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Abstract: The rapid and efficient acquisition of field-scale farmland soil profile moisture-distribution
information is very important for achieving precise irrigation and the adjustment and deployment of
irrigation strategies in farmland. EM38-MK2 is a portable, non-invasive device that induces electric
currents in soil to generate secondary magnetic fields for the rapid measurement of apparent electrical
conductivity in the field. In this study, cotton fields were used as experimental objects to obtain soil
apparent conductivity data for three periods, which were combined with soil-moisture content data
collected simultaneously from soil samples and measured in the laboratory to construct an apparent
soil-profile moisture regression model. A simple kriging interpolation method was used to map the
distribution of the irrigation volume in the field, considering only the highest irrigation volume in
the field as the maximum water-holding capacity in the field. The results showed that EM38 could
accurately detect the spatial variation of soil moisture in the field. The R2 of the linear fit between
measured and predicted soil-water content ranged from 0.51 to 0.89; the RMSE ranged from 0.66 to
1.87; and the R2 and RPD of each soil-layer water content model of the single-period model were
higher than those of the full-period model. By plotting the distribution of field irrigation, it could be
seen that by comparing the predicted field irrigation with the actual irrigation, at least 160 m3 ha−1 of
irrigation could be saved in all three periods at an irrigation depth of 40 cm, which is about 30% of the
actual irrigation; at an irrigation depth of 60 cm, about 30% and 15% of irrigation could be reduced
in July and August, respectively. There are three areas in the study area with high fixed-irrigation
volumes located in the northwest corner, near 500 m in the northern half of the study area and 750 m
east of the southern half of the study area. The results of this study proved that the use of EM38-MK2
to monitor and evaluate the soil-moisture content of the farmland at different periods can, to a certain
extent, guide the irrigation amount needed to achieve efficient and precise irrigation in the field.

Keywords: soil moisture; apparent soil conductivity; fixed-rate irrigation; field scale

1. Introduction

Soil moisture is an essential and vital component of soil, which functions as a funda-
mental solvent for plant nutrient transport and delivery, a primary option for regulating
soil temperature and reducing salinity. Accurate information on the spatial and temporal
variability of soil moisture throughout the crop growing period is important for efficiently
using the resources (e.g., water and nutrients) [1,2].

In addition, changes in multiple soil properties caused by changes in soil moisture can
further affect the actual crop water requirements in localized areas of the field. Especially
in arid regions with low salinization, untimely surveys of the spatial distribution of soil
moisture can lead to slower crop growth and, more seriously, lower yields [3]. On the
other hand, over-irrigated is more likely to causing the water infiltrate into groundwater
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and consequently pollutes groundwater quality [4,5]. Therefore, real-time and accurate
acquisition of spatial information of soil moisture at field-scale is beneficial for timely
adjustment of crop irrigation strategies and refinement of irrigation schemes in local areas,
which is helpful for promoting crop growth and improving yields.

Usually, field-scale soil-moisture content monitoring methods not only limited by
measurement points, but also take a lot of time, which makes it difficult to investigate the
moisture content of soil at a certain depth effectively. In addition, traditional field-scale soil
moisture monitoring methods (e.g., mass drying method) do provide accurate soil-moisture
content data, but often cause damage to the original soil structure. The measuring device is
radioactive (e.g., neutron source) [6], posing a potential threat to the safety of the device
itself. All these reasons make it extremely difficult to monitor the soil moisture at a certain
depth at a largescale. Therefore, there is an urgent need to adopt an accurate, fast and effi-
cient soil moisture monitoring method that can be applied to larger scales. In recent years,
monitoring various soil properties using electromagnetic induction has been intensively
studied by a wide range of scholars [7,8], such as soil salinity [9–11], soil moisture [12,13],
pH [14–16], soil capacity [17], soil texture [18], clay content [19], calcium carbonate [20],
and soil organic carbon [21–23]. Electromagnetic induction techniques are commonly used
to determine the weighted average of apparent conductivity of soils at a specific depth [24],
and the soil apparent conductivity is a combination of several key properties [25], including
soil-moisture content, soil soluble salt content, clay content, and soil temperature, mak-
ing the use of electromagnetic induction techniques to obtain. Therefore, it is possible to
use electromagnetic induction to obtain moisture content in the soil space [26]. Among
the studies that used electromagnetic induction to obtain soil moisture, Kachanoski et al.
(1988) were one of the first researchers who used electromagnetic induction instruments
to obtain soil moisture [27]. Early results showed that the apparent soil conductivity data
measured by electromagnetic induction could explain 77–96% of the variability in soil
moisture. In addition, linear and second-order polynomial regression models could be
developed on this basis. Calmita et al. used soil apparent conductivity data obtained
by electromagnetic induction to predict the temporal variability of soil-moisture content
with R2 > 0.5 [28]. The results demonstrated that although soil pore water is spatially
variable, solid particle properties and pore water conductivity remain constant in time.
Hanson and Kaita investigated the accuracy of soil-water content obtained from inversion
models based on apparent soil conductivity data at three different levels of salt content [29].
The results showed that the R2 of the horizontal direction dipole inversion model was
0.81, 0.89, and 0.92, and the R2 of the vertical direction dipole model was 0.76, 0.94, and
0.95 for the three salt content levels of low, medium and high, respectively. This study
was performed by calibrating the EM38-MK2 to the soil-moisture content estimations,
which was determined by the neutron method, and each neutron probe tube of 0.3 m was
measured using EM38-MK2 throughout the experiment. But this method would cause
errors in the apparent conductivity values from EM38-MK2. Previous studies such as
Huang and Hossain provided theoretical support for the application of electromagnetic
induction technique for soil moisture monitoring in agricultural fields [30–32]. However,
previous studies still lacked the application in practical irrigation period. In many oasis
farmlands in the arid zone of South Xinjiang, due to the combination of various factors such
as local climate, the soil-moisture content in the surface layer is often very low and spatial
variability is high, but the soil-moisture content in the bottom layer near the water table is
high and spatial variability is low [33]. This phenomenon will not only allow farmers to
misjudge the soil-moisture content at the field scale, but also easily cause over-irrigation.
Therefore, it is especially important to obtain accurate soil-moisture content at the field
scale, especially at a certain depth. Electromagnetic induction technology helped obtain
soil apparent conductivity data non-destructively and over a large area, and showed supe-
riority in inverting soil capacitance, field water-holding capacity and soil-water content
to predict the irrigation volume of farmland, refine field-scale irrigation strategies, and



Remote Sens. 2023, 15, 1975 3 of 15

provide guidance for timely monitoring and management of soil moisture conditions in
local areas.

