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Abstract: Accurate assessment of crop emergence helps breeders select appropriate crop genotypes,
and farmers make timely field management decisions to increase maize yields. Crop emergence is
conventionally quantified by manual calculations to quantify the number and size of seedlings, which
is laborious, inefficient, and unreliable and fails to visualize the spatial distribution and uniformity of
seedlings. Phenotyping technology based on remote sensing allows for high-throughput evaluation
of crop emergence at the early growth stage. This study developed a system for the rapid estimation
of maize seedling emergence based on a deep learning algorithm. The RGB images acquired from
an unmanned aerial vehicle (UAV) were used to develop the optimal model for the recognition of
seedling location, spacing, and size, and the prediction performance of the system was evaluated in
three stations during 2021–2022. A case study was conducted to show the evaluation of the system
for maize seedlings and combined with TOPSIS (Technique for Order of Preference by Similarity
to Ideal Solution) analysis. The results show that the system has good prediction performance for
maize seedling count with an average R2 value of 0.96 and an accuracy of 92%; however, shadows
and planting density influence its accuracy. The prediction accuracy reduces significantly when the
planting density is above 90,000 plants/ha. The distribution characteristics of seedling emergence
and growth were also calculated based on the average value and variation coefficient of seedling
spacing, seedling area, and seedling length. The estimation accuracies for the average value of
seedling spacing, the coefficient of variation of seedling spacing, the average value of the seedling
area, the coefficient of variation of the seedling area, and the average value of the seedling length
were 87.52, 87.55, 82.69, 84.51, and 90.32%, respectively. In conclusion, the proposed system can
quickly analyze the maize seeding growth and uniformity characteristics of experimental plots and
locate plots with poor maize emergence.

Keywords: crop emergence; field phenotyping; unmanned aerial vehicles (UAV); YOLO model;
TOPSIS analysis

1. Introduction

The world population is expected to increase by 25% to 10 billion over the next
30 years [1], which means that global food consumption will increase significantly along
with population growth [2]. Affected by global climate change, it is a great challenge to
obtain increasing food production on limited land resources. This requires making full use
of existing land resources to ensure sustainable food production. It is worth noting that
crop emergence is a key factor affecting crop yield [3,4].

In the early management of crops, it is crucial to accurately detect the emergence
of seedlings and their growth in real time [3]. Crop emergence has traditionally been
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mostly determined by manual evaluation, which is not only inefficient and costly but
also lacks a standardized method [4]. In addition to the easily quantifiable number of
seedlings per unit area or specific area, crop emergence also involves seedling size and
uniformity of seedling distribution, which cannot be measured manually. Uniformity
of crop emergence is crucial to maximize yield as it balances competition among plants
for water, nutrients, and sunlight [5]. The uniformity represents more accurately the
distribution of crop seedlings in a plot than an average condition [6] and allows for a
more accurate evaluation of material quality [7]. Thus, it is necessary to integrate multiple
emergence characteristics to realize the evaluation of crop emergence. As the most widely
planted crop in the world, maize (Zea mays L.) plays an important role in ensuring food
security [8]. Due to advances in cultivation techniques, maize is often grown in large areas,
adding complexity and challenges to effective field management. It is crucial to assess
maize emergence rapidly in a large area to ensure the quality of sowing, monitor pests and
diseases, and make relevant protective measures in time to ensure maize yield [9].

Several researchers have carried out studies to monitor and quantify crop emergence.
Several real-time crop growth monitoring systems (i.e., PhenoCams) have been introduced
to monitor crop growth and phenological changes in real time [10,11]. However, this system
is not mobile, so its range of measurement is limited. Studies have demonstrated that
crop seedlings can be assessed using ground vehicle-based imaging systems, but these
systems were less efficient at monitoring emergence over large spatial regions [9,12–15].
Recently, unmanned aerial vehicles (UAVs) equipped with various sensors have become the
most effective means of tracking the development of crop seedlings with high-resolution,
real-time imaging, efficient acquisition, and easy operation [16]. The established techniques
have been demonstrated in a variety of crops and research, such as detecting rice and
wheat phenology with an accuracy rate of 83.9% [17] and up to 93% accuracy [18], the
monitoring of cotton seedling number and size with R2 of 95 and 93% [19], the rapid
counting of maize and sunflower seedlings with a relative root mean square error of 4.44
and 4.29% [4], seedling counting of maize at different seedling stages with a root mean
square error of 2.0–7.7 [20], seedling counting of wheat with an average accuracy rate of
89% [21] and the uniformity of cotton seedling emergence with an accuracy of 84.1% [22].
Vong et al. [23] used planting density and the standard deviation of planting spacing to
evaluate the uniformity of emergence. However, no systematic study on crop emergence
has been reported.

