
Citation: Koubaa, A.; Ammar, A.;

Abdelkader, M.; Alhabashi, Y.;

Ghouti, L. AERO: AI-Enabled

Remote Sensing Observation with

Onboard Edge Computing in UAVs.

Remote Sens. 2023, 15, 1873. https://

doi.org/10.3390/rs15071873

Academic Editors: Wenjiang Huang,

Giovanni Laneve, Yingying Dong

and Chenghai Yang

Received: 3 March 2023

Revised: 27 March 2023

Accepted: 29 March 2023

Published: 31 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

AERO: AI-Enabled Remote Sensing Observation with Onboard
Edge Computing in UAVs
Anis Koubaa *,† , Adel Ammar † , Mohamed Abdelkader , Yasser Alhabashi and Lahouari Ghouti

College of Computer & Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia;
aammar@psu.edu.sa (A.A.)
* Correspondence: akoubaa@psu.edu.sa
† These authors contributed equally to this work.

Abstract: Unmanned aerial vehicles (UAVs) equipped with computer vision capabilities have been
widely utilized in several remote sensing applications, such as precision agriculture, environmental
monitoring, and surveillance. However, the commercial usage of these UAVs in such applications is
mostly performed manually, with humans being responsible for data observation or offline processing
after data collection due to the lack of on board AI on edge. Other technical methods rely on the
cloud computation offloading of AI applications, where inference is conducted on video streams,
which can be unscalable and infeasible due to remote cloud servers’ limited connectivity and high
latency. To overcome these issues, this paper presents a new approach to using edge computing
in drones to enable the processing of extensive AI tasks onboard UAVs for remote sensing. We
propose a cloud–edge hybrid system architecture where the edge is responsible for processing AI
tasks and the cloud is responsible for data storage, manipulation, and visualization. We designed
AERO, a UAV brain system with onboard AI capability using GPU-enabled edge devices. AERO is a
novel multi-stage deep learning module that combines object detection (YOLOv4 and YOLOv7) and
tracking (DeepSort) with TensorRT accelerators to capture objects of interest with high accuracy and
transmit data to the cloud in real time without redundancy. AERO processes the detected objects over
multiple consecutive frames to maximize detection accuracy. The experiments show a reduced false
positive rate (0.7%), a low percentage of tracking identity switches (1.6%), and an average inference
speed of 15.5 FPS on a Jetson Xavier AGX edge device.

Keywords: unmanned aerial vehicles; object detection; object tracking; remote sensing; object
localization; edge computing; inspection; YOLOv4; YOLOv7; DeepSORT

1. Introduction

The use of unmanned aerial vehicles (UAVs), also known as drones, in remote sensing
has been increasingly beneficial as they help to speed up the data collection of assets of
interest using aerial images. Drones make the data collection process cost-effective and
flexible as drones can fly at low or high altitudes. It also helps missions to be more efficient
as large regions can be precisely covered in short times thanks to the use of high-resolution
cameras. Data collection also becomes safe as drones replace humans entering dangerous
or difficult-to-access environments. These benefits are driving the remote sensing business
to increasingly rely on drones. As a matter of fact, the market of commercial use of UAVs,
including remote sensing applications, was valued at USD 5.85 billion in 2020 and is
expected to have a compound annual growth rate of 14.2% [1].

1.1. Motivating Scenarios

AI-powered drones with onboard intelligence are becoming a game changer for many
applications, including search and rescue, rapid infrastructure inspection, and remote
sensing, to name a few. Integrating AI solutions directly on the drone’s edge (compute)

Remote Sens. 2023, 15, 1873. https://doi.org/10.3390/rs15071873 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15071873
https://doi.org/10.3390/rs15071873
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-3787-7423
https://orcid.org/0000-0003-0795-132X
https://orcid.org/0000-0002-0518-852X
https://orcid.org/0000-0002-6381-4250
https://doi.org/10.3390/rs15071873
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15071873?type=check_update&version=2

Remote Sens. 2023, 15, 1873 2 of 26

devices can dramatically reduce the decision-making time and operational costs. In this
paper, we will discuss several scenarios in different use cases’ contexts, showing the
limitation of existing solutions of UAVs for vision-based applications and discussing the
advantages of real-time onboard AI.

1.1.1. Remote Sensing

Tree counting is one of the applications in remote sensing, where a drone surveys
farm regions to count the number of trees. In [2], the authors proposed an offline counting
and geo-localization of palm trees based on aerial images using deep learning. However,
the processing was performed offline after collecting palm tree images from a UAV. The
process of data collection and its offline processing takes a long time and needs to be
performed in real time. Leveraging GPU-based edge devices on board the UAV enables
the full automation of palm tree counting in real time. Furthermore, it helps to send each
palm tree information (e.g., image and coordinates) to the cloud and store it in databases in
real time. Naturally, the same concept can be applied to other remote sensing applications,
such as gas leakage localization and mapping [3], flash flood real-time monitoring [4,5],
and urban environment segmentation [6,7].

1.1.2. Search and Rescue

Consider a search-and-rescue mission where a drone is required to explore an extended
region to search for a missing person in the desert or a forest, for example. It has been
reported that more than 100 people get lost and die in the desert annually in Saudi Arabia
alone [8]. The current practice for search-and-rescue using UAVs is to manually explore
a region with human observers to find the target missing people. Using AI on board will
help to automate the process as the UAV can execute specialized person detection models
on board and automatically report their location in real time. It is also possible to use a
swarm of drones to perform search-and-rescue missions in parallel, speeding up the search
process and increasing the probability of finding and saving people [9].

1.1.3. Inspection and Surveillance

Surveillance and inspection using UAVs is one of the fastest businesses in the drone
industry [10]. Drones are typically used to detect objects of interest in surveillance missions,
such as vehicles [11], pedestrians [12], and buildings [13]. Traditional approaches either
inspect real-time video streams by human observers or record scenes’ videos and process
them offline either manually or using AI techniques to extract target objects. The use
of onboard AI processing in the UAVs will help to automate the inspection process and
identify target objects in real time with a high accuracy, as will be demonstrated in this
paper.

The automation of these applications on board UAVs is possible thanks to the evolution
of edge devices and their support of advanced graphics processing units (GPUs), making it
possible to process complex deep learning models in real time.

Before the evolution of edge computing, computation offloading has evolved as the
prominent approach to processing heavy computation in the cloud instead of processing
them on robots or drones. This concept has been known as cloud robotics. While com-
putation offloading offers several advantages by leveraging the capabilities of the cloud
resources to speed up the processing of deep learning models and computation-intensive
applications, it suffers from high communication overhead. It also needs a large bandwidth
and high-quality communication, which cannot always be afforded. In [14], the authors
proposed a system architecture for computation offloading in Internet-connected drones
and compared the performance of cloud computation offloading versus edge computing
for deep learning applications. The study investigated the tradeoff between the commu-
nication cost and computation and found that computation offloading provides higher
throughput despite larger communication delays.

Remote Sens. 2023, 15, 1873 3 of 26

1.2. Main Contributions

In this paper, we aimed to tackle the persisting challenge of deploying onboard
artificial intelligence on the edge in commercial unmanned aerial vehicles (UAVs) that are
primarily utilized for remote sensing applications. This predicament often necessitates
laborious manual data observation or time-consuming offline processing, as cloud-based
approaches are often impractical. There are a few recent works that tested onboard AI
on edge in UAVs for detection and tracking, such as [15–17]. Nevertheless, they did not
investigate the hybrid system architecture that we implemented in this work, and did not
discuss the role of the cloud in their solution. To bridge this gap, we propose using edge
computation on board drones to enable advanced observation and surveillance applications,
involving object detection, multi-object-tracking, and real-time reporting of detected target
objects to the cloud. In brief, the contributions of the paper can be summarized as follows:

• We propose a new approach to using edge computing in drones to enable the process-
ing of extensive AI tasks on board UAVs for remote sensing. To overcome the limited
connectivity and high latency of remote cloud servers, we propose a cloud–edge
hybrid system architecture. In this architecture, the edge is responsible for processing
AI tasks, and the cloud is responsible for data storage, manipulation, and visualiza-
tion. Our proposed architecture can provide a more scalable and efficient solution for
remote sensing applications.

• To implement our proposed architecture, we designed and developed AERO, a UAV
brain system with onboard AI capability using GPU-enabled edge devices. AERO
allows us to capture objects of interest with high accuracy and transmit data to the
cloud in real time without redundancy. AERO processes the detected objects over
multiple consecutive frames to maximize detection accuracy. AERO can be a significant
advancement in the field of remote sensing as it enables UAVs to perform onboard AI
tasks with high accuracy and real-time data transmission, providing a more efficient
and cost-effective solution for remote sensing applications.

The remaining sections of the paper are organized as follows. Section 1.3 provides
a review of the relevant literature and situates the contribution of the paper in compar-
ison to previous work. Section 2 presents the architecture of the AERO system and de-
scribes the AERO AI Module. In Section 3, we detail the experimental study conducted
to evaluate the AERO system’s performance, and we discuss their results in Section 4.
Finally, Section 5 concludes the paper and suggests potential future research directions for
further improvements.