Take these all into consideration, this study takes typical cotton fields in the arid
zone of South Xinjiang as the research field, and takes advantage of the electromagnetic
induction technology to obtain the information of physical and chemical properties of soil
profiles quickly and efficiently. The main contents of this study include:

(1) Using EM38-MK2 geodesic conductivity meter to collect apparent conductivity data
of a few profile samples, combined with the laboratory measurement simultaneously.
A linear regression model based on multiple linear regression method is used to
construct soil moisture, soil capacity and field water-holding capacity with high
accuracy.

(2) Establishing multi-period model and single-period model to explore the applicability
of the instrument.

(3) Calculating predicted irrigation volume at multi-sites based on the field irrigation
volume calculation method and using the simple kriging interpolation method to map
the spatial distribution of predicted irrigation volume to refine the irrigation strategy
and provide guidance for farmland irrigation.

2. Materials and Methods
2.1. Study Area

The study area is located in the National Agricultural Science and Technology Park
in Alar, Xinjiang, China, as shown in Figure 1, with its central coordinates of 81◦17′8′′E
and 40◦31′8′′N. The study area is approximately 900 m long from north to south and 200 m
long from east to west, the study area is 18 ha, with a shortest linear distance from the
Tarim river to the north of 110 m. The irrigation water source is drawn from the Aksu and
Tarim rivers, the main cotton is Xinluzhong 78, the planting method is mulching [32]. The
irrigation mode is drip irrigation during the cotton reproductive period. The spring and
winter irrigation is diffuse irrigation, and the water table is buried at a depth of 1.2~1.5 m.
The highest temperature in the study area in a year occurred in July (37.8 ◦C) and the lowest
temperature was in July. The maximum and minimum temperatures were 37.8 ◦C and
−8.6 ◦C in July and January (−8.6 ◦C), respectively, and the evapotranspiration ratio was
about 40:1. The average sunshine duration between April and October was about 9.5 h.
The annual temperature was above 10 ◦C and the annual total temperature reached 4113 ◦C.
Cotton was irrigated six times during the reproductive period, with one winter irrigation
and five drip irrigations (22 June, 9 July, 25 July, 13 August and 25 August). Among
them, the first drip irrigation was carried out on 22 June at 450 m3/ha, and the remaining
four times were carried out on 9 July, 25 July, 13 August and 25 August at 600 m3/ha,
respectively, and winter irrigation was executed on November 20 at 3, 300 m3/ha.

2.2. EM38-MK2 Measurement

The EM38-MK2 consists of a transmitting coil (Tx) and two receiving coils (Rx) with
a length of 1 m and a fixed operating frequency (14.6 KHz). By passing AC current through
the transmitting coil and generating a primary magnetic field in the soil that gradually
weakens with increasing soil depth, the magnetic field strength changes dynamically with
time, causing an induced current to form in the soil, and the current induces a secondary
magnetic field. The receiving coil receives both the primary magnetic field strength and
the secondary magnetic field strength, and the signal receiving end can receive both the
primary and secondary magnetic field signals. In automatic mode, the instrument can
collect apparent conductivity data in only one mode, i.e., horizontal mode (horizontal dipole
moment) or vertical mode (vertical dipole moment). In manual mode, the instrument can
collect soil apparent conductivity data for both horizontal and vertical modes. The distance
between the transmitter coil and the two receiver coils is 0.5 m and 1 m, respectively, and
the measurement depths are 0.375 m and 0.75 m in the horizontal mode and 0.75 m and
1.5 m in the vertical mode. The new EM38-MK2 model also adopts new technology to
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automatically perform temperature compensation, correct circuit faults, and eliminate data
drift caused by the temperature variations. the instrument has a built-in GPS.
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2.3. Irrigation and Rainfall Events

Soil samples and apparent conductivity data were collected three times in June, July,
and August. The key reasons for choosing these three periods for the study were, first, that
all three periods were times of high-water demand and high irrigation in oasis cotton fields.
Second, that the actual irrigation time in the study area was mostly concentrated in June,
July, and August during the cotton growth period. In addition, considering that the study
area had not been irrigated once from the end of winter irrigation last year to the beginning
of June, and that the first drip irrigation was carried out on 22 June, the collection time was
20 June. 450 m3/h2 was irrigated by drip irrigation on 22 June. In addition, the rainfall in
the sample area was difficult to influence the actual irrigation amount because the planting
method was mulching, and the water obtained from rainfall was difficult to penetrate into
the soil.

2.4. ECa Data Collection

The experiments were conducted using a geodetic conductivity meter EM38-MK2 for
apparent electrical conductivity (ECa, mS m−1) measurements, which was divided into
10 measurement rows with a spacing of 20 m according to the width of the test area. Data
were collected on 20 June (before the first drip irrigation), 7 July (before the second drip
irrigation), and 15 August (before the third drip irrigation), 2018, and a total of three times
for apparent conductivity data, using EM38-MK2 vertical and horizontal measurement
modes once each, and a total of 10 measurement rows from south to north, with the
instrument set to automatic recording mode and a frequency of one set of data collection
per second The distribution of EM38-MK2 measurement points and soil sampling profile
points is shown in Figure 1.

2.5. Soil Samples Collection

A total of three collections of apparent conductivity and soil-profile samples were
conducted on 20 June, 7 July, and 15 August, 2018, and after the EM38 automatic mode
collection was completed, the range of apparent conductivity in the study area was deter-
mined based on the size of the measured apparent conductivity dataset with the maximum
and minimum values as the upper and lower limits, respectively, and the obtained apparent
conductivity dataset was divided into 36 gradients, and in turn, according to the divided
The manual mode apparent conductivity data and soil-profile samples were collected
simultaneously according to the divided apparent conductivity gradient; the apparent
conductivity data of the sampling points were recorded, and 36 soil-profile sample points
were collected each time (Figure 1). Soil profiles were sampled in layers from 0 to 20, 20
to 40, 40 to 60, 60 to 80, and 80 to 100 cm, and the collected soil-profile samples were
placed in self-sealing bags and numbered, and brought back to the laboratory for timely
soil moisture determination using the mass drying method. In 2018 a total of three surveys
were conducted in June, July and August, each with 36 profiles, and a total of 180 different
soil-profile samples were collected in a single survey, for a total of 540 soil-profile samples
throughout the year.