Image processing and analysis are critical to images captured by UAV systems. Sev-
eral challenges currently exist for seedling identification. First, images of crop seedlings
captured by drones, displayed in a few pixels, are often very small, making them difficult to
identify [19]. Second, UAV-based imaging can collect large amounts of data, which makes
image analysis difficult and increases computational complexity [24]. Furthermore, there
may be obvious differences in soil types, planting techniques, plant material, and field
management between plots, which has a significant impact on image processing [19,25].
The Random Forest classifier was used by Li et al. [26] to estimate the number of potato
plants at the emergence stage from six morphological features extracted from UAV RGB
images, but this method may not be robust in the case of noise or outliers in the image data.
A combination of three machine learning regression methods (regression trees, support
vector regression, and Gaussian process regression) combining spectral and morphological
information was also applied to estimate the number of wheat seedlings; however, these
methods are sensitive to noise and difficult to adapt to diverse environments [27]. Thus,
an efficient, robust, adaptable to diverse environments, and real-time image processing
tool is urgently needed. Liu et al. [28] compared the prediction performance of the core
detection model (RMSE = 3.78), the linear regression model (RMSE = 2.11), and the deep
learning model (Faster R-CNN, RMSE = 1.38) in maize seedling counting and found the
deep learning model to have the lowest RMSE. Deep learning (DL) is an advanced data
processing technique that has been increasingly employed to analyze image data obtained
from agricultural applications, and research has also shown that plant information can be



Remote Sens. 2023, 15, 1979 3 of 15

extracted from image data efficiently and robustly using deep learning algorithms [29].
This technique is regarded as a successful approach to overcome the difficulties of UAV
image analysis [30]. In deep learning, many algorithms have demonstrated high prediction
performance in crop seedling counting, such as ResNet-18, which achieves 0.95 and 0.93 R2

for cotton counting and canopy size prediction [19], and AlexNet in seedling classification
can be 94% accurate [31], while a better version of Yolov5 can achieve 98% accuracy [32].
However, these algorithms are primarily concerned with counting seedlings and ignore a
number of important attributes of the seedlings.

Our study aims to develop a framework for image data processing and analysis using
UAV-based image processing and deep learning technologies. Compared to previous
research, this study considered traits including seedling spacing, growth, and uniformity
in addition to the number of maize seedlings per plot. The specific objectives include:
(1) developing a new maize seedling analysis system by integrating image processing
and deep learning and (2) evaluating the performance of several indicators characterizing
crop emergence.

2. Materials and Methods
2.1. Study Sites

Three stations were considered during 2021–2022: Zhuozhou Experimental Station of
China Agricultural University in Hebei province, Gongzhuling Experimental Station of
the Chinese Academy of Agricultural Science in Jilin province, and Zhangye Experimental
Station of Gansu Academy of Agricultural Science in Gansu province. Location information
and crop planting settings are shown in Table 1. A multi-station experiment was designed
to evaluate the system’s adaptability to diverse ecological areas and understand how that
adaptability changes through repeated years of the experiment.

Table 1. Location and crop planting settings in Zhuozhou, Gongzhuling, and Zhangye during
2021–2022.

Year 2021 2022

Station Zhuozhou Gongzhuling Zhangye Zhuozhou Gongzhuling Zhangye
Latitude N39.5◦ N43.5◦ N38.8◦ N39.5◦ N43.5◦ N38.8◦

Longitude E115.8◦ E124.8◦ E100.37◦ E115.8◦ E124.8◦ E100.37◦
Altitude (m) 45 200 1548 45 200 1548

Soil Sandy loam Chernozem Irrigated desert soil Sandy loam Chernozem Irrigated desert soil

Crop Hybrid line Transgenic line Inbred line Hybrid and
inbred line

Hybrid and inbred
line Inbred line

Row spacing (m) 0.6 0.6 0.6 0.6 0.6 0.6
Plant spacing (m) 0.206–0.37 0.25 0.25 0.206–0.37 0.206–0.37 0.25
Number of plots 217 641 301 771 1024 300