1.3. Related Works

The introduction of UAVs in remote sensing has paved the way for several promising
applications that span a wide range of domains [18]. Impressive progress has been achieved
in academic and industrial arenas. Diversity in available solutions is mainly attributed to the
underlying technologies and modalities used in the data sense/acquisition processes [19].
The latter processes are domain-specific in nature [20,21]. Other techniques, including
data preprocessing, feature extraction, and classification, are specifically designed for the
application, whether civilian or military. UAV applications in remote sensing have been
reviewed in [21,22].

1.3.1. Edge Computing and UAVs

Several recent works addressed the edge computing paradigm, which involves moving
computational processing and storage closer to the end-users, devices, or sensors rather
than relying solely on cloud-based solutions. Specifically, these works focused on leveraging
UAVs to offload computation tasks to edge computing servers, which enables low-latency
computations of specific tasks without noticeable delay.

In [23], Messous et al. proposed an evaluation mechanism of the integration of the
computation offloading to edge computing servers for the efficient deployment of UAVs.

Remote Sens. 2023, 15, 1873 4 of 26

Based on the proposed evaluation, UAV-based models are able to decide whether to
perform local processing, offload to an edge server, or delegate the computational tasks to
the ground station. Informed decisions are based on low-latency computations of specific
tasks without noticeable delay. Qian et al. [24] investigated the performance of a UAV-
mounted mobile edge computing network where the UAV unit offloads and executes
specific tasks that originate from some mobile terminal users. The trajectory planning
problem was formulated as a Markov decision process (MDP) where optimal trajectories
were obtained using a policy based on the double deep Q-network (DDQN) algorithm [25].
Thanks to the DDQN efficiency, higher throughput scores were attained.

A machine-learning-based solution for the planning of UAV trajectories is attributed
to Afifi, and Gadallah [26]. Unlike many existing solutions, Afifi and Gadallah targeted
missions with real-time navigation requirements in dense urban environments, where
existing 5G infrastructures are astutely employed to ensure UAV navigation in complex
environments through continuous interactions between the UAV units and the selected 5G
network. Like [24], the proposed trajectory planning solution relies on deep reinforcement
learning strategies, where the planning accuracy attains 99%.

In [27], Xia et al. proposed a flexible design of a wireless edge network using two UAV
units. In this design, both units are restricted to operate at fixed altitudes with accelerated
motions. Over a defined area, while the first UAV unit is in charge of forwarding downlink
signals to the user terminals (UTs), the second unit is assigned to the collection of the uplink
data. Using statistical information collected from the UT elements and UAVs, lower bounds
on conditional average achievable rates are derived. The proposed scheme is demonstrated
to attain an energy efficiency higher than existing ones.

Bin et al. [28] tackled the problem of the variability of user mobility and MEC environ-
ments, where they suggested a novel scheme for intelligent task offloading in UAV-enabled
MEC systems using a digital twin (DT). At the core of the proposed scheme lies the DDQN
model, which is specifically designed to effectively constrain multi-objective problems. The
model was jointly optimized using closed-form and iterative procedures. The simulation
results clearly indicate the convergence of the DDQN-based model while drastically mini-
mizing the total energy consumption of the MEC system compared to existing optimization
techniques.

A new aerial edge Internet of Things (EdgeIoT) system was contributed by Li et
al. [29]. In this new EdgeIoT system, a UAV unit is operated as a mobile edge server
for processing computational processes related to mission-critical tasks emanating from
ground IoT devices. To capture the underlying feature correlations, a graph-based neural
network architecture (GNN) was used for the supervised training of the A2C structure.
The reported performance analysis highlights the superiority of the mixed GNN-A2C
framework in terms of the convergence speed and missing task rates.

In [30], Qian et al. proposed a Monte Carlo tree search (MCTS)-based path planning
technique assuming that a single UAV is deployed as a mobile service to provide computa-
tion tasks offloading services for a set of mobile users on the ground. The reported results
show that the MCTS-based scheme outperforms state-of-the-art DQN-based planning
algorithms in terms of the average throughput and convergence speed. In some instances,
UAVs assist edge clouds (ECs) for the large-scale sparely distributed user equipment,
which allows for wide coverage and reliable wireless communication. However, UAVs
have limited computation and energy resources, which opens the floor for potential optimal
resource allocation.

In [31], Wang et al. introduced a vehicular fog computing (VFC) system where
unmanned ground vehicles (UGVs) perform the computation tasks offloaded from UAVs
that are deployed in natural disaster areas. In these areas, UAVs are effectively used to
survey disaster areas and even perform emergency missions, given their swift deployment
and flexibility. However, this efficiency is hindered by the limited energy and computational
capabilities of UAVs. These limitations are properly addressed by the VFC-based UAV
system proposed by Wang et al., where UGVs may be assigned to perform the computation

Remote Sens. 2023, 15, 1873 5 of 26

tasks offloaded from UAVs to save energy and computational power. To ensure a smooth
and steady UAV–UGV collaboration and interaction, the computation task offloading
problem was cast into a two-sided matching problem, where an iterative stable matching
algorithm was used. This matching algorithm aims at assigning to each UAV the most
suitable UGV among the available ones for offloading while maximizing the usage of both
UAVs and UGVs and reducing the average delay.

Yang et al. [32] considered a UAV-enabled MEC platform where multiple mobile
ground users move randomly and tasks arrive in a random fashion. To minimize the
average weighted energy consumption of all users under constraints expressed in terms
of data queue stability and average UAV energy consumption, Yang et al. suggested a
multi-stage stochastic optimization scheme where Lyapunov optimization is converted into
simpler per-slot deterministic problems vis-a-vis the number of optimizing variables. Based
on their formulation, Yang et al. solved the resource allocation and the UAV movement
problems using two reduced-complexity methods, either jointly or separately. The two
methods not only satisfy the average UAV energy and queue stability constraints, but they
also reconcile the length of the queue backlog and the user energy consumption bounds.
The reported results show that the proposed joint and two-stage stochastic optimization
schemes outperform existing learning-based solutions. Finally, it should be noted that the
joint optimization scheme attains a better performance than its two-stage counterpart at the
expense of an increased computational complexity. Most of the solutions discussed so far
attempt to optimize the UAVs’ total (or average) energy consumption and computational
power allocation among mobile users using some type of learning-based strategy.

In their proposal, Lyi et al. [33] adopted a different approach to maximize the com-
putation bits of the whole MEC system: the joint optimization of task offloading time
allocation, bandwidth allocation, and the UAV trajectory under specific energy constraints
of ground devices and maximal UAV battery energy. The proposed solution splits the
overall optimization procedure into three stages, where successive convex optimization
schemes are used. Once individual solutions are identified, a block coordinate descent
(BCD) algorithm integrates the solution of the initial optimization problem. Such a for-
mulation aims at obtaining alternating optimal solutions for the optimization variables
considered (bandwidth allocation of ground devices, task offloading time, local computing
time allocation, and UAV trajectory) at each time slot. Extensive simulation experiments
were conducted to demonstrate the performance improvement attained by the proposed
BCD-based solution.

Overall, the proposed solutions discussed in this section suggest that UAV-based
edge computing systems have certain advantages over cloud-based techniques in terms
of optimization, convergence speed, throughput, and energy efficiency. These advantages
make UAV-based edge computing systems a promising solution for various applications,
including precision agriculture, smart cities, and disaster management, where real-time
data processing and optimization are critical.

1.3.2. Summary of Related Works

A summary of the current literature is provided in Table 1. Onboard AI edge com-
puting is becoming increasingly important for UAV systems, especially those utilizing
EMC-based solutions. While EMC-based UAV systems offer benefits such as flexibility, re-
silience, and swift deployment, they also present new challenges that can only be addressed
by advanced AI-based solutions, such as reinforcement and deep learning frameworks.

One reason for why onboard AI edge computing is necessary for EMC-based UAV sys-
tems is the need for real-time decision making. In certain applications, such as emergency
response, decisions need to be made quickly and accurately. Onboard AI edge computing
can process data in real time, allowing the UAV to make decisions based on the information
that it collects, without the need for remote servers. This reduces latency and ensures that
decisions are made in a timely manner.

Remote Sens. 2023, 15, 1873 6 of 26

Another reason is the need for autonomy. UAVs equipped with onboard AI edge com-
puting can perform tasks autonomously, without human intervention. This is important
in applications where it may be dangerous or impractical for humans to be present, such
as in disaster response or surveillance missions. The AI algorithms on board the UAV can
analyze the data collected and make decisions based on pre-defined rules, allowing the
UAV to carry out its tasks independently.

Table 1. Comparative analysis of related work.