To calculate the irrigation volume needed to obtain soil capacity and field water-holding
data, soil profile excavation and ring knife soil samples were collected on 27 October 2018,
after soil auger-sampling was completed. The sample locations were selected by the EM38-
MK2 automatic mode to obtain high and low values of apparent conductivity points to
determine the range of modeling independent variables, and 30 of them were selected
according to the apparent conductivity data close to a certain gradient, and each point
was first collected for apparent conductivity data. Then, the soil profile was excavated to
a depth of 70 cm, and one ring knife soil sample was taken at every 20 cm depth to collect
a depth of 60 cm, for a total of 90. A total of 90 ring-knife soil samples were collected to
determine soil bulk and field water-holding capacity data.
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2.6. Establishing Model between Soil Water and ECa

The measured water contents of 36 sets of soil-profile samples collected in each cycle
were sorted according to their numerical values, and the modeling and validation samples
were drawn in a ratio of 2:1, i.e., two of every three adjacent samples were randomly
selected as modeling data with the remaining one as validation data, and these were finally
divided into 24 sets of modeling data and 12 sets of validation data. With the soil apparent
conductivity data measured by the EM38-MK2 vertical model as the independent variable
and the measured soil-moisture value as the dependent variable, the decomposition model
between the soil-moisture content and soil apparent conductivity was constructed by the
multiple linear regression method, and the modeling ideas were divided into two kinds
of local modeling and global modeling, with local modeling as a single-period model and
monthly modeling in June, July and August, respectively, and a total of three models using
local modeling as a single-period model. June, July and August were modeled separately,
and a total of three models were built. The global model is a multi-period mixed model, i.e.,
a unified model was built for all samples of the three periods. Determination coefficient (R2),
root mean square error (RMSE), relative percent deviation (RPD) and mean relative error
(MRE) were used to evaluate the stability and prediction accuracy of the model. Among
them, the coefficient of determination reflected the degree of fit between the predicted and
measured values; the root mean square error measured the deviation between the observed
and true values; the mean relative error reflected the actual error of the predicted values;
and the relative analytical error was an indicator of the predictive ability of the model,
which was the ratio of the sample standard deviation to the root mean square error [34].

R2 = 1− Σi(ŷi − yi)
2

Σi(yi − y)2 (1)

RMSE =

√
Σi(ŷi − yi)

2

n
(2)

RPD =
SD

RSME
(3)

MRE =
Σi(ŷi − yi)

2

nyi
(4)

where ŷi is the predicted value, and yi is the measured value. where yi is the average value.
n was the sample number. SD is the standard deviation.

2.7. Calculation Method of Drip Irrigation Cotton Field Soil Irrigation

The irrigation data in this study were the difference between the field water-holding
capacity and the actual soil volumetric water content, where the field water-holding capac-
ity was a stable property of the soil with little temporal variability, so it was considered
as a stable value. The value was considered as the average of the measured field water-
holding capacity. The actual soil volumetric water content was the product of the mass
water content and the soil bulk weight, and the mass water content was obtained from the
inversion of the apparent conductivity of each soil layer in each period. The mass water
content was calculated from the apparent conductivity inversion model for each period.
Soil capacity was also considered as a stable property of the soil, and was considered as
the average of the measured soil capacity data to facilitate the irrigation volume calcu-
lation. taking into account only the maximum irrigation volume in the field as the field
water-holding capacity. The formula for calculating the irrigation volume was:

θi = S× h× ρ× θm (5)
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where θi is the irrigation volume in m3 ha−1, S is the area per hectare in m2, h is the soil
depth in m, ρ is the soil bulk weight in g cm−3, and θm is the mass water content of the soil
to be irrigated in g kg−1.

The irrigation amount for different depth profiles of soil was calculated differently.
The irrigation amount for 0~40 cm was the sum of 0~20 cm and 20~40 cm, the irrigation
amount for 0~60 cm was the sum of 0~20 cm, 20~40 cm, and 40~60 cm, and so on.

3. Results
3.1. Statistics Assessment of Soil Moisture Data

Table 1 shows an overview of the measured water content data for each soil profile
in three periods. Given the proximity of the test area to the Tarim River and the burial
depth of groundwater mostly located at 1.2~1.5 m, the maximum, minimum and average
values of soil-water content increased with the increase of soil depth in the same period. In
terms of spatial variability of soil moisture in the test area, the coefficient of variation of
soil-moisture content in Table 1 decreased as soil depth increased in the same period. The
spatial variability of soil moisture in the surface layer (0–20 cm) was large, and the spatial
variability of soil moisture in the bottom layer 80–100 cm was not obvious. From multiple
periods in the same soil layer, the spatial variability of soil-moisture content in the surface
layer 0–20 cm decreased gradually as the irrigation frequency increased. The variability
coefficients of soil-water content in the bottom 60~80 cm and 80~100 cm had less variability
in the three periods. After a preliminary analysis, from June to August, the environmental
temperature kept rising and, theoretically, the rate of soil-water dissipation increased, but
after several rounds of irrigation and the elevation of groundwater levels due to the flood
season of Tarim River, the water content of the bottom layer, especially the 60~80 cm and
80~100 cm soil layers, increased and maintained a small spatial variability both in space
and time.

Table 1. Statistics of measured soil moisture. Note: Max, Maximum; Min, Minimum; Mean, Arith-
metic mean; CV, Coefficient of Variation.

Month Depth (cm) Max (%) Min (%) Mean (%) CV(%)

June

0~20 17.34 8.25 12.38 23.91
20~40 21.89 14.15 17.63 14.55
40~60 25.82 13.91 21.16 13.43
60~80 28.96 19.59 24.65 8.23

80~100 30.37 20.95 26.39 8.22

July

0~20 27.19 13.27 17.32 18.06
20~40 28.15 17.42 21.04 11.38
40~60 27.83 15.92 23.44 15.29
60~80 29.52 18.82 26.34 9.39

80~100 32.43 24.36 27.95 8.40

August

0~20 21.84 11.98 15.39 14.99
20~40 25.80 15.47 19.39 12.67
40~60 27.32 17.30 23.78 13.32
60~80 32.27 21.25 27.57 9.21

80~100 32.50 23.52 28.27 6.97

3.2. Comparison of Accuracy of Soil Moisture Inversion Models

Multiple linear regression relationships between soil-moisture content and ECa at five
different depths and three different times are given in Table 2. 24 profiles (modeling dataset)
and were established between ECa values and validated using the remaining 18 profiles
(validation dataset) at two depths measured by EM38-MK2; the R2 obtained ranged from
0.61~0.89.
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Table 2. Predicted relationships of soil-water content at different depths and periods.