The study focuses on maize, but different stations are treated differently. The planting
density experiment was carried out in Zhuozhou Station from 2021–2022, which included
45,000, 63,000, and 81,000 plants/ha. In 2021, materials included Xianyu 335, Zhengdan 958,
and ND108. In 2022, 32 inbred lines were planted along with the hybrids that were planted
in 2021. In Gongzhuling, 93 transgenic lines were planted in 2021 without treatment, and
the planting density experiment was conducted in 2022 with 32 hybrid materials and
31 maize inbred lines. The planting density includes 45,000, 63,000, 81,000, 90,000, and
120,000 plants/ha. In Zhangye, a deficit irrigation experiment based on Genome-Wide
Association Studies (GWAS) materials was carried out with 150 inbred lines in 2021 and
108 inbred lines in 2022. Irrigation treatments included full irrigation and deficit irrigation,
with the deficit irrigation amount being half that of full irrigation.

2.2. UAV Data Collection

Three UAV-based RGB cameras were utilized to capture high-resolution images at
three stations during 2021–2022. The detailed parameters of the UAV are summarized in
Table 2. The UAV aerial image data were collected when the plants were at vegetative
growth stages V3 to V5. The image data collection time was between 10 a.m. and 2 p.m.
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local time, coinciding with minimal changes in the solar zenith angle. The UAV’s trajectory
was determined prior to flight with a flight speed of 2 m/s. For better image splicing,
adjacent images’ footprints must overlap by more than 80% along and across the trajectory.
The global positioning system (GPS) and barometer were used to keep horizontal position
and altitude inaccuracies to within 2 and 0.5 m, respectively. During the last two years, we
maintained the same resolution (0.5 cm/pixel) at three stations, and varying flight altitudes
ensured that cameras with different pixels could achieve similar resolutions. The image’s
resolution was set to 5472 by 3648 pixels, and the storage format was set to JPEG. The
shutter speed of the camera was set to 2 s, and the exposure mode, shutter speed, ISO, and
white balance settings were all set to automatic.

Table 2. The detailed parameters of the unmanned aerial vehicle system (UAV) at different stations
during 2021–2022.

Year 2021 2022

Site Zhuozhou Gongzhuling Zhangye Zhuozhou Gongzhuling Zhangye
Stage 4–5 leaves 4 leaves 5 leaves 5 leaves 5 leaves 5 leaves
Date 5/24 6/15 5/24 6/1 6/14 6/11
UAV MAVIC PRO2 MAVIC PRO2 MAVIC PRO1 MAVIC PRO1 MAVIC PRO2 MAVIC PRO1

Height above ground (m) 20 20 15 15 20 15
Stitching accuracy

(RMS Error: x, y, z, %) 0.50, 0.23, 0.37 0.56, 0.65, 1.43 0.70, 0.78, 0.76 0.44, 0.37, 0.37 0.38, 0.43, 1.10 0.16, 0.28, 0.27

2.3. Image Pre-Processing

In our system, the input data for the model are a complete aerial image of the site
(Figure 1C). Therefore, before model analysis, the images taken by the UAV needed to be
spliced together to form a complete site map. The Pix4Dmapper software [33] was used
for the splicing of UAV images (Figure 1B). All UAV images were imported into Pix4D
software, and the image coordinate system, geographical positioning, camera model, and
other information were set according to the UAV and camera parameters. It is sometimes
difficult to ensure the vertical distribution of plots during maize planting, so rows of maize
may be inclined. To avoid influencing the segmentation of experimental plots, plots with
an obvious inclination were manually corrected using Adobe Photoshop software [34].
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Figure 1 Figure 1. Workflow of image preprocessing and model prediction. (A) Images captured by an
unmanned aerial vehicle (UAV); (B) Pix4d software was used to splice images captured by the UAV
into a large image; (C) calibrated image; (D) labeled image; (E) model training process; (F) split the
large image into small patches (608 × 608 pixels) for model input; (G) load model parameters for
model prediction; (H) result image of model output; (I) enlarged view of the output marked image;
(J) numerical results of model output.
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2.4. Evaluation for Maize Emergence
2.4.1. Model Training Data Creation and Model Verification Data Collection

In order to create a training data set covering a variety of ecological areas, UAV
images of maize seedlings were collected from six experimental stations in 2018–2019,
including Gongzhuling in Jilin Province, Zhuozhou City in Hebei Province, Zhangye
City in Gansu Province, Anyang City in Henan Province, Sanya in Hainan Province, and
Xinxiang in Henan Province. In addition to the main varieties of maize grown in the region,
there were also several inbred lines of maize with extensive blood relations. A total of
11,840 UAV images were collected, and each image has a size of 500 × 500 pixels. All
seedlings in each image were identified by manually marking their locations using the
Python library labelImg [35]. A training dataset was constructed based on images and
seedling location information.