Reference Scope Advantages Limitations

[18] Overview of current applications of
UAVs in remote sensing (up to 2015) Comprehensive review Limited to remote sensing domain

[19] Discussion of UAV usage in 3D
mapping (up to 2014)

In-depth coverage of
UAV applications Limited to 3D mapping applications

[20] Covers UAV-based platforms for
glaciology investigations (up to 2016)

Detailed discussion of UAV systems
in glaciology

Covers only one domain
application (glaciology)

[21] Review of UAV deployments in
forestry (up to 2017)

In-depth analysis of UAV systems
in forestry Restricted to European systems

[22] Review of UAV applications in
remote sensing (up to 2019) Discusses multi-sensor fusion Imbalanced coverage of UAV

sub-systems

[23] Edge computing usage in UAV
visual communication

Extensive simulation of
proposed framework

Lack of detailed comparison with
existing frameworks

[24] Path planning algorithm using
RL paradigms

Optimal planning and
routing decisions

Does not analyze the stability of the
RL-based policies

[26] Autonomous trajectory planning for
UAV missions Use of 5G wireless infrastructure Lack of comparison with existing

SOTA solutions

[27] Multi-agent Q-learning algorithm for
energy optimization

Higher energy consumption
efficiency in UAV systems

Does not discuss the tradeoffs
required to achieve energy efficiency

[28] A new solution for MTU association
and UAV trajectory.

Efficient RL-based solution using
DDQN algorithm

Missing analysis of the
DDQN limitations

[29] Joint optimization of UAV cruise
control and task offloading allocation

Efficient advantage actor–critic
(A2C) solution

No comparison with SOTA policy
gradient algorithms

[30] Path planning using Monte Carlo
tree search (MCTS) algorithm

Constraint-based maximization of
average throughput

Benchmarking with relatively basic
RL-based solutions

[31]
Battery and computation resource
optimization using fog
computing solutions

Improved UAV usage and reduced
average delay

Missing comparison with
SOTA solutions

[32] UAV energy efficiency using
multi-stage stochastic optimization

Optimal resource allocation during
UAV movement Higher computational complexity

[33]

Constraint-based joint optimization
of bandwidth allocation, task
offloading time allocation, and
UAV trajectory

Joint optimization using block
coordinate descent (BCD) algorithm

Lack of in-depth comparison with
SOTA solutions

Furthermore, onboard AI edge computing allows for a more efficient use of resources.
With the computing power on board, data can be processed locally without the need for
constant data transmission to remote servers. This saves time and energy, and allows for a
more efficient use of the UAV’s limited resources, such as its battery life.

Based on the previous review of the existing literature, there is a growing trend in
adopting EMC-based UAV systems, given their flexibility, resilience, and swift deploy-
ment. However, new challenges emerge with the deployment of such systems that can be
handled only by advanced AI-based solutions, including reinforcement and deep learn-

Remote Sens. 2023, 15, 1873 7 of 26

ing frameworks. In fact, the solutions reviewed in the previous section are founded on
well-established algorithms that have shown promising results in other engineering and
science fields, including the optimal policy for emergency situations, data fusion, and
information retrieval [34–36].

UAVs are becoming increasingly prevalent across multiple industries due to their
flexibility and resilience. MEC-enabled UAVs are capable of providing computing and
communication services at the network edges, even for ground-based units in areas with
limited network coverage. This is particularly important in the field of remote sensing,
where data collected from sensors on board the UAV need to be processed and analyzed
in real time to support timely decision making. The ability of MEC-equipped UAVs to
handle computing tasks and communication services at the network edges can significantly
improve the speed and accuracy of remote sensing data collection processes.

Adopting edge computing for the onboard processing on UAVs is a challenging
problem, yet beneficial from several perspectives. Embedding computation-intensive
applications on the UAV edge device requires sufficient energy, storage, and computation
resources to manage the demanding requirements of AI tasks. However, with the evolution
of edge devices’ capabilities, most of these challenges are overcome to a large extent, which
makes edge computing in UAVs possible.

2. Materials and Methods
2.1. The AERO System
2.1.1. Why AI-Enabled Edge Computing for UAVs?

AI-enabled edge computing for UAVs can provide several benefits, including a low
latency, increased efficiency, improved reliability, and enhanced privacy, as described below.

1. Low Latency: with advances in graphics processing units (GPUs) for edge devices
(e.g., NVIDIA’s Jetson boards), edge computing enabled the real-time processing of
AI tasks, such as object detection, recognition, and tracking. This was not possible a
couple of years ago. Consequently, edge computing promotes the real-time processing
of data on board by allowing the drone to make quick local decisions about detected
objects (e.g., the detection of a person to rescue) before sending the information to the
cloud, thus saving useless communication with the server.

2. Increased efficiency: this approach also improves efficiency by decreasing commu-
nication overhead, saving bandwidth usage, and reducing the latency and load of
the cloud servers. In fact, in the case of the cloud computing approach, the drone
has to stream images at a high frequency and offload AI computation to the cloud.
This is greedy in terms of the bandwidth and communication overhead, induces more
communication latencies, and lacks scalability and computation cost, as the cloud
cannot tolerate massive video traffic with real-time data processing. Edge computing
helps to reduce the amount of data to be transmitted over a network and sent to
the server.

3. Improved Reliability: computation on edge also improves the reliability of AI-based
UAV applications. First, the drone data collection process will be less affected by the
possible loss of communication due to the increased autonomy of the drone by locally
processing collected data. In case of total communication loss, the data of detected
objects are still saved locally and transferred to the cloud when the communication
is back or offline in the worst scenario. In addition, edge computing makes the
processing of AI tasks distributed among the UAVs and not centralized in the cloud,
which can be vulnerable to outages or other disruptions. There are two resulting
benefits: (1) it avoids the single point of failure, and (2) it increases the system’s
scalability as computing is fully distributed.

4. Better privacy: the local processing of collected images and detected objects helps
to enhance privacy preserving by reducing the amount of data that are transmitted
and stored in centralized remote servers. Adopting strong encryption on individual
detected object frames is more efficient than encrypting the whole video stream. In

Remote Sens. 2023, 15, 1873 8 of 26

addition, collected object images transmitted to the cloud will remain private and
secure against unauthorized access, as they no longer require being processed as plain
data.

2.1.2. AERO System Architecture

In this section, we present the system architecture of AERO, shown in Figure 1.
The objective of the AERO system is to provide an ecosystem for using an edge-device

on UAVs to execute complex deep learning algorithms to help automate computer vision
applications, including object detection and tracking, on board the UAVs.

USER LAYER
CLOUD LAYER

DRONE LAYER

REQUESTED OBJECT 
DETECTED

2: {REQUEST: FIND CARS}

4:{RESPONSE:{
 Latitude: 25.4214

Longitude: 38.1424
Image:

}

1: {REQUEST: FIND CARS}

5:{RESPONSE:{
 Latitude: 25.42
 Longitude: 38.1424
 Image:
}

3: {CAPTURE + PROCESSING}

IMAGE CAPTURE

OBJECT
DETECTION+
TRACKING

{OBJECT: CAR, LOCATION: } DATA STORAGE, MANIPULATION
VISUALIZATION

+
MONITORING{OBJECT: CAR, LOCATION: }

Camera Edge Device Network Cloud Network User

UAV SWARM LAYER

Figure 1. AERO system architecture.

The AERO system is composed of four layers:

• The Drone Layer: this represents the one UAV subsystem that is equipped with
onboard processing and storage capabilities to perform AI tasks such as image and
video analysis in real time. Edge computing is used to locally process collected raw
data rather than sending them to a remote server as a video stream. In the UAV AERO,
the edge device is a GPU-based embedded system (e.g., NVIDIA Jetson Xavier board)
directly attached to the drone’s camera through a proper channel (USB port, Ethernet
(RTSP), or serial). The drone uses its network interfaces (e.g., 4G/5G cellular networks
or WiFi) to communicate with and transmit detected objects’ images to the cloud.

• The Swarm Layer: this layer consists of a cluster of UAVs equipped with camera
sensors and AI-edge devices that coordinate together to perform a cooperative mission;
for instance, distribute a search for lost people in a large area. In Figure 1, the UAVs
swarm communicates with the cloud, which orchestrates their mission, rather than
adopting ad hoc communication among the drones. The reasons are as follows:

– Increased Reliability: the communication of UAVs with the cloud through cellular
networks provides a more robust and stable connectivity compared to ad hoc
swarms, which may be subject to interference and non-guaranteed message
exchange, particularly in large-scale deployment. In critical applications such as
search and rescue, it is essential to maintain reliable communication to ensure
better coordination between drones through the cloud server.

Remote Sens. 2023, 15, 1873 9 of 26

– Interference: in ad hoc swarm communication, the drones have to contend for
channel access (e.g., CSMA/CA). This will lead to interference and collision,
which requires message retransmissions. This results in poor communication
efficiency and increased delays. Other approaches involve the use of time syn-
chronization (e.g., time division multiple access (TDMA))), but these techniques
are challenging as they need to maintain synchronization among the UAVs. Clock
drift, latency, interference, and the dynamic nature of the UAVs can all impact
the accuracy of the transmissions, leading to disruptions in the synchrony of the
TDMA system.

– Global Knowledge: with all swarm UAVs communicating with the cloud, the
latter maintains up-to-date information about all UAVs, including their positions,
their states, and the list of detected objects. The cloud can make informed deci-
sions in real time and an adjustment of the mission plan or resource allocations.
For example, if a UAV experiences low battery levels, the cloud will be better
positioned to reassign its tasks to other drones based on optimized criteria. The
cloud can also optimize the task allocation among all drones and give its global
knowledge to ensure that mission execution is completed effectively.