Month Depth (cm) Models R2

June

20 y = 0.009X1 + 0.090X2 + 7.032 0.87
40 y = 0.045X1 + 0.027X2 + 14.529 0.89
60 y = −0.027X1 + 0.110X2 + 16.929 0.76
80 y = −0.053X1 + 0.126X2 + 20.500 0.67
100 y = −0.037X1 + 0.102X2 + 22.730 0.61

July

20 y = −0.042X1 + 0.082X2 + 13.166 0.87
40 y = −0.057X1 + 0.081X2 + 18.841 0.62
60 y = 0.043X1 − 0.080X2 + 27.092 0.77
80 y = 0.037X1 − 0.063X2 + 28.947 0.75
100 y = −0.032X1 + 0.007X2 + 31.02 0.74

August

20 y = −0.054X1 − 0.005X2 + 18.27 0.88
40 y = 0.033X1 − 0.067X2 + 22.116 0.65
60 y = −0.085X1 + 0.035X2 + 27.41 0.79
80 y = −0.017X1 − 0.035X2 + 30.971 0.71
100 y = 0.061X1 − 0.091X2 + 30.154 0.7

Note: X1 means ECv0.75, X2 means ECv1.5.

Table 3 shows the fit between the predicted soil-moisture content and the soil-moisture
content of the reserved validation set for each soil layer in the three periods. The p-values
obtained by F-test of all models were less than 0.01. The R2 of the apparent conductivity
inversion soil moisture model for the surface layer 0–20 cm in June, July and August were
all higher than 0.80, and the RPD values were around 2.50, indicating that the predicted
soil-moisture content of the surface layer (0–20 cm) in these three periods fit well with
the measured values. The R2 and RPD values of the inversion model of the apparent
conductivity of 80–100 cm in June and August were the lowest among the five soil layers in
the same period, indicating that the prediction error of the inversion model of the apparent
conductivity of 80–100 cm in June and August was higher than that of the other soil layers.
After preliminary analysis, considering the leaching effect of winter irrigation on the salts
in the soil, the salts were leached to below 1 m. However, the cotton field did not have any
irrigation activity after the previous year’s winter irrigation until the first irrigation in 2018,
and with the gradual recovery of ground temperature in spring, some of the soluble soil
salts also formed a re-salt zone with the rising movement of soil moisture, which in turn
affected the apparent conductivity values in the re-salt zone, leading to the stability of the
model and its prediction. The stability of the model and its prediction ability decreased.

From the end of winter irrigation in the previous year to June, along with the gradual
increase of ambient temperature in the study area, the apparent conductivity inversion
model R2 of the soil layer deeper than 20 cm showed a decrease trend with increasing
soil depth, and so did RPD. In addition to the influence cause by soil salinity, the degree
of spatial variability of soil moisture itself can further cause error variation. As shown
in Table 1, the coefficient of variation of soil-moisture content in different soil layers in
the same period decreased as the soil depth increased, from which it was inferred that
the spatial variability of soil-moisture content in the bottom layer (80–100 cm) in June
was smaller, and the degree of spatial variability of soil moisture was relatively low. The
prediction error of the inverse model prediction increased, and its predictive ability was
not as good as that of other soil layers in the same period.

Comparing the results in June with July, first, in terms of influence caused by crop
growth metabolic activities in July, the water requirement of cotton reached its highest
at the boll stage and the root system was most active. Second, in terms of soil moisture
changes, after the first irrigation in the cotton field, the root layer under the film, especially
the surface soil moisture, was fully replenished. Finally, in terms of changes in the apparent
conductivity inversion model of the same soil layer for two periods, the R2, RMSE and RPD
values of the apparent conductivity inversion model at 0–20 cm changed less while the
MRE decreased. Additionally, in July, the R2 and RPD values at 20–40 cm were the lowest
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and MRE was the highest among the five soil layers, so the stability and accuracy of the
inversion model of this layer were relatively low.

Table 3. Indices of cross-validation Soil Moisture Model. Note: R2, coefficient of determination;
RMSE, root mean square error; RPD, Relative percent deviation; MRE, Mean relative error.

Month Depth (cm) R2 RMSE (%) RPD MRE (%)

June

0–20 0.87 1.80 2.44 1.26
20–40 0.89 1.33 2.89 1.10
40–60 0.73 1.07 1.70 2.32
60–80 0.64 0.98 1.38 0.89
80–100 0.58 1.39 1.19 1.08

July

0~20 0.86 0.86 2.50 0.75
20~40 0.60 1.80 1.13 2.50
40~60 0.75 1.87 1.75 2.30
60~80 0.73 0.91 1.81 1.56
80~100 0.71 1.17 1.36 1.79

August

0–20 0.88 0.66 2.69 0.57
20–40 0.59 1.73 1.20 2.99
40–60 0.51 1.48 1.01 2.20
60–80 0.72 1.17 1.62 0.88
80–100 0.66 0.79 1.38 0.69

The average monthly temperature in August was at the highest temperature of the
year, and the metabolic activities of cotton slowed down compared with July, and the water
demand gradually decreased. Although the cotton field was irrigated several times, the
water content of the surface soil still decreased compared with that in July. The five soil
apparent conductivity inversion models for the same period did not have regularity under
the interactions of multiple factors dominated by temperature. Compared with the same
soil layer apparent conductivity inversion model in July, both R2 and RPD values obtained
by apparent conductivity model at the 20–40 cm soil layer increased in August, so the
stability and predictive ability of the model were improved.

From the evaluation indicators in Table 3, the linear inversion model soil moisture was
possible in most cases. For agricultural fields in arid regions, the water–salt ratio in the soil
not only directly affects the soil apparent conductivity values, but also is a crucial factor for
high crop yield. In the following, the influence of two aspects on the predictive ability of
the model, the degree of spatial variability in different soil layers and soil salinity, will be
discussed. First, in terms of the spatial variability of soil moisture in different soil layers, as
shown in Tables 1 and 3, when the degree of spatial variability of soil moisture is large (e.g.,
0–20 cm soil layer in the same period), the R2 value of the multivariate linear model was
high, and the RPD value was also at a high level, indicating that the predictive ability of
the model was high. In contrast, when the spatial variability of soil moisture was small
(e.g., 80–100 cm depth in the same period), the predictive ability of the multivariate linear
model was lower. This relationship was not sufficient to fully account for the higher spatial
variability of soil moisture, because the soil texture in the study area is homogeneous and
the mulching technique was used, which aimed to increase the temperature and retain
moisture and to slow down the natural loss of soil moisture and soil temperature as much
as possible. Therefore, whether the degree of spatial variability of soil moisture was more
favorable for model fitting and prediction for farmland with heterogeneous soil texture
needed further study.

