative than individual
landscape metrics (e.g., PLAND).

Considering the area of mixed leaf forest in Table A1 in Appendix A, it can be seen that
this area is gradually increasing, but in terms of ISLI, the slow increase of this type does
not significantly change the status of its landscape. Furthermore, although the COHESION
values of mixed leaf forest in Figure 6g shows a significant upward trend and COHESION
is a positive normalization index, as shown in Table 2, its weights are too small, resulting
in no substantial change in its ISLI values. Impervious surface is mainly distributed in
three separate economic management areas, including the Chibei (north of the Changbai
Mountains), Chixi (west of the Changbai Mountains), and Chinan (south of the Changbai
Mountains) economic management areas, and it accounts for a very small proportion of
the total Changbai Mountain area and eventually leads to smaller ISLI values. The ISLI
values of water body are the smallest and the average value is 0.1, indicating that its
spatial distribution is the most dispersed and its proximity to other land object types is the
highest. Thus, ISLI provides more comprehensive information about landscape patterns
than COHESION, LSI, DIVISION, and IJI.

To illustrate the temporal changes in landscape pattern of Changbai Mountain Reserve
over 30 years, the corresponding changes in ISLI values every 5 years are shown in Figure 10.
The maximum increase in ISLI is 0.186, which is shown in Figure 10a. The change is the
increase in the ISLI for needleleaf forest. Although the area of needleleaf forest increased
rapidly during this period, it was still not comparable to broadleaf forest in terms of
landscape dominance. From 2000 to 2020, the changes of the ISLI values did not change
significantly. The decrease in ISLI has a maximum value of −0.320, which is shown in
Figure 10f. The reduction is caused by the ISLI values of broadleaf forest, leading to a
shift in the dominant landscape type, from broadleaf forest to needleleaf forest, and the
year 2020 was a very important turning point. This conclusion cannot be drawn using
conventional landscape metrics.

In comparison to conventional landscape metrics selected for use in this research, the
proposed ISLI not only provides additional information about landscape pattern dynamics
but also helps to determine prominent landscape characteristics. For example, although the
original land cover maps for 1995 to 2020 showed a steady decline in the area of broadleaf
forest, the values of ISLI increased and then decreased (the key turning point was the
year 2010) and were still the largest values until 2020, i.e., PLAND was insufficient for
identifying dominant landscape types. In addition, although they comprise a larger overall
area than impervious surface, the ISLI values of cropland are lower than those of impervious
surface, because cropland has a smaller spatial correlation range and more complex spatial
information, as indicated by the range parameters of cropland. Furthermore, the values of
ISLI can distinguish between broadleaf forest, needleleaf forest, and water bodies, and it
is hoped that the synthesis of ISLI and common landscape metrics could be incorporated
in accuracy-predictive mapping and improve prediction results in land cover change.
However, the ISLI values obtained for land cover types with high DIVISION and low
PLAND values will be small and may be insufficient to capture the influences of other
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selected landscape metrics (such as IJI and COHESION) because DIVISION and PLAND
are the most crucial factors to consider (as shown in Table 3) when interpreting the proposed
landscape index.
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In the introductory section, we mentioned the shortcomings of some of the conven-
tional composite metrics in the literature, such as LEI [6], ILI [17], and LFI [18]. They were
built differently and meant to serve different purposes or to be used for different landscapes.
LEI was proposed to identify types of urban expansion and used buffer analysis to specify
distances around the target geographic features. Clearly, it has little in common with the
conventional landscape metrics used in the paper for constructing ISLI. As ILI was con-
structed directly from TA, LSI, PD, and COHESION without applying Pearson’s correlation
analysis, it may be compared with these conventional landscape metrics. However, these
metrics were found to be ineffective for our study, based on the results in Appendix D. For
LFI, nine experts were invited to give guidance on assigning proper weights. This is not
the case for ISLI, for which expert opinions were not sought. Nevertheless, comprehensive
comparisons between ISLI and conventional composite metrics should be undertaken in
future research.

Different ecogeographic zones are typically used to examine the consistency of land-
scape pattern metrics. If the zones have comparable landscape patterns, the conventional
landscape metrics and ISLI for related land cover types should be similar. The approach
suggested for ISLI is applicable even when different landscape metrics are chosen for re-
gions with various dominant landscapes, although the weights assigned are likely different,
resulting in different ISLI values.

Given that the proposed ISLI was only tested in one study area in this research, we will
analyze consistency issues in further research. Additionally, we will further analyze the
changes in landscape index in terms of scale and extent, index consistency in landscapes
and time, the generalizability of weights for constructing ISLI, and the application of
geostatistics for landscape pattern research to analyze the Changbai Mountain National
Nature Reserve ecosystem more comprehensively.