A model verification set, which was independent of the training set and based on
data from three stations from 2021–2022, was prepared in order to evaluate the predictive
accuracy of the training model. The validation dataset was collected and recorded manually.
The manually obtained data include data from seedling counts performed manually in the
field and data from seedlings marked manually in the UAV images. Seedling counts can
easily be performed under the field, thus the actual number of seedlings in all experimental
plots at three stations was manually counted by hand in both years as a verification of
the model’s ability to predict seedling counts. However, the average value of seedling
spacing, coefficient of variation of seedling spacing, the average value of seedling area, and
coefficient of variation of seedling area are difficult to measure manually in the field. In
order to obtain the real data, we used a UAV to obtain the orthophoto data of seedlings at
low altitudes and then used the labelImg tool to manually label the seedlings so that the
marker box would just fit the seedlings, thus obtaining the location and scale information
of the seedlings. Based on this location and scale information, we then calculated the
two-by-two spacing and seedling area information of all seedlings to calculate the average
value of seedling spacing, coefficient of variation of seedling spacing, the average value of
seedling area, and coefficient of variation of seedling area.

2.4.2. Model Training

The YOLO (You Only Look Once) model, a typical target identification approach, was
employed in this work to detect seedlings and uses machine learning to transform the
target detection issue into a regression problem [36]. Among other well-known pre-trained
CNN models (e.g., Faster RCNN Resnet50 [37], Faster RCNN VGG16 [38], YOLOV5 [39]),
Yolo v3 [40] was chosen as the main analysis algorithm because it achieved similar or
higher accuracy (Support Information 2). The network structure of seedling detection
model is shown in Figure 2. The model’s parameters were trained and established using
this training set, and they were then preserved as the foundation for the model’s prediction
(Figure 1E). A cross-validation process was used during the training process of the model
to ensure its performance. A ratio of 7:2:1 (training/validation/test) was used to divide the
training data.

2.4.3. Model Prediction

A complete spliced image of the site was provided as input data for the trained model
(Figure 1C). It is, however, difficult to analyze a spliced image directly because it usually
takes up more than 1 GB of memory, so the spliced image was first cut into small images
(608 × 608 pixels) using sliding window. The sliding window had 480 pixels per step, and
the excess pixels were filled in black. The model was fed the small images, and based
on the training parameters (Figure 1F,G), it predicted where the maize seedlings are in
each small image (Yolo v3 returns the coordinates of the lower-left corner of each maize
seedling prediction box, as well as its width and height). It is important to remember that
the seedling coordinate parameter in the small image is not the final result. This is because
the cutting windows overlap, so there are overlapped areas in the small images next to
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each other. This helps keep the seedling image from getting damaged while it is being cut.
During the cutting process, all of the coordinates for the small images were recorded. Based
on these recorded coordinates, the maize seedlings in the small image were mapped to the
coordinate system in the large image (spliced image). So, the final result of the prediction
was the coordinate information in the spliced image, and each seedling’s information was
figured out based on the data (Figure 1H,I). The red rectangular box was used to mark
maize seedlings. However, the red rectangular box in the output image is not the actual
output coordinates. Instead, it is a box with a specified size determined based on the
coordinates of the points in the upper left corner, which were used to indicate the position
of the seedlings.

Version April 7, 2023 submitted to Journal Not Specified 3 of 13

Figure 2

Figure 2. The architecture of maize seedling detection model, as applied to the estimation of seedling
count and seedling size.

2.4.4. Calculation for Parameters of Seedling Growth and Distribution of Maize

Our objective here is to examine the growth and distribution of maize seedlings
within an experimental plot. As a result, the coordinate information generated by the
model cannot be applied directly to calculations. By determining plot coordinates, one
can separate the plot from the overall site and determine seedling growth and distribution
based on the plot’s location. The following characteristics were used to describe the growth
and distribution of seedlings in each plot: seedling count, seedling spacing, seedling area,
and seedling length. In addition to the seedling count, the average value and coefficient
of variation of other characteristics in each plot were computed. The number of seedling
prediction windows in each plot was used to evaluate the seedling count. The distance
between the center points of adjacent prediction windows was regarded as seedling spacing,
and the mean and coefficient of variation of seedling spacing were calculated. The area
of the prediction window of the model was regarded as the seedling area, the longest
edge was regarded as seedling length, and the average value and coefficient of variation
were evaluated.