Finally, in terms of soil salinity, soil salinity was bound to affect the inversion of
apparent conductivity of soil moisture to some extent. In this study (Table 4), the mean
value of apparent conductivity at 0.375 m in June (35.21 mS m−1) was lower than the
mean value of apparent conductivity at 0.75 m (54.30 mS m−1), based on the positive
correlation between apparent conductivity and soil-salinity content in agricultural soils, as
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well as previous related studies on the spatial and temporal variability of soil salinity [35],
indicating that the soil-salt content located in the rhizosphere, especially in the 20–40 cm
soil layer, was lower than that in the non-rhizosphere (below 60 cm) in June. the predictive
ability of the 20–40 cm apparent conductivity model was better than that of the non-root
layer apparent conductivity model. However, the mean values of apparent conductivity
in July were 117.03 mS m−1 and 112.60 mS m−1 at 0.375 m and 0.75 m, respectively, and
78.75 mS m−1 at 1.5 m, indicating that the difference in soil salinity content between 0.375 m
and 0.75 m during this period was not significant. While the soil salinity content at 1.5 m
was very low, indicating that its soil salinity was The R2 of the apparent conductivity model
at 20–40 cm in July was 0.60, and the accuracy of the model was reduced compared with
that in June. Therefore, although salinity had a certain influence on soil moisture inversion
in a few soil layers, and this influence effect reduced the degree of fit between the predicted
and measured values of the model, the model still had considerable predictive ability and
could be applied practically.

Table 4. The statistical characteristic values of geospatial electromagnetic induction measurements of
apparent electrical conductivity (ECa) at different periods.

Date ECa Min (mS m−1) Max (mS m−1) Mean (mS m−1)

June

ECh0.375 102.422 3.75 35.21
ECh0.75 100 10.547 54.30
ECV0.75 173.359 13.086 65.20
ECV1.5 139.102 20.313 73.18

July

ECh0.375 145 34.004 117.03
ECh0.75 163.535 23.516 112.06
ECV0.75 120.891 35.898 86.95
ECV1.5 160.195 18.516 78.75

August

ECh0.375 141.328 12.3635 65.33
ECh0.75 159.1605 6.035 84.22
ECV0.75 173.6525 16.641 82.29
ECV1.5 165.0975 17.91 75.21

3.3. Comparison between Multi-Period and Single-Period Model

To investigate whether EM38-MK2 could be directly applied to multi-period appli-
cations, the full-period model and the single-period model were developed in this study
(Table 5), and the comparison of evaluation indexes of each model is shown in Table 6.
Comparing the two modeling ideas for the same soil layer, it can be seen that the R2 and
RPD values of the single-period model for each soil layer water content model were higher
than the full-period model, and the MRE value was lower than the full-period model.
After preliminary analysis, on the one hand, agricultural soils are non-homogeneous, and
soil salinity is constantly moving up and down in the vertical direction by irrigation and
evapotranspiration. On the other hand, the influence of higher ambient temperature easily
triggers evapotranspiration water consumption, which can affect the variability of soil-
water content in the horizontal direction. The highest RPD of the full period model was 1.38
and the lowest RPD of the single period model was 1.33, indicating that the multi-period
model of apparent conductivity inversion of soil-water content has good predictive ability
and high stability. The lowest coefficient of determination was found in the full-period
model at 40–60 cm, which is presumed to be the result of soil water uptake by directional
growth of a few main crop roots at this depth, coupled with changes in ambient temper-
ature. Since the predictive ability of the full-period model was not as good as that of the
single-period model, this suggests that the parameter of multiple-period model cannot be
applied to a simple linear model at a specific period, but a separate set of linear model
parameters should be used for each period.
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Table 5. Predicted relationships of soil-water content at different depths for the whole period.

Method Depth (cm) Models R2

Multi-period

0~20 Y = 0.097X1 − 0.061X2 + 12.052 0.54
20~40 Y = 0.061X1 − 0.033X2 + 17.410 0.51
40~60 Y = 0.070X1 − 0.084X2 + 23.876 0.33
60~80 Y = 0.065X1 − 0.077X2 + 26.993 0.60

80~100 Y = 0.026X1 − 0.029X2 + 27.734 0.40

Table 6. Accuracy assessment of single period model and multi-period model. Note: R2, coefficient
of determination; RMSE, root mean square error; RPD, Relative percent deviation; MRE, Mean
relative error.

Method Depth (cm) R2 RMSE (%) RPD MRE (%)

Multi-period

0~20 0.52 1.29 0.96 0.89
20~40 0.47 2.42 1.01 1.74
40~60 0.26 2.65 0.54 2.21
60~80 0.58 1.57 1.28 1.5
80~100 0.35 1.34 1.38 1.58

Single period

0~20 0.89 1.21 1.79 0.68
20~40 0.64 1.75 1.36 1.46
40~60 0.79 1.86 1.63 1.74
60~80 0.62 1.57 1.77 1.34
80~100 0.77 1.47 1.33 0.84

3.4. Distribution of Irrigation Amount

Table 7 shows the statistical results of soil bulk density and field capacity of the soil
samples. The results show that the coefficient variation of both at the field scale in the
study area was not higher than 10%, and the degree of variation was small. Therefore, the
average values of 1.48 g cm3 and 25.44% for soil-bulk density and soil-field capacity can be
used as the desired target values for both in field-scale irrigation calculations. This value
can be used as soil capacity and field water-holding capacity in the calculation of irrigation
volume at the field scale.

Table 7. Statistic of soil-bulk density and field capacity. Note: Max, Maximum; Min, Minimum; Mean,
mean; CV, Coefficient of Variation.

Soil Properties Max Min Mean CV

Bulky density (g cm−3) 1.63 1.25 1.48 5%
Field Capacity (%) 34.69 20.31 25.44 10%