4. Conclusions

This study analyzed the spatiotemporal changes in the Changbai Mountain National
Nature Reserve over a period of 30 years. It was carried out using a variety of conventional
landscape pattern indices and the proposed metric ISLI to characterize landscape pattern
changes more comprehensively. ISLI was computed using an entropy-based weighting
of conventional landscape pattern metrics selected to construct ISLI, while the weighting
was based on variogram modelling and correlation analysis between the conventional
landscape pattern metrics incorporated and their variogram range parameters. Clearly, the
spatial structure information was accounted for when formulating the proper weighting of
the conventional landscape metrics considered for constructing ISLI.

The main findings are as follows:
(1) Correlation analysis and significance test results confirm that the correlation be-

tween landscape pattern metrics and range parameters is significant, indicating the validity
of using spatial structure information for weighting conventional landscape pattern met-
rics in formulating ISLI. In terms of the range parameters of different land cover types,
broadleaf forest and needleleaf forest have much larger range values than those of other
land cover types.

(2) DIVISION and PLAND, two of the conventional landscape metrics incorporated
into the construction of ISLI, had the greatest weights when calculating ISLI for this study.

The proposed ISLI provides more detailed information than conventional landscape
metrics. It comprehensively describes the landscape pattern changes of the dominant
landscape over a 30 year period. It is a valuable composite landscape pattern metric,
extending and complementing conventional landscape pattern metrics.



Remote Sens. 2023, 15, 1760 17 of 22

Author Contributions: Y.Z., the principal author, contributed mostly to the literature survey in
the fields of landscape patterns and remote sensing. Y.Z. was also responsible for research-related
experimentation, results analysis and interpretation, and the writing of the paper. The primary
contribution of J.Z., the corresponding author, includes the literature review, research design, and
paper revision. F.W. reorganized the paper’s structure. W.Y. helped with experimentation. All authors
have read and agreed to the published version of the manuscript.

Funding: Open Access Funding provided by Jilin University. The project was funded by the National
Natural Science Foundation of China (Grants No. 41820104001 and No. 42077242) and the National
Key Research and Development Program of China (Grant No. 2020YFA0714103).

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the first author on reasonable request.

Acknowledgments: The comments and suggestions from anonymous reviewers, as well as those
from an anonymous reviewer for a previous manuscript concerning landscape patterns, were
greatly appreciated.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Transition Matrices

Table A1. Transition Matrices of Changbai Mountain from 1995 to 2020 (Unit: km2).

2000

Land cover type Cropland Broadleaf
forest

Needleleaf
forest

Mixed leaf
forest

Impervious
surface

Water
body

Area
changes

Percentage
changes

1995

Cropland 36.90 11.39 1.24 0.00 0.38 0.33 13.35 26.6%
Broadleaf

forest 12.42 1701.84 399.09 0.10 0.03 0.35 412.00 19.5%

Needleleaf
forest 0.04 65.16 770.72 0.03 0.00 0.03 65.26 7.8%

Mixed leaf
forest 0.00 0.00 0.00 0.00 0.00 0.00 0.01 100%

Impervious surface 0.00 0.00 0.00 0.00 11.79 0.00 0.00 0.0
Water
body 0.04 0.29 0.23 0.00 0.00 4.84 0.56 10.4%

2005

Land cover type Cropland Broadleaf
forest

Needleleaf
forest

Mixed leaf
forest

Impervious
surface

Water
body

Area
changes

Percentage
changes

2000

Cropland 31.79 15.71 0.65 0.00 1.17 0.08 17.61 35.7%
Broadleaf

forest 9.10 1587.68 179.66 1.96 0.03 0.25 191.00 10.7%

Needleleaf
forest 1.03 166.35 997.97 5.85 0.00 0.08 173.32 14.8%

Mixed leaf
forest 0.00 0.03 0.10 0.01 0.00 0.00 0.13 92.9%

Impervious surface 0.00 0.00 0.00 0.00 12.20 0.00 0.00 0.0%
Water
body 0.35 0.29 0.17 0.00 0.01 4.75 0.81 14.6%

2010

Land cover type Cropland Broadleaf
forest

Needleleaf
forest

Mixed leaf
forest

Impervious
surface

Water
body

Area
changes

Percentage
changes

2005

Cropland 29.20 10.04 0.71 0.00 1.89 0.43 13.07 30.9%
Broadleaf

forest 9.68 1555.34 198.98 5.46 0.31 0.29 214.72 12.1%

Needleleaf
forest 0.39 92.25 1070.42 15.35 0.00 0.15 108.13 9.2%

Mixed leaf
forest 0.00 1.23 5.26 1.33 0.00 0.00 6.49 83.0%

Impervious surface 0.00 0.00 0.00 0.00 13.40 0.00 0.00 0.0%
Water
body 0.06 0.11 0.27 0.00 0.00 4.73 0.44 8.5%
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Table A1. Cont.