Overall, these planes work together to support the operation and management of a
fleet of drones. The data plane handles the collection and processing of data, the user
plane enables human users to interact with the system, and the drone plane manages
the operation of the drones themselves.

• The Cloud Layer: as the UAV edge device performs AI computation-intensive tasks,
the cloud system does not require having sextensive/advanced computing resources
(GPU-based cloud systems are not required), which reduces the deployment cost
considerably, as GPU-based cloud systems tend to be more expensive than CPU-
based cloud systems. The cloud is responsible for data storage, manipulation, and
visualization. The cloud is organized into three planes.

– UAV Plane: the UAV plane is primarily responsible for managing the operation
of a fleet of drones, including overseeing and coordinating the drones’ activities,
managing the data collected by the drones, and performing mission planning to
ensure compliance and safety. The fleet management system (FMS) plays a critical
role in controlling and monitoring drones, scheduling their tasks and missions,
and ensuring their compliance with airspace regulations. These benefits include
improved efficiency, data management, and safety.

– Data Plane: the data plane is responsible for handling the large amounts of data
generated by the drones’ sensors and onboard equipment. During operation, the
drones collect a large amount of data and send them to the cloud for storage and
processing using advanced data analytics frameworks, and visualize dashboards
to end-users for quick analysis and decision making based on the data collected by
the drones. The data plane also ensures the persistence and availability of the data
when needed by the end users through replication, caching, and load balancing.

– User Plane: the user plane in the AERO system is responsible for interacting with
users, including mission planning, monitoring, and control. It allows users to ac-
cess the system through various interfaces and applications, such as a web-based
dashboard, mobile app, or API. Through the user plane, users can create and
manage drone missions, view real-time drone data, and receive alerts and notifi-
cations. Users can monitor the status and performance of the operating drones in
real time, providing important information such as flight paths, battery levels,
and sensor data. This feature is essential in situations such as emergency response
scenarios and surveillance operations. The user plane is a critical component of
the AERO system, enabling efficient and effective drone operations by providing
a user-friendly interface for mission management and real-time monitoring.

• The End-User Layer: the end-user layer in the AERO system enables end-users to
access the system through the Internet using web service APIs. The end-users use

Remote Sens. 2023, 15, 1873 10 of 26

interactive dashboards to monitor the status of their drones in real time, send com-
mands, and receive real-time video streams that have been processed by deep learning
applications located either at the edge or on the cloud. The end-user layer interacts
with the cloud layer through its user plane, which provides access to authorized cloud
resources and allows them to interact, monitor, and control drones for operation. The
end-users can be of different types depending on their role.

– Authority: responsible for authorizing drone operations, managing the drone
fleet, and ensuring compliance with regulations.

– Operator: responsible for managing and operating drone fleets, executing drone
missions, and ensuring safety.

– User: requests drone operations for various purposes, such as aerial photography,
surveying, or inspection.

2.1.3. AI-Enabled UAV

This section describes the UAV platform that we used to test the AERO system in
practice. Figure 2 depicts our custom-built battery-powered hexacopter platform and
highlights its main components. The hexacopter specifications are detailed in Table 2.

Figure 2. Top view of the custom hexacopter.

Table 2. Hexacopter specifications.

Number of motors 6
Motor type T-Motor MN3508 KV380
Propeller size 15′′

Wheelbase 850 mm
Battery 6200 mAh
Maximum takeoff weight 7 kg
Maximum flight time 15 min
Camera ZR10 (30× zoom, 2K resolution)
Edge device NVIDIA Xavier NX

Limited communication range 15 Km (2.4 Ghz)
Extended communication range using 4/5G networks

The selected hexacopter platform was equipped with custom onboard electronics to
enable edge computing as well as continuous cloud connectivity. The hardware architecture
of the custom onboard electronics and communication systems are shown in Figure 3, and
are described as follows.

• Gimbal–camera System: this is a camera–gimbal system which consists of the main
vision sensor that is stabilized by a 3-axis gimbal. This system is called a SIYI ZR10

Remote Sens. 2023, 15, 1873 11 of 26

gimbal–camera system and has a 30× hybrid zoom (10× optical and 3× digital) and
a 2K camera. The gimbal–camera system has its own microprocessor, which has
an RTSP (real time streaming protocol) server that sends real-time image streams to
clients (edge and communication devices) using Ethernet connections. In addition,
the camera orientation is stabilized and controlled by a 3-axis gimbal to control the
visual region of interest during flight.

• NVIDIA Jetson Xavier NX: this is the main computation board (edge device) and has
adequate GPU power to perform real-time object detection and advanced autonomous
surveillance mission planning. It is connected to the camera–gimbal system, via
an Ethernet switch, to receive the real-time image stream and send camera–gimbal
commands to control the camera orientation and zoom level. The Xavier NX runs our
custom software, which performs real-time object detection and localization, which
is described in Section 2.2. It also has a connected 4G module to enable extended
communication with the cloud server to send information about the detected objects
and receive surveillance mission requests.

• 4/5G communication: a 4/5G communication module is connected to the Xavier NX
module to enable communication with the cloud server for an extended range. The
communicated information includes the image frames with metadata (e.g., detected
objects and their coordinates) sent from the edge device to the cloud server, and
mission requests from the cloud server to the edge device.

• Ethernet switch: this hardware module is used to allowfor transmitting the camera
image stream to the onboard computer (Jetson Xavier NX) for image processing, as
well as the air unit transceiver, which communicates with a ground remote controller
for visualization.

• Pixhawk Orange Cube flight controller: this is the autopilot hardware, which runs
the well-known open-source PX4 autopilot firmware [37]. The autopilot stabilizes the
drone’s position and executes planned missions that are sent by the onboard computer.

• Air unit transceiver: this module exchanges image streams and UAV telemetry with a
ground remote controller using a 2.4 GHz link.

• Remote controller: the ground remote controller is used by the UAV backup pilot to
control the drone maneuvers, if needed, and have real-time visual feedback of the
onboard camera stream.

Figure 3. UAV onboard electronics.

Remote Sens. 2023, 15, 1873 12 of 26

2.2. The AERO AI Module

In this section, we present the AERO brain system that leverages YOLOv7 [38] for
object detection, DeepSort [39] for object tracking, and TensorRT (TRT) [40] acceleration to
ensure the real-time execution of the model on edge devices. The novelty of our approach
is the design of a multi-stage deep learning model that allows for making object inferences
over several consecutive frames to optimize the detection performance in two main aspects:

• Accuracy: typical object detection and tracking models perform inference on one static
image from the video frame, which usually leads to high misclassification ratios. We
dramatically improved the accuracy by considering several consecutive frames and
using a voting approach to maximize the object recognition accuracy.

• Real Time: a multi-stage model uses several deep learning models in sequence. The
deployment of a multi-stage model makes real-time inference more challenging, partic-
ularly on embedded edge devices, considering their lower capabilities. We overcame
this issue by using TensorRT acceleration on NVIDIA’s Jetson AXG to maintain a high
frame rate for the AERO multi-stage inference model.

2.2.1. AERO Model Architecture

Figure 4 shows the main steps of the processing performed by the AERO AI module
on edge. The AERO model is composed of three modules, namely the Detection Module,
the Model Acceleration Module, and the Tracking Module, described as follows.

Detection Module

The detection module is based on YOLOv7, which is the latest version of the widely
used YOLO family of single-stage object detectors. It established the state of the art both
in terms of accuracy and speed, outperforming competitor models by a large margin. For
comparison, we also tested YOLOv4 [41], which is still one of the most popular object
detection models.

The DeepSORT tracker is an extension of the simple online and real-time tracking
(SORT) algorithm [42], which is an efficient algorithm used for real-time object tracking.
The key innovation of DeepSORT is the incorporation of a pre-trained deep association
metric that utilizes object appearance information to improve the tracking performance.
The deep association metric in DeepSORT uses a pre-trained deep neural network to
encode the appearance information of objects. By comparing the features extracted from
the neural network, DeepSORT is able to estimate the likelihood of two objects being the
same. This allows DeepSORT to handle challenging scenarios such as occlusion, appearance
changes, and the temporary disappearance of objects. Overall, DeepSORT provides a robust
and accurate solution for tracking multiple objects in real time. Its ability to incorporate
appearance information allows it to handle various challenging scenarios, making it an
ideal solution for applications such as surveillance, robotics, and autonomous vehicles.
For these reasons, and for its popularity in the literature, we opted for this particular
tracker, although any other multi-object tracker could be used in our system. To integrate
DeepSORT with the YOLO object detector and the other components of our system, we
modified the implementation of the track class in a similar way to the one described in [43].

The object detection and tracking system processes each new frame by first applying
YOLOv7 on the entire frame to obtain bounding boxes and confidence scores for all detected
objects. These bounding boxes are then input to DeepSort, the multi-object tracker, which
produces pairs of matched tracks and detections as well as lists of unmatched tracks and
detections. For each track, the system checks whether it should be discarded, further
processed, or sent to the server.

Remote Sens. 2023, 15, 1873 13 of 26

YOLOv7

Object

DeepSORT

Time since
 update

Track age

Track
confirmed?