Kriging, also known as spatial local interpolation, is a method for te unbiased optimal
estimation of regionalized variables in a finite area based on variance function theory and
structural analysis and is one of the main elements of geo-statistics. In this study, the
soil apparent conductivity data obtained from EM38 automatic model was brought into
the soil-moisture estimation model to calculate the soil-water content in the study area,
and the irrigation amount in the study area was calculated by Equation (5). The ordinary
kriged land statistical in inversion interpolation method was selected for irrigation volume
distribution mapping. The interpolated irrigation volume distribution map was first
rasterized, and then the rasterized data were reclassified according to the legend in Figure 2
as the grading standard, and the number of rasterized cells at each level was counted.
The theoretical irrigation volume was calculated by taking the median value at each level.
Figure 2 shows the distribution of irrigation amount in June, July, and August, respectively.
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First, from the overall spatial distribution, the northern part of the study area is
adjacent to the Tarim River, and most of the area has less irrigation water than the southern
part. The high irrigation-volume amount in the northern part of the study area is mainly
located in a small part of the northeast corner of the study area, and a small part of about
500 m from north to south. The high irrigation-volume amount in the northern part of the
study area is mainly due to the high apparent soil conductivity. By combining previous
studies on apparent conductivity and soil salinity [35,36], it was shown that in areas with
a high apparent conductivity, soil-salinity content is also high [37]. So, the soil salinity
content in the high irrigation volume area is slightly higher than other areas in the study
area. In addition, during the field survey, it was found that a small portion of the bare soil
in the high irrigation area appeared to have a white color at the topsoil, and the cotton
crop planted was short with a very low seedling emergence rate. It can be judged that
the soil-salt concentration in this area exceeded the salt-tolerance threshold of the crop,
and thus affected the growth of the crops. The accumulation of salt crusts caused the
“whitening phenomenon” in the topsoil. A small part of the northeast corner of the study
area with high irrigation is mainly affected by the flood the Tarim River in dry periods. The
area of high irrigation in the southern of the study area is located in the eastern of the study
area from north to south for 750 m. The field survey found that this high irrigation area is
also affected by high apparent soil conductivity. Although the soil salinization is similar to
the high irrigation area in the northern of the study area for 500 m, it exists only at topsoil
(10 cm). Unlike the area with high irrigation in the northern for 500 m, the eastern part
for 750 m rarely has seedling emergence, so it is assumed that the soil with high apparent
conductivity in the topsoil (10 cm) does not threatens the growth of crops in this area. The
height and emergence rate of cotton crops are consistent with the surrounding area, and
the top does not appear to have the “whitening phenomenon”.

Second, in terms of the temporal variation, the distribution of irrigation amount at
depths of 0–40 cm and 0–60 cm in June tended to be consistent with the overall color distri-
bution at both depths in June. The highest irrigation volume was greater than 700 m3 ha−1

at the above-mentioned highly irrigated areas. The average monthly ambient temperature
in July increased compared to June, and the rate of water loss from the topsoil located in
the non-film covered areas increased compared to June, as can be seen in Figure 2. The
yellow area with irrigation volume lower than 140 m3 ha−1 disappeared in July, both the
minimum irrigation volume at the depths of 0–40 cm and 0–60 cm increased compared to
June. The gray area with irrigation amount of 420–560 m3 ha−1 accounted for the largest
percentage, indicating that the irrigation amount increased significantly in July compared
to June. From July to August, although the water demand of cotton roots gradually slowed
down, the average monthly temperature was still increasing, as shown by a significant
decrease in the percentage of gray area with irrigation volume of 420–560 m3 ha−1 but still
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concentrated in the northeast corner, 500 m area from north to south and 750 m east area.
Comparing the locations of the high irrigation areas in June, we can see that the locations
are basically the same of the above three areas in August. Therefore, in the actual irrigation
process, we should specify the appropriate irrigation strategy to avoid the reduction of
crop yield in cotton fields due to insufficient irrigation.

With the research on soil water management plans for agricultural fields in recent
years [38], the monitoring and management of soil water dynamics has received much
attention. As a typical arid farmland in South Xinjiang, the soil moisture in this study area
is strongly heterogeneous in space due to the arid climate and high evapotranspiration
ratio. The soil-moisture distribution is described as “dry at the top and wet at the bottom
layer”, which is not conducive to farmers’ accurate estimation of soil-moisture content
of farmland and causes excessive irrigation. On the other hand, at present, the irrigation
scheme mostly adopts a same irrigation strategy to the total farmland. This irrigation
method not only causes waste of soil water in the local area with low irrigation volume,
but also leads to insufficient irrigation water in the local area with high irrigation volume,
which leads to yield reduction.

Compared with the actual irrigation volume, the irrigation amount obtained by in-
version model in this study saved 163.07, 161.32, and 208.46 m3 ha−1 in June, July, and
August at the depth of 0–40 cm, respectively; saved 58.43, 156.24, and 91.79 m3 ha−1 in
June, July, and August at the depth of 0–60 cm, respectively. The 0–60 cm saved 58.43,
156.24 and 91.79 m3 ha−1 of irrigation in June, July, and August, respectively. Thus, only
considering soil moisture, the method used in this study can reduce irrigation amount by
at least 160 m3 ha−1 for crops with shallow root depths and reduce about 30% and 15% in
July and August for crops or fruit trees at deep root depths, but less in June. By contrast to
the results of previous studies, this study aimed to reduce the waste of soil moisture by
using a fine-grained regional irrigation amount. The field-scale inversion of soil moisture is
more effective in keeping an eye on soil-moisture conditions in highly irrigated areas, while
facilitating rapid information on soil-moisture distribution at the farm scale. However, only
the soil-moisture condition was considered in this study, and the content of soil moisture
requiring salt leaching in highly irrigated areas was missing. Therefore, future studies will
subsequently concentrate on the assessment of the effect of soil-salt concentrations on the
uptake of soil moisture by crops in multiple water-demand periods, so that the irrigation
amount can effectively alleviate the physiological drought of crops, and be applied to the
leaching of soil salts to meet the requirements for more demand under-membrane drip
irrigation systems in arid areas of Xinjiang.

4. Conclusions

In this study, an inversion of field-scale soil-moisture data was performed using the
apparent soil conductivity of cotton fields obtained by EM38-MK2. The results from the
inversion model showed that the linear-inversion approach of soil moisture using soil
apparent conductivity data was feasible. Moreover, the ability of the inversion model to
be directly applied to multiple periods was also investigated, and the results showed that
the predictive ability of the full-period model was not as good as that of the single-period
model, indicating that the inversion model of soil-moisture content for multiple periods
cannot be directly applied to a simple model for a specific period, and a separate set of
models should be used for each period separately, which can improve the accuracy of
prediction of soil moisture. In this study, soil-irrigation volume distribution was also
mapped by simple kriging interpolation method combined with soil-moisture capacity and
field water-holding capacity data, taking into account only soil-moisture conditions. By
comparing these with the actual irrigation volume, the predicted field-irrigation volume for
all three periods was less than the actual irrigation volume, refining the regional irrigation
volume and reducing the waste of soil moisture. Therefore, the geodetic conductivity meter
used in this study can achieve the purpose of guiding irrigation amounts to a certain extent
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by the inversion of soil moisture, soil-moisture capacity and field water-holding capacity
data under the premise of considering soil moisture only.