2015

Land cover type Cropland Broadleaf
forest

Needleleaf
forest

Mixed leaf
forest

Impervious
surface

Water
body

Area
changes

Percentage
changes

2010

Cropland 29.57 6.83 0.48 0.00 2.30 0.14 9.76 24.8%
Broadleaf

forest 17.65 1447.24 190.78 2.38 0.62 0.30 211.72 12.8%

Needleleaf
forest 1.24 93.34 1171.46 9.32 0.03 0.25 104.18 8.2%

Mixed leaf
forest 0.00 2.20 18.92 1.02 0.00 0.00 21.12 95.4%

Impervious surface 0.00 0.00 0.00 0.00 15.61 0.00 0.00 0.0%
Water
body 0.23 0.15 0.09 0.00 0.01 5.10 0.49 8.8%

2020

Land cover type Cropland Broadleaf
forest

Needleleaf
forest

Mixed leaf
forest

Impervious
surface

Water
body

Area
changes

Percentage
changes

2015

Cropland 36.32 8.42 0.91 0.00 2.66 0.39 12.38 25.4%
Broadleaf

forest 16.31 1217.63 313.19 2.27 0.16 0.21 332.14 21.4%

Needleleaf
forest 5.71 93.63 1259.51 22.74 0.01 0.14 122.23 8.8%

Mixed leaf
forest 0.00 1.42 9.90 1.39 0.00 0.00 11.32 89.1%

Impervious surface 0.03 0.00 0.00 0.00 18.53 0.01 0.04 2.1%
Water
body 0.22 0.28 0.09 0.00 0.01 5.19 0.60 10.4%

Appendix B. Land Cover Prediction in 2025

Figure A1. Land cover prediction of Changbai Mountain Reserve in 2025.



Remote Sens. 2023, 15, 1760 19 of 22

Appendix C. Summary Table of Landscape Index

Table A2. Summary Table of Landscape Index.

Area and Edge metrics Total (class) area (CA); percentage of landscape (PLAND); number of patches (NP);
patch density (PD); largest patch index (LPI); total edge (TE); edge density (ED)

Shape metrics

Landscape shape index (LSI); mean patch shape index (SHAPE_MN);
area-weighted mean patch shape index (SHAPE_AM); mean patch fractal

dimension (FRAC_MN); area-weighted mean patch fractal dimension
(FRAC_AM); mean perimeter-area ratio (PARA_MN); perimeter-area ratio

area-weighted mean (PARA_AM); perimeter-area fractal dimension (PAFRAC)

Aggregation
metrics

Landscape division index (DIVISION); splitting index (SPLIT); effective mesh size
(MESH); interspersion and juxtaposition index (IJI); percentage of like adjacencies

(PLANDJ); aggregation index (AI); patch cohesion index (COHESION)

Appendix D. Pearson Correlation Coefficients of Landscape Metrics

Table A3. Pearson Correlation Coefficients of the Area and Edge Metrics.

Index CA PLAND NP PD LPI TE ED

CA 1 1.00 ** 0.819 * 0.819 * 0.967 ** 0.994 *** 0.994 **
PLAND 1 0.819 * 0.819 * 0.967 ** 0.994 ** 0.994 **

NP 1 1.00 ** 0.864 * 0.869 * 0.869 *
PD 1 0.864 * 0.869 * 0.869 *
LPI 1 0.981 ** 0.981 **
TE 1 1.00 **
ED 1

** The correlation is significant at the 0.01 level (double tail); * The correlation is significant at the 0.05 level
(double tail).

Table A4. Pearson’s Correlation Coefficients of the Shape Metrics.

Index LSI SHAPE_MN SHAPE_AM FRAC_MN FRAC_AM PARA_MN PARA_AM

LSI 1 −0.098 0.771 −0.181 0.59 0.283 0.143
SHAPE_MN 1 0.383 0.985 ** 0.672 −0.94 9 ** −0.864 *
SHAPE_AM 1 0.342 0.891 * −0.351 −0.499
FRAC_MN 1 0.591 −0.978 ** −0.905 **
FRAC_AM 1 −0.551 −0.631
PARA_MN 1 0.956 **
PARA_AM 1

** The correlation is significant at the 0.01 level (double tail); * The correlation is significant at the 0.05 level
(double tail).

Table A5. Pearson’s Correlation Coefficients of the Aggregation Metrics.

Index DIVISION SPLIT MESH IJI PLANDJ AI COHESION

DIVISION 1 0.321 −1.000 ** 0.560 −0.472 −0.461 −0.428
SPLIT 1 −0.321 −0.318 −0.946 ** −0.946 ** −0.989 **
MESH 1 −0.560 0.472 0.461 0.429

IJI 1 0.147 0.158 0.175
PLANDJ 1 1.000 ** 0.954 **

AI 1 0.952 **
COHESION 1

** The correlation is significant at the 0.01 level (double tail); * The correlation is significant at the 0.05 level
(double tail).
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Appendix E. Variogram Diagrams
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Figure A2. Variogram Diagrams of Different Land Cover Types in 2020. 
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