Already
sent to
server?

Send data to
server

Time since
 update

Track age
Already
sent to
server?

Send data to
server Visualization

New Frame

Next
track

step 0

step 1

step 6.1

- Boxes
- Confidence scores

step 2

step 3

step 4

step 5step 6

step 6.2

step 7.1

step 7.2

step 8.2

step 9.2

step 10.2 step 11.2

Figure 4. The AERO model architecture of the AI module.

First, the system checks if the track has not been matched with a detected bounding
box for more than a predefined number of consecutive frames (default value of 10). If
so, the system assumes that the object is no longer in the camera’s field of view. Next,
the system checks if the track’s age (number of frames in which the same object has been
detected) is within a predefined interval (default value of [2, 40]). A low value indicates
that the track is unreliable, whereas a high value means that the object information has
already been sent to the server. The default values of the minimum number of consecutive
frames and the track’s age interval were fixed empirically after a series of preliminary tests.

In all cases, the system checks if the current track has been confirmed by being observed
in the required minimum number of consecutive frames (default value of 3) and has not
been deleted due to missed detections. If the track is confirmed or has been matched with
detected bounding boxes in the current or previous frames, the system checks its tracking
age. If the age is equal to or greater than the maximum allowed age, the system sends
its information to the server if it has not yet been sent. Finally, the system can optionally
visualize the object’s bounding box and information using the current attributes of the
track instance.

Remote Sens. 2023, 15, 1873 14 of 26

If the track is not confirmed or has not been matched with bounding boxes for at least
two consecutive frames, the system skips it and moves on to the next track. By following
this process, the object detection and tracking system can accurately detect and track objects
in real time while minimizing false detections and conserving computational resources.

Model Acceleration Module

While deep learning models can provide highly accurate results, they require signifi-
cant computational and storage resources to train and run, even for YOLOv7, which is the
fastest object detector to date. This makes deploying deep learning models on edge devices
such as Jetson boards a challenging task as these devices often have limited resources in
terms of memory and processing power.

To address this challenge, we leveraged the use of the TensorRT acceleration frame-
work. TensorRT is a high-performance inference engine developed by NVIDIA that allows
developers to optimize deep learning models for deployment on a range of NVIDIA plat-
forms, including Jetson edge devices. It can optimize models by reducing the precision of
model parameters and minimizing the memory required to store them, allowing the model
to run more efficiently on edge devices with limited resources. TensorRT can also optimize
models by using dynamic tensor memory allocation, which allocates memory dynamically
during inference, reducing the overall memory usage.

The TensorRT optimization framework also optimizes models by fusing layers, which
combines multiple layers in a neural network into a single layer to speed up model inference.
This is particularly important for applications that require real-time processing on edge
devices, where latency is critical, such as real-time surveillance applications. In a previous
study [44], we have shown that TensorRT optimization provides the fastest execution on a
wide variety of cloud and edge devices. This demonstrates the effectiveness of TensorRT in
optimizing deep learning models for edge devices, achieving faster inference times and a
lower latency.

Target Localization Module

In [2], we proposed a methodology for object detection and location estimation based
on established photogrammetry concepts and metadata extracted from drone images,
including EXIF and XMP data. This approach allows for accurately estimating the GPS
location of detected objects within each frame. The use of metadata, such as the drone’s
altitude and GPS location, image size, and calibrated focal length, provides a demonstrably
sound basis for determining the location of objects in the images.

To account for potential errors or uncertainty in the distance estimation, the algorithm
also incorporates a correction factor based on the ratio between the drone’s altitude and
the estimated average height of the objects using the formula:Dc

x =
(

1− h
H

)
Dx

Dc
y =

(
1− h

H

)
Dy

(1)

where:

• Dx and Dy are the coordinates of the object’s bounding box center before correction.
• Dc

x and Dc
y are the object’s coordinates after correction.

• h is the estimated average object height.
• H is the drone altitude.

Additionally, the algorithm considers the yaw degree of the image to refine the location
estimation of each object further. This approach allows for an accurate counting of objects
even when there are overlaps between images, further demonstrating the scientific rigor
of the methodology. This same methodology can be applied to the detected objects in
the AERO system, although we did not include this target localization module in the
experimental part of the current study.

Remote Sens. 2023, 15, 1873 15 of 26

3. Results
3.1. Experimental Setup

For the experimental evaluation, we tested two different object detection models
(YOLOv4 and YOLOv7), two different implementations (PyTorch and TensorRT), three
different video resolutions (1920 × 1080 for 2 videos, 2688 × 1512, and 3840 × 2160, see
Figures 5 and 6), and three different devices (RTX8000, Jetson Xavier AGX, and Jetson
Xavier NX). The videos’ length ranges from 0.5 mn to 5.9 mn. Videos 1 and 3 were used
for the detection of six classes of objects (car, person, bicycle, bus, monocycle, and truck),
whereas videos 2 and 4 were used for the detection of a single class (car). On top of each
bounding box, information is displayed about the detection class, the tracking ID, the
number of frames in which the same object has been observed, and the object color. For
videos 1 and 3, the number of objects of each class is also displayed on the top left corner.
The outputs of videos 2 and 4 are available on this link: shorturl.at/nrzOY (accessed on 30
March 2023). As for videos 1 and 3, the original footage was provided by a third party that
did not agree to disclose them.

Table 3 presents the conducted experiments that are analyzed below. Due to software
environment limitations and compatibility issues, some frameworks did not work on
some devices. We were able to run all configurations on Jetson Xavier NX (Jetson pack
5, TensortRT 8), whereas YOLOv7 did not work on Jetson Xavier AGX (Jetson pack 4.5,
TensorRT 7) and the TRT versions of YOLOv4 and YOLOv7 did not work on the RTX8000
GPU (CUDA version 10.0).

Figure 5. Sample frames from the output of the four videos used for the evaluation of the AI-enabled
system, with different resolutions.

We chose the YOLOv7 object detector because it was the state-of-the-art object detector
in terms of accuracy and speed at the time of this study. As for YOLOv4, we tested it
for comparison, seeing that it is still one of the most popular object detectors (YOLOv5
and YOLOv6 are not as popular in the literature). For our case study, we could not use

shorturl.at/nrzOY

Remote Sens. 2023, 15, 1873 16 of 26

the pre-trained models of YOLOv4 and YOLOv7 because they were mainly trained on
ground-level images (COCO dataset or OpenImages dataset), and we are dealing with
aerial images. Consequently, for training YOLOv7, we used the VisDrone dataset [45],
which we filtered to keep only one class of vehicles (cars), and, for YOLOv4, we trained a
model on a private dataset containing 940 UAV images showing six classes (car, person,
bicycle, bus, monocycle, and truck) with a total of 33,088 instances. These images were
captured in the Jeddah region in Saudi Arabia, in daylight and sunny conditions, and
were manually labeled. Table 4 summarizes the main hyperparameters and results of the
training of the YOLOv4 and YOLOv7 object detectors. Since we built our custom dataset
gradually, we show the results of the training for several sizes of the dataset. We observe
that there is a stagnation in terms of the mAP (mean average precision) when moving from
545 to 821 training images. YOLOv7 shows notably better results in terms of mAP but they
are not directly comparable to YOLOv4’s results since the number of classes is different.

Figure 6. Close view of a sample of the output videos showing various classes, and some false
negative and false positive detections.

Remote Sens. 2023, 15, 1873 17 of 26

Table 3. Conducted experiments on different devices, object detection models, frameworks, and
input video resolutions.

Device

Model Implementation Resolution RTX8000 Jetson
Xavier AGX

Jetson
Xavier NX

YOLOv4 TRT
2688 × 1512 ! !

3840 × 2160 ! !

YOLOv7
TRT 1920 × 1080 !

PyTorch 1920 × 1080 ! !

Table 4. Hyperparameters and results of the training of the YOLOv4 object detector for
several configurations.

YOLO
Version Dataset Nb Classes Training Images Validation Images Input Size Best mAP

v4 Custom 6 311 35 608 × 608 41.9%
v4 Custom 6 545 60 768 × 768 57.0%
v4 Custom 6 821 91 768 × 768 57.0%
v7 VisDrone 1 4935 617 640 × 640 91.3%

3.2. Performance Evaluation

We first analyzed the inference speed for each device and detection model using a
series of box plots (Figures 7–9). Box plots are a useful way to visualize the distribution of
data and compare data across multiple variables, and can provide insights into the central
tendency, variability, and skewness of the data. The grey line inside each box represents
the median value of the data. Half of the data points fall above this line and half fall below.
The box itself represents the interquartile range (IQR), which contains the middle 50% of
the data. The bottom of the box represents the first quartile (Q1), or the value at which 25%
of the data fall below. The top of the box represents the third quartile (Q3), or the value at
which 75% of the data fall below. The whiskers extend from the box to show the range of
the data, excluding any outliers, while the individual blue points represent a 1D scatter
plot of the data.