Author Contributions: All authors contributed in a substantial way to the manuscript. J.H.: con-
ceived and designed the research themes analyzed the data. C.F.: contribution to data analysis. N.W.:
contributed to the revision and translation. M.W.: contributed to revision and translation. J.W.:
contributed to the revision. J.P.: conceived and designed the research themes analyzed the data. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by grants from the Tarim University President’s Fund (Grant
Nos. TDZKCX202205, TDZKSS202227, TDZKSS202350), the Bingtuan Science and Technology
Program (Grant No. 2020CB032), the National Key Research and Development Program of China
(Grant No. 2018YFE0107000).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fereres, E.; Soriano, M.A. Deficit Irrigation for Reducing Agricultural Water Use. J. Exp. Bot. 2007, 58, 147–159. [CrossRef]
2. Misra, R.K.; Padhi, J. Assessing Field-Scale Soil Water Distribution with Electromagnetic Induction Method. J. Hydrol. 2014, 516,

200–209. [CrossRef]
3. Wijewardana, Y.G.N.S.; Galagedara, L.W. Estimation of Spatio-Temporal Variability of Soil Water Content in Agricultural Fields

with Ground Penetrating Radar. J. Hydrol. 2010, 391, 24–33. [CrossRef]
4. Li, P.; He, S.; He, X.; Health, R.T.-E. Seasonal Hydrochemical Characterization and Groundwater Quality Delineation Based on Matter

Element Extension Analysis in a Paper Wastewater Irrigation Area; Springer: Berlin/Heidelberg, Germany, 2018; Volume 10, pp.
241–258. [CrossRef]

5. Foster, S.; Chilton, J.; Nijsten, G.J.; Richts, A. Groundwater-a Global Focus on the “Local Resource”. Curr. Opin. Environ. Sustain.
2013, 5, 685–695. [CrossRef]

6. Dalton, F.N. Development of Time-Domain Reflectometry for Measuring Soil Water Content and Bulk Soil Electrical Conductivity.
In Advances in Measurement of Soil Physical Properties: Bringing Theory into Practice; Wiley: New York, NY, USA, 2012; pp. 143–167.
ISBN 9780891189251.

7. Triantafilis, J.; Kerridge, B.; Journal, S.B.-A. Digital Soil-class Mapping from Proximal and Remotely Sensed Data at the Field
Level. Agron. J. 2009, 101, 841–853. [CrossRef]

8. Altdorff, D.; Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Galagedara, L. Comparison of Multi-Frequency and Multi-Coil
Electromagnetic Induction (Emi) for Mapping Properties in Shallow Podsolic Soils. Sensors 2020, 20, 2330. [CrossRef] [PubMed]

9. Visconti, F.; Science, J.D.P.-E.J. of S. A Semi-empirical Model to Predict the EM38 Electromagnetic Induction Measurements of
Soils from Basic Ground Properties. Eur. J. Soil Sci. 2021, 72, 720–738. [CrossRef]

10. Xie, W.; Yang, J.; Yao, R.; Wang, X. Article Spatial and Temporal Variability of Soil Salinity in the Yangtze River Estuary Using
Electromagnetic Induction. Remote. Sens. 2021, 13, 1875. [CrossRef]

11. Corwin, D.; Analysis, J.R. soil science and plant. Establishing Soil Electrical Conductivity-Depth Relations from Electromagnetic
Induction Measurements. Commun. Soil Sci. Plant Anal. 1990, 21, 861–901. [CrossRef]

12. Zare, E.; Arshad, M.; Zhao, D.; Nachimuthu, G.; Triantafilis, J. Two-Dimensional Time-Lapse Imaging of Soil Wetting and Drying
Cycle Using EM38 Data across a Flood Irrigation Cotton Field. Agric. Water Manag. 2020, 241, 106383. [CrossRef]

13. Huth, N.; Research, P.P.-S. An Electromagnetic Induction Method for Monitoring Variation in Soil Moisture in Agroforestry
Systems. Soil Res. 2007, 45, 63–72. [CrossRef]

14. Dunn, B.W.; Beecher, H.G. Using Electro-Magnetic Induction Technology to Identify Sampling Sites for Soil Acidity Assessment
and to Determine Spatial Variability of Soil Acidity in Rice Fields. Aust. J. Exp. Agric. 2007, 47, 208–214. [CrossRef]

15. Wienhold, B.J. Apparent Electrical Conductivity for Delineating Spatial Variability in Soil Properties. In Handbook of Agricultural
Geophysics; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA; pp. 211–215. ISBN 9781420019353.

16. Van Meirvenne, M.; Islam, M.M.; De Smedt, P.; Meerschman, E.; Van De Vijver, E.; Saey, T. Key Variables for the Identification of
Soil Management Classes in the Aeolian Landscapes of North-West Europe. Geoderma 2013, 199, 99–105. [CrossRef]

17. Jung, W.K.; Kitchen, N.R.; Sudduth, K.A.; Kremer, R.J.; Motavalli, P.P. Relationship of Apparent Soil Electrical Conductivity to
Claypan Soil Properties. Soil Sci. Soc. Am. J. 2005, 69, 883–892. [CrossRef]

18. White, M.L.; Shaw, J.N.; Raper, R.L.; Rodekohr, D.; Wood, W. A Multivariate Approach for High-Resolution Soil Survey
Development. Soil Sci. 2012, 177, 345–354. [CrossRef]

19. Cockx, L.; Van Meirvenne, M.; Vitharana, U.W.A.; Verbeke, L.P.C.; Simpson, D.; Saey, T.; Van Coillie, F.M.B. Extracting Topsoil
Information from EM38DD Sensor Data Using a Neural Network Approach. Soil Sci. Soc. Am. J. 2009, 73, 2051–2058. [CrossRef]

http://doi.org/10.1093/jxb/erl165
http://doi.org/10.1016/j.jhydrol.2014.02.049
http://doi.org/10.1016/j.jhydrol.2010.06.036
http://doi.org/10.1007/s12403-017-0258-6
http://doi.org/10.1016/j.cosust.2013.10.010
http://doi.org/10.2134/agronj2008.0112
http://doi.org/10.3390/s20082330
http://www.ncbi.nlm.nih.gov/pubmed/32325857
http://doi.org/10.1111/ejss.13044
http://doi.org/10.3390/rs13101875
http://doi.org/10.1080/00103629009368275
http://doi.org/10.1016/j.agwat.2020.106383
http://doi.org/10.1071/SR06093
http://doi.org/10.1071/EA05102
http://doi.org/10.1016/j.geoderma.2012.07.017
http://doi.org/10.2136/sssaj2004.0202
http://doi.org/10.1097/SS.0b013e31824e14d6
http://doi.org/10.2136/sssaj2008.0277


Remote Sens. 2023, 15, 1975 15 of 15

20. Vitharana, U.W.A.; Van Meirvenne, M.; Simpson, D.; Cockx, L.; De Baerdemaeker, J. Key Soil and Topographic Properties to
Delineate Potential Management Classes for Precision Agriculture in the European Loess Area. Geoderma 2008, 143, 206–215.
[CrossRef]

21. Jaynes, D.B. Mapping the Areal Distribution of Soil Parameters with Geophysical Techniques. In Applications of GIS to the Modeling
of Non-Point Source Pollutants in the Vadose Zone; Wiley: New York, NY, USA, 2015; pp. 205–216. ISBN 9780891189435.