All these traits were finally output as a CSV data file, including the following variables:
Row (the row number of the experimental plot), Col (the column number of the experi-
mental plot), SSm (the mean value of seedling spacing in the experimental plot), SScv (the
coefficient of variation of seedling spacing in the experimental plot), SAm (the mean values
of seedling area in the experimental plot), SAcv (the coefficient of variation of seedling area
in the experimental plot), SLm (the mean values of seedling length in the experimental
plot), and SLcv (the coefficient of variation of seedling length in the experimental plot).

2.5. Statistical Analysis

A predictive performance evaluation of the model was conducted using manual data
and model prediction data for maize seedlings in different plots at each station in 2021 and
2022. An evaluation of the model’s prediction of maize seedling numbers was conducted
by comparing the model’s seedling count data with manual seedling counts collected in
the field. For the average value and coefficient of variation of seedling spacing, seedling



Remote Sens. 2023, 15, 1979 7 of 15

area, and seedling length, a comparison was made between the data obtained by the
model and the data obtained by manual markers. Four statistical parameters, accuracy,
mean error (ME), mean absolute error (MAE), and root mean square error (RMSE), were
applied to evaluate errors. A simple linear regression was used to fit the relationship
between measured and simulated values, and R2 was calculated and plotted. The following
equations were employed to obtain accuracy, ME, MAE, and RMSE by comparing measured
(M) and corresponding predictive (P) values as follows:

Accuracy =
1
N

N

∑
i=1

(
100 −

(
Pi −Mi

Mi
× 100

))
(1)

ME =
1
N

N

∑
i=1

(Mi − Pi) (2)

MAE =
1
N

N

∑
i=1
|Mi − Pi| (3)

RMSE =

√√√√ 1
N

N

∑
i=1

(Mi − Pi)
2 (4)

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a
multiple-criteria decision making (MCDM) method that can integrate multiple traits into a
scoring indicator. Here, we use the TOPSIS method based on topsis package in R [41] to
synthesize the count, growth, and distribution characteristics of multiple maize seedlings
into crop emergence scores to evaluate the emergence of different experimental plots.

3. Results
3.1. Quantitative Maize Emergence

This study proposes a new measurement system for maize emergence that includes not
only the seedling count and size but also parameters relating to distribution and uniformity.
The measuring system generates two files: a CSV file containing many emergence indicators
from various plots and an image of the UAV with a prediction box (Figure 3A,B). Red
rectangular boxes (detected boxes) indicate all identified maize seedlings in the output
image, while blue rectangular boxes separate experimental plots, allowing us to manually
identify seedlings. Since experimental plots are arranged in a regular and uniform size
form (Figure 3A), rows and columns are used to identify plots in this system. The system,
however, did not export seedling coordinates but rather calculated seedling count, seedling
size, seedling distribution, uniformity, and other relevant qualities and exported them as
CSV files. The seedling count (seedling number) was used to assess the maize emergence
rate, and seedling area, seedling length, and seedling spacing were used to assess the
growth and distribution of seedlings. An experimental plot’s seedling spacing indirectly
reflects its number of seedlings, while its coefficient of variation indicates how evenly the
seedlings are distributed. The average value of seedling size (seedling area and seedling
length) reflects the average growth of seedlings in the experimental plot, while the variation
coefficient of seedling size indicates the uniformity of seedling growth in the plot.

3.2. Evaluation of Seedling Measurement System for Predicting the Seedling Count of Maize

In our system, seedling detection information was used to generate emergence char-
acteristics in various experimental plots. Therefore, the prediction performance of the
seedling count and the factors that influence it were analyzed. Overall, the measurement
system performs well in predicting the number of maize seedlings. In three stations during
2021–2022, the R2 value is between 0.89 and 0.99, and the accuracy value can reach up
to 96.99%; the RMSE is between 28.82 and 214.02; the ME is between 0.78 and 3.77; and
the MAE is between 0.88 and 12.36, except at Zhangye Station in 2022 (the accuracy is
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only 43.96%) (Table 3). The effect of planting density on the seedling count measured
by the seedling measurement system was also investigated. Different planting densities
were applied at Zhuozhou Station in 2021 and Gongzhuling Station in 2022. In 2021, three
planting density treatments were used at Zhuozhou Station (45,000–81,000 plants/ha), and
two planting densities were increased at Gongzhuling Station, with the highest density
increasing to 120,000 plants/ha in 2022. The results show that planting