Figure 7 depicts the box plot of the inference speed in frames per second (FPS) for
each device, detection model, and input video resolution. We observe that the TensorRT
optimization of the YOLOv4 model provides the fastest inference speed, even on higher-
resolution input videos, whereas, for YOLOv7, the TRT optimization provides no gain in
speed. In contrast, the average inference speed deteriorates from 7.2 FPS (for the PyTorch
implementation) to 2.8 FPS (for TRT). This is likely due to the fact that the new features
introduced in YOLOv7 are not yet adequately optimized in the latest versions of TensorRT.

Figure 8 shows the box plot of the inference speed for each device and detection model
in the case where the detected objects are sent to the cloud and in the case where the
connection to the cloud is disabled. In all cases, the connection to the cloud significantly
slows down the inference speed of the whole system. The average speeds drops from
12.3 FPS when no data are sent to the cloud to 5.0 FPS when sending data to the cloud.
This highlights the importance of choosing a high-quality network and optimizing the
edge–cloud communication.

Remote Sens. 2023, 15, 1873 18 of 26

Figure 7. Inference speed per device, detection model, and video resolution.

Figure 8. Inference speed per device, detection model, and connection to the cloud.

Figure 9 shows the box plot of the inference speed for each device and detection model
in the case where the DeepSORT tracker is included or excluded. On all devices, and for
all object detection models, the use of the tracker markedly decelerates the system. The
average inference speed declines from 19.6 FPS (without tracker) to 5.0 FPS (with tracker).
Nevertheless, the use of the tracker is necessary to correctly count the number of objects
and send each object’s information to the server only once. We should, however, investigate
faster multi-object trackers to enhance the overall system speed.

Remote Sens. 2023, 15, 1873 19 of 26

Figure 9. Inference speed per device, detection model, and use of tracker.

To analyze the influence of each component of the AI system and control for variability
due to different devices and video resolutions, we generated a set of scatter plots to
measure the inference speed on the Jetson Xavier NX device with an input video resolution
of 1920 × 1080. Figure 10 illustrates the scatter plot of the inference speed per number
of detected objects in each frame using both PyTorch and TRT versions of the YOLOv7
object detection model. As previously noted (about Figure 7), the PyTorch implementation
achieved higher inference speeds compared to the TRT implementation. Figure 10 appears
as a superimposition of three plots, which we will distinguish in subsequent figures.

Figure 10. Inference speed (in FPS) per number of detected objects, on Jetson Xavier NX, with an
input video resolution of 1920 × 1080, using the PyTorch and TRT version of the YOLOv7 object
detection model.

Remote Sens. 2023, 15, 1873 20 of 26

Figure 11 presents the scatter plot of the inference speed per number of detected
objects, on Jetson Xavier NX, with an input video resolution of 1920 × 1080, using the TRT
version of the YOLOv7 object detection model, when including or excluding the tracker.
As already noted in Figure 9, the use of the tracker significantly slows down the system
performance. The blue dots in Figure 11 represent the measures that included the tracker,
and correspond to the lower part of the plot in Figure 10. The magenta dots, corresponding
to the inclusion of the tracker in the AI system, still appear as the superimposition of two
plots. They will be distinguished in the next figure.

Figure 12 shows a similar scatter plot but with no tracker when including or excluding
the local saving of the output video. It demonstrates that storing the resulting output video
on the edge’s disk consumes a significant amount of time and markedly slows down the
overall inference speed. The system speed decreases from 12.9 FPS to 6.8 FPS on average
over all devices and configurations. For the configuration shown in Figure 12 (Jetson Xavier
NX, YOLOv7 TRT, no tracker, 1920 × 1080 video resolution), the average inference speed
drops from 5.8 FPS to 2.7 FPS when saving the output video. Consequently, this local
storage should not be used unless it is absolutely required for the application.

Figure 11. Inference speed (in FPS) per number of detected objects, on Jetson Xavier NX, with an
input video resolution of 1920 × 1080, using the TRT version of the YOLOv7 object detection model,
when including or excluding the tracker.

Remote Sens. 2023, 15, 1873 21 of 26

Figure 12. Inference speed (in FPS) per number of detected objects, on Jetson Xavier NX, with an
input video resolution of 1920 × 1080, using the TRT version of the YOLOv7 object detection model,
with no tracker, when including or excluding the saving of the video output.

4. Discussion

From Figures 7–12, we conclude that the inference speed of an AI system for object
detection can be affected by various factors, including the device used, the detection model,
the input video resolution, the use of cloud connectivity, and the inclusion of a tracker or
local saving of output videos. The TensorRT optimization of the YOLOv4 model provides
the fastest inference speed even on higher-resolution input videos. However, for YOLOv7,
the TRT optimization did not provide any gain in speed due to an inadequate optimization
of new features in the TensorRT version used. Sending data to the cloud significantly slows
down the inference speed, highlighting the importance of choosing a high-quality network
and optimizing edge–cloud communication. The use of a multi-object tracker is necessary
to correctly count the number of objects and send each object’s information to the server
only once, but it markedly decelerates the system. Finally, avoiding the local saving of
the output video can also help to improve the system’s inference speed. Therefore, the
best configuration for an AI system for object detection depends on the specific application
requirements and hardware constraints.

To assess the accuracy of the object detector, the influence of the TRT optimization,
and the multi-object tracker, we selected two test videos (see Figure 5):

• video 1: showing six classes (car, person, bicycle, bus, monocycle, and truck), with an
average of six objects per frame, an input resolution of 3840 × 2160, a length of 50 s,
and an FPS of 30.

• video 4: showing a single class of cars (with an average of six cars per frame), with an
input resolution of 1920 × 1080, a length of 4 mn and 25 s, and an FPS of 24.

We manually counted the following metrics on still images extracted from the video
every 20 frames (75 frames for video 1 and 319 frames for video 4):

• FP: number of false positives (objects incorrectly detected) generated by the object
detection model.

• FN: number of false negatives (non-detected objects) generated by the object detection
model.

Remote Sens. 2023, 15, 1873 22 of 26

• Precision: Precision = TP
TP+FP , where TP is the number of true positives (correctly

detected objects).
• Recall: Recall = TP

TP+FN
• F1 score: F1score = 2×Precision×Recall

Precision+Recall
• Identity switches: number of switches between the IDs assigned by the tracker. This

happens when the tracker conflates two objects that are too close.
• Identity changes: number of changes in the IDs assigned by the tracker to the same

object. This happens when the tracker misinterprets a single moving object for
two objects.

Table 5 summarizes the obtained results for these metrics when using the TRT imple-
mentations of the YOLOv4 object detector on video 1. The number of FNs is relatively
low compared to the number of FPs due to the fact that most vehicles have a relatively
large size (compared to video 4). The number of identity switches and changes is also
reduced compared to video 4 because the distance between objects is markedly larger,
which makes the tracker’s task easier. Figure 13 shows two close frames from the output of
video 1 where several detection and tracking errors appear. We notice one false positive
in frame 240 (‘person’), and two other false positives in frame 260 (‘person’ and ‘truck’),
as well as a misclassification (truck classified as ‘person’). Between the two frames, there
are three identity changes (4→34, 5→4, and 30→19). Identity switches often happen when
two objects move close to each other, while identity changes may happen when the object’s
speed is relatively high.

Figure 13. Sample frames from the output of video 1, showing frames number 240 and 260.

Remote Sens. 2023, 15, 1873 23 of 26

On the other hand, Table 6 summarizes the obtained results when using the PyTorch or
the TRT implementations of the YOLOv7 object detector on video 4. The difference between
the two implementations is relatively minor, except for identity switches, which double
from 5 to 10 when converting the PyTorch model to TRT. This indicates a loss in precision in
the converted detection model that impacts the tracker accuracy. Nevertheless, this figure
remains relatively low (1.6% to 3.1% relative to the number of frames) considering the
number of cars and the duration of the video. By contrast, the number of identity changes is
much higher, both for the PyTorch and the TRT implementations. The tradeoff between the
number of identity switches and identity changes can be modified by changing the tracker
hyperparameters, but we consider the identity switches to be more critical because they
entail the conflation of the information of different objects, whereas the identity changes
only result in duplicate information sent to the server. On the other hand, we observe that
the number of false negatives is much higher than the number of false positives. In fact,
small or occluded objects are often missed by the object detector, as can be seen in Figure 5.
Consequently, the precision is high (99.3% for both PyTorch and TRT implementations),
whereas the recall is much lower (72.5% and 73.1% for PyTorch and TRT, respectively). This
tradeoff can also be modified by changing the score threshold for the object detector.

Table 5. Number of false positive detections (FPs), false negative detections (FNs), precision, recall,
F1 score, identity switches, and identity changes for the TRT implementation of the YOLOv4 object
detection model on test video 1 (resolution of 3840 × 2160, length of 50 s, FPS of 30) captured by a
drone, showing 6 classes (car, person, bicycle, bus, monocycle, and truck).

FP FN Precision Recall F1 Score Identity
Switches

Identity
Changes

YOLOv4 TRT 80 33 82.7% 92.1% 87.1% 16 26

Table 6. Number of false positive detections (FPs), false negative detections (FNs), precision, recall,
F1 score, identity switches, and identity changes for the PyTorch and TRT implementation of the
YOLOv7 object detection model on test video 4 (resolution of 1920 × 1080, length of 4 mn and 25 s,
FPS of 24) captured by a drone, showing a single class of ’cars’.