22. Johnson, C.K.; Doran, J.W.; Duke, H.R.; Wienhold, B.J.; Eskridge, K.M.; Shanahan, J.F. Field-Scale Electrical Conductivity Mapping
for Delineating Soil Condition. Soil Sci. Soc. Am. J. 2001, 65, 1829–1837. [CrossRef]

23. Martinez, G.; Vanderlinden, K.; Ordóñez, R.; Muriel, J.L. Can Apparent Electrical Conductivity Improve the Spatial Characteriza-
tion of Soil Organic Carbon? Vadose Zone J. 2009, 8, 586–593. [CrossRef]

24. Doolittle, J.A.; Brevik, E.C. The use of electromagnetic induction techniques in soils studies. Geoderma 2014, 223, 33–45. [CrossRef]
25. Friedman, S.P. Soil Properties Influencing Apparent Electrical Conductivity: A Review. Comput. Electron. Agric. 2005, 46, 45–70.

[CrossRef]
26. Heilig, J.; Kempenich, J.; Doolittle, J.; Brevik, E.C.; Ulmer, M. Evaluation of Electromagnetic Induction to Characterize and Map

Sodium-Affected Soils in the Northern Great Plains. Soil Horizons 2011, 52, 77. [CrossRef]
27. Kachanoski, R.G.; Gregorich, E.G.; Van Wesenbeeck, I.J. Estimating Spatial Variations of Soil Water Content Using Noncontacting

Electromagnetic Inductive Methods. Can. J. Soil Sci. 1988, 68, 715–722. [CrossRef]
28. Calamita, G.; Perrone, A.; Brocca, L.; Onorati, B.; Manfreda, S. Field Test of a Multi-Frequency Electromagnetic Induction Sensor

for Soil Moisture Monitoring in Southern Italy Test Sites. J. Hydrol. 2015, 529, 316–329. [CrossRef]
29. Hanson, B.R.; Kaita, K. Response of Electromagnetic Conductivity Meter to Soil Salinity and Soil-Water Content. J. Irrig. Drain.

Eng. 1997, 123, 141–143. [CrossRef]
30. Huang, J.; Scudiero, E.; Clary, W.; Corwin, D.L.; Triantafilis, J. Time-Lapse Monitoring of Soil Water Content Using Electromagnetic

Conductivity Imaging. Soil Use Manag. 2017, 33, 191–204. [CrossRef]
31. Huang, J.; Purushothaman, R.; McBratney, A.; Bramley, H. Soil Water Extraction Monitored per Plot across a Field Experiment

Using Repeated Electromagnetic Induction Surveys. Soil Syst. 2018, 2, 11. [CrossRef]
32. Hossain, M.B.; Lamb, D.W.; Lockwood, P.V.; Frazier, P. EM38 for Volumetric Soil Water Content Estimation in the Root-Zone of

Deep Vertosol Soils. Comput. Electron. Agric. 2010, 74, 100–109. [CrossRef]
33. Li, X.; Shao, M.A.; Zhao, C.; Liu, T.; Jia, X.; Ma, C. Regional spatial variability of root-zone soil moisture in arid regions and the

driving factors—A case study of Xinjiang, China. Can. J. Soil Sci. 2019, 99, 277–291. [CrossRef]
34. Kayacan, E.; Kayacan, E.; Ramon, H.; Saeys, W. Towards Agrobots: Identification of the Yaw Dynamics and Trajectory Tracking of

an Autonomous Tractor. Comput. Electron. Agric. 2015, 115, 78–87. [CrossRef]
35. Khongnawang, T.; Zare, E.; Srihabun, P.; Khunthong, I.; Triantafilis, J. Digital soil mapping of soil salinity using EM38 and

quasi-3d modelling software (EM4Soil). Soil Use Manag. 2022, 38, 277–291. [CrossRef]
36. Zarai, B.; Walter, C.; Michot, D.; Montoroi, J.P.; Hachicha, M. Integrating multiple electromagnetic data to map spatiotemporal

variability of soil salinity in Kairouan region, Central Tunisia. J. Arid. Land 2022, 14, 186–202. [CrossRef]
37. Li, H.; Liu, X.; Hu, B.; Biswas, A.; Jiang, Q.; Liu, W.; Wang, N.; Peng, J. Field-Scale Characterization of Spatio-Temporal Variability

of Soil Salinity in Three Dimensions. Remote Sens. 2020, 12, 4043. [CrossRef]
38. Hedley, C.B.; Yule, I.J. A Method for Spatial Prediction of Daily Soil Water Status for Precise Irrigation Scheduling. Agric. Water

Manag. 2009, 96, 1737–1745. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.geoderma.2007.11.003
http://doi.org/10.2136/sssaj2001.1829
http://doi.org/10.2136/vzj2008.0123
http://doi.org/10.1016/j.geoderma.2014.01.027
http://doi.org/10.1016/j.compag.2004.11.001
http://doi.org/10.2136/sh2011.3.0077
http://doi.org/10.4141/cjss88-069
http://doi.org/10.1016/j.jhydrol.2015.07.023
http://doi.org/10.1061/(ASCE)0733-9437(1997)123:2(141)
http://doi.org/10.1111/sum.12261
http://doi.org/10.3390/soilsystems2010011
http://doi.org/10.1016/j.compag.2010.07.003
http://doi.org/10.1139/cjss-2019-0006
http://doi.org/10.1016/j.compag.2015.05.012
http://doi.org/10.1111/sum.12778
http://doi.org/10.1007/s40333-022-0052-6
http://doi.org/10.3390/rs12244043
http://doi.org/10.1016/j.agwat.2009.07.009

	Introduction 
	Materials and Methods 
	Study Area 
	EM38-MK2 Measurement 
	Irrigation and Rainfall Events 
	ECa Data Collection 
	Soil Samples Collection 
	Establishing Model between Soil Water and ECa 
	Calculation Method of Drip Irrigation Cotton Field Soil Irrigation 

	Results 
	Statistics Assessment of Soil Moisture Data 
	Comparison of Accuracy of Soil Moisture Inversion Models 
	Comparison between Multi-Period and Single-Period Model 
	Distribution of Irrigation Amount 

	Conclusions 
	References