FP FN Precision Recall F1 Score Identity
Switches

Identity
Changes

YOLOv7 PyTorch 20 1136 99.3% 72.5% 83.8% 5 184
YOLOv7 TRT 22 1099 99.3% 73.1% 84.2% 10 176

5. Conclusions

The commercial usage of UAVs is still largely limited by the lack of onboard AI on
the edge, leading to manual data observation and offline processing after data collection.
Alternatively, some approaches rely on the cloud computation offloading of AI applications,
which can be unscalable and infeasible due to a limited connectivity and high latency of
remote cloud servers. To address these issues, in this paper, we proposed a new approach
that uses edge computing in drones to enable extensive AI task processing on board UAVs
for remote sensing applications. The proposed system architecture involves a cloud–edge
hybrid approach where the edge is responsible for processing AI tasks and the cloud is
responsible for data storage, manipulation, and visualization.

To implement this architecture, coined AERO, we designed a UAV brain system with
onboard AI capabilities that uses GPU-enabled edge devices. AERO is a novel multi-stage
deep learning module that combines object detection (YOLOv4 and YOLOv7) and tracking
(DeepSort) with TensorRT accelerators to capture objects of interest with a high accuracy
and transmit data to the cloud in real time without redundancy. AERO processes the
detected objects over multiple consecutive frames to maximize detection accuracy. The

Remote Sens. 2023, 15, 1873 24 of 26

experiments show that the proposed approach is effective for utilizing UAVs equipped
with onboard AI capabilities for remote sensing applications.

While the proposed system architecture and AERO module were designed to process
visual data from UAVs, future work could explore the integration of other sensors, such
as LiDAR or thermal cameras, to enhance the accuracy and efficiency of remote sensing
applications. In addition, we plan to explore the integration of autonomous navigation
capabilities to enable UAVs to navigate and collect data independently, without the need
for manual control or intervention.

Another crucial aspect that needs to be considered in future works when designing
drone systems with onboard AI capabilities is security, as highlighted in [46–48] . Drone
communications are susceptible to cyber-attacks, making it crucial to protect the data being
transmitted between the UAV and the cloud. Implementing security measures such as
encryption and authentication protocols can protect the system from unauthorized access
and data breaches. Additionally, implementing physical security measures such as tamper-
proofing the onboard AI hardware can prevent malicious actors from tampering with
the system. These security measures must be implemented at every stage of the system
development and deployment to ensure the safety and privacy of data collected by UAVs.
Nevertheless, these measures can affect the system’s inference speed in a way that still has
to be investigated.

Author Contributions: Conceptualization, A.K. and A.A.; methodology, A.K., A.A. and M.A.; soft-
ware, Y.A. and A.A.; validation, A.K., A.A. and M.A.; formal analysis, A.K., A.A. and M.A.; investi-
gation, A.K., A.A. and M.A.; resources, A.K.; data curation, A.A. and Y.A.; writing—original draft
preparation, A.K., A.A., M.A. and L.G.; writing—review and editing, A.K., A.A., M.A. and L.G.;
visualization, A.A. and M.A.; supervision, A.K., A.A. and M.A.; project administration, A.K.; funding
acquisition, A.K. All authors have read and agreed to the published version of the manuscript.

Funding: The APC for this article was funded by Prince Sultan University.

Acknowledgments: We thank Prince Sultan University for facilitating the experiments on the univer-
sity campus and financially supporting publication expenses.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results

References
1. Zanelli, E.; Bödecke, H. Global Drone Market Report 2022–2030; Technical report; Drone Industry Insights: Hamburg,

Germany, 2022.
2. Ammar, A.; Koubaa, A.; Benjdira, B. Deep-Learning-Based Automated Palm Tree Counting and Geolocation in Large Farms from

Aerial Geotagged Images. Agronomy 2021, 11, 1458. [CrossRef]
3. Gallego, V.; Rossi, M.; Brunelli, D. Unmanned aerial gas leakage localization and mapping using microdrones. In Proceedings of

the 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, 13–15 April 2015 ; pp. 1–6. [CrossRef]
4. Abdelkader, M.; Shaqura, M.; Claudel, C.G.; Gueaieb, W. A UAV based system for real time flash flood monitoring in desert

environments using Lagrangian microsensors. In Proceedings of the 2013 International Conference on Unmanned Aircraft
Systems (ICUAS), Atlanta, GA, USA, 28–31 May 2013; pp. 25–34. [CrossRef]

5. Abdelkader, M.; Shaqura, M.; Ghommem, M.; Collier, N.; Calo, V.; Claudel, C. Optimal multi-agent path planning for fast inverse
modeling in UAV-based flood sensing applications. In Proceedings of the 2014 International Conference on Unmanned Aircraft
Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 64–71. [CrossRef]

6. Benjdira, B.; Bazi, Y.; Koubaa, A.; Ouni, K. Unsupervised Domain Adaptation Using Generative Adversarial Networks for
Semantic Segmentation of Aerial Images. Remote Sens. 2019, 11, 1369. [CrossRef]

7. Benjdira, B.; Ammar, A.; Koubaa, A.; Ouni, K. Data-Efficient Domain Adaptation for Semantic Segmentation of Aerial Imagery
Using Generative Adversarial Networks. Appl. Sci. 2020, 10, 1092. [CrossRef]

8. Gulf News, Saudi Arabia: 131 People Went Missing in Desert Last Year. 2021. Available online: https://gulfnews.com/world/
gulf/saudi/saudi-arabia-131-people-went-missing-in-desert-last-year-1.78403752 (accessed on 1 March 2023).

9. Kobaa, A. System and Method for Service Oriented Cloud Based Management of Internet-of-Drones. U.S. Patent US11473913B2,
15 October 2022.

10. Fortune Buisness Insights, Drone Surveillance Market. 2022. Available online: https://www.fortunebusinessinsights.com/
industry-reports/drone-surveillance-market-100511 (accessed on 1 March 2023).

http://doi.org/10.3390/agronomy11081458
http://dx.doi.org/10.1109/SAS.2015.7133629
http://dx.doi.org/10.1109/ICUAS.2013.6564670
http://dx.doi.org/10.1109/ICUAS.2014.6842239
http://dx.doi.org/10.3390/rs11111369
http://dx.doi.org/10.3390/app10031092
https://gulfnews.com/world/gulf/saudi/saudi-arabia-131-people-went-missing-in-desert-last-year-1.78403752
https://gulfnews.com/world/gulf/saudi/saudi-arabia-131-people-went-missing-in-desert-last-year-1.78403752
https://www.fortunebusinessinsights.com/industry-reports/drone-surveillance-market-100511
https://www.fortunebusinessinsights.com/industry-reports/drone-surveillance-market-100511

Remote Sens. 2023, 15, 1873 25 of 26

11. Ammar, A.; Koubaa, A.; Ahmed, M.; Saad, A.; Benjdira, B. Vehicle detection from aerial images using deep learning: A
comparative study. Electronics 2021, 10, 820. [CrossRef]

12. Yeom, S.; Cho, I.J. Detection and tracking of moving pedestrians with a small unmanned aerial vehicle. Appl. Sci. 2019, 9, 3359.
[CrossRef]

13. Ding, J.; Zhang, J.; Zhan, Z.; Tang, X.; Wang, X. A Precision Efficient Method for Collapsed Building Detection in Post-Earthquake
UAV Images Based on the Improved NMS Algorithm and Faster R-CNN. Remote Sens. 2022, 14, 663. [CrossRef]

14. Koubaa, A.; Ammar, A.; Alahdab, M.; Kanhouch, A.; Azar, A.T. DeepBrain: Experimental Evaluation of Cloud-Based Computation
Offloading and Edge Computing in the Internet-of-Drones for Deep Learning Applications. Sensors 2020, 20, 5240. [CrossRef]
[PubMed]

15. Hossain, S.; Lee, D.j. Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot
with GPU-based embedded devices. Sensors 2019, 19, 3371. [CrossRef]

16. Queralta, J.P.; Raitoharju, J.; Gia, T.N.; Passalis, N.; Westerlund, T. Autosos: Towards multi-uav systems supporting maritime
search and rescue with lightweight ai and edge computing. arXiv 2020, arXiv:2005.03409.

17. Vasilopoulos, E.; Vosinakis, G.; Krommyda, M.; Karagiannidis, L.; Ouzounoglou, E.; Amditis, A. A Comparative Study of
Autonomous Object Detection Algorithms in the Maritime Environment Using a UAV Platform. Computation 2022, 10, 42.
[CrossRef]

18. Pajares, G. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Pho-
togramm. Eng. Remote Sens. 2015, 81, 281–330. [CrossRef]

19. Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [CrossRef]
20. Bhardwaj, A.; Sam, L.; Martín-Torres, F.J.; Kumar, R. UAVs as remote sensing platform in glaciology: Present applications and

future prospects. Remote Sens. Environ. 2016, 175, 196–204. [CrossRef]
21. Torresan, C.; Berton, A.; Carotenuto, F.; Di Gennaro, S.F.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L.

Forestry applications of UAVs in Europe: A review. Int. J. Remote Sens. 2017, 38, 2427–2447. [CrossRef]
22. Yao, H.; Qin, R.; Chen, X. Unmanned Aerial Vehicle for Remote Sensing Applications—A Review. Remote Sens. 2019, 11, 1443–1464.

[CrossRef]
23. Messous, M.A.; Hellwagner, H.; Senouci, S.M.; Emini, D.; Schnieders, D. Edge computing for visual navigation and mapping in a

UAV network. In Proceedings of the ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland,
7–11 June 2020; pp. 1–6.

24. Liu, Q.; Shi, L.; Sun, L.; Li, J.; Ding, M.; Shu, F. Path Planning for UAV-Mounted Mobile Edge Computing with Deep Reinforcement
Learning. IEEE Trans. Veh. Technol. 2020, 69, 5723–5728. [CrossRef]

25. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep
Reinforcement Learning. arXiv 2013, arXiv:1312.5602.

26. Afifi, G.; Gadallah, Y. Cellular Network-Supported Machine Learning Techniques for Autonomous UAV Trajectory Planning.
IEEE Access 2022, 10, 131996–132011. [CrossRef]

27. Xia, W.; Zhu, Y.; De Simone, L.; Dagiuklas, T.; Wong, K.K.; Zheng, G. Multiagent Collaborative Learning for UAV Enabled
Wireless Networks. IEEE J. Sel. Areas Commun. 2022, 40, 2630–2642. [CrossRef]

28. Li, B.; Liu, Y.; Tan, L.; Pan, H.; Zhang, Y. Digital twin assisted task offloading for aerial edge computing and networks. IEEE
Trans. Veh. Technol. 2022, 71, 10863–10877. [CrossRef]

29. Li, K.; Ni, W.; Yuan, X.; Noor, A.; Jamalipour, A. Deep Graph-based Reinforcement Learning for Joint Cruise Control and Task
Offloading for Aerial Edge Internet-of-Things (EdgeIoT). IEEE Internet Things J. 2022, 9, 21676–21686. [CrossRef]

30. Qian, Y.; Sheng, K.; Ma, C.; Li, J.; Ding, M.; Hassan, M. Path Planning for the Dynamic UAV-Aided Wireless Systems Using Monte
Carlo Tree Search. IEEE Trans. Veh. Technol. 2022, 71, 6716–6721. [CrossRef]

31. Wang, Y.; Chen, W.; Luan, T.H.; Su, Z.; Xu, Q.; Li, R.; Chen, N. Task Offloading for Post-Disaster Rescue in Unmanned Aerial
Vehicles Networks. IEEE/ACM Trans. Netw. 2022, 30, 1525–1539. [CrossRef]

32. Yang, Z.; Bi, S.; Zhang, Y.J.A. Online Trajectory and Resource Optimization for Stochastic UAV-Enabled MEC Systems. IEEE
Trans. Wirel. Commun. 2022, 21, 5629–5643. [CrossRef]

33. Lyu, L.; Zeng, F.; Xiao, Z.; Zhang, C.; Jiang, H.; Havyarimana, V. Computation Bits Maximization in UAV-Enabled Mobile-Edge
Computing System. IEEE Internet Things J. 2022, 9, 10640–10651. [CrossRef]

34. Hamasha, M.; Rumbe, G. Determining optimal policy for emergency department using Markov decision process. World J. Eng.
2017, 14, 467–472. [CrossRef]

35. El-Shafai, W.; El-Hag, N.A.; Sedik, A.; Elbanby, G.; Abd El-Samie, F.E.; Soliman, N.F.; AlEisa, H.N.; Abdel Samea, M.E. An Efficient
Medical Image Deep Fusion Model Based on Convolutional Neural Networks. Comput. Mater. Contin. 2023, 74, 2905–2925.
[CrossRef]

36. Sabry, E.S.; Elagooz, S.; El-Samie, F.E.A.; El-Shafai, W.; El-Bahnasawy, N.A.; El-Banby, G.; Soliman, N.F.; Sengan, S.; Ramadan,
R.A. Sketch-Based Retrieval Approach Using Artificial Intelligence Algorithms for Deep Vision Feature Extraction. Axioms 2022,
11, 663–698. [CrossRef]

37. Meier, L.; Honegger, D.; Pollefeys, M. PX4: A node-based multithreaded open source robotics framework for deeply embedded
platforms. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA,
26–30 May 2015; pp. 6235–6240. [CrossRef]

http://dx.doi.org/10.3390/electronics10070820
http://dx.doi.org/10.3390/app9163359
http://dx.doi.org/10.3390/rs14030663
http://dx.doi.org/10.3390/s20185240
http://www.ncbi.nlm.nih.gov/pubmed/32937865
http://dx.doi.org/10.3390/s19153371
http://dx.doi.org/10.3390/computation10030042
http://dx.doi.org/10.14358/PERS.81.4.281
http://dx.doi.org/10.1007/s12518-013-0120-x
http://dx.doi.org/10.1016/j.rse.2015.12.029
http://dx.doi.org/10.1080/01431161.2016.1252477
http://dx.doi.org/10.3390/rs11121443
http://dx.doi.org/10.1109/TVT.2020.2982508
http://dx.doi.org/10.1109/ACCESS.2022.3229171
http://dx.doi.org/10.1109/JSAC.2022.3191329
http://dx.doi.org/10.1109/TVT.2022.3182647
http://dx.doi.org/10.1109/JIOT.2022.3182119
http://dx.doi.org/10.1109/TVT.2022.3160746
http://dx.doi.org/10.1109/TNET.2022.3140796
http://dx.doi.org/10.1109/TWC.2022.3142365
http://dx.doi.org/10.1109/JIOT.2021.3123429
http://dx.doi.org/10.1108/WJE-12-2016-0148
http://dx.doi.org/10.32604/cmc.2023.031936
http://dx.doi.org/10.3390/axioms11120663
http://dx.doi.org/10.1109/ICRA.2015.7140074

Remote Sens. 2023, 15, 1873 26 of 26

38. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors. arXiv 2022, arXiv:2207.02696. https://doi.org/10.48550/ARXIV.2207.02696.

39. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017
IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649.

40. Shafi, O.; Rai, C.; Sen, R.; Ananthanarayanan, G. Demystifying TensorRT: Characterizing Neural Network Inference Engine on
Nvidia Edge Devices. In Proceedings of the 2021 IEEE International Symposium on Workload Characterization (IISWC), Storrs,
CT, USA, 7–9 November 2021; pp. 226–237. [CrossRef]

41. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
42. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE

International Conference on Image Processing (ICIP), Phoenix, AN, USA, 25–28 September 2016; pp. 3464–3468.
43. Ammar, A.; Koubaa, A.; Boulila, W.; Benjdira, B.; Alhabashi, Y. A Multi-Stage Deep-Learning-Based Vehicle and License Plate

Recognition System with Real-Time Edge Inference. Sensors 2023, 23, 2120. [CrossRef]
44. Koubaa, A.; Ammar, A.; Kanhouch, A.; AlHabashi, Y. Cloud Versus Edge Deployment Strategies of Real-Time Face Recognition

Inference. IEEE Trans. Netw. Sci. Eng. 2022, 9, 143–160. [CrossRef]
45. Zhu, P.; Wen, L.; Du, D.; Bian, X.; Fan, H.; Hu, Q.; Ling, H. Detection and Tracking Meet Drones Challenge. IEEE Trans. Pattern

Anal. Mach. Intell. 2021, 44, 7380–7399. [CrossRef]
46. Krichen, M.; Adoni, W.Y.H.; Mihoub, A.; Alzahrani, M.Y.; Nahhal, T. Security Challenges for Drone Communications: Possible

Threats, Attacks and Countermeasures. In Proceedings of the 2022 2nd International Conference of Smart Systems and Emerging
Technologies (SMARTTECH), Riyadh, Saudi Arabia, 22–24 May 2022; pp. 184–189.

47. Ko, Y.; Kim, J.; Duguma, D.G.; Astillo, P.V.; You, I.; Pau, G. Drone secure communication protocol for future sensitive applications
in military zone. Sensors 2021, 21, 2057. [CrossRef]

48. Khan, N.A.; Jhanjhi, N.Z.; Brohi, S.N.; Nayyar, A. Emerging use of UAV’s: Secure communication protocol issues and challenges.
In Drones in Smart-Cities; Elsevier: Amsterdam, The Netherlands, 2020; pp. 37–55.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/IISWC53511.2021.00030
http://dx.doi.org/10.3390/s23042120
http://dx.doi.org/10.1109/TNSE.2021.3055835
http://dx.doi.org/10.1109/TPAMI.2021.3119563
http://dx.doi.org/10.3390/s21062057

	Introduction
	Motivating Scenarios
	Remote Sensing
	Search and Rescue
	Inspection and Surveillance

	Main Contributions
	Related Works
	Edge Computing and UAVs
	Summary of Related Works

	Materials and Methods
	The AERO System
	Why AI-Enabled Edge Computing for UAVs?
	AERO System Architecture
	AI-Enabled UAV

	The AERO AI Module
	AERO Model Architecture

	Results
	Experimental Setup
	Performance Evaluation

	Discussion
	Conclusions
	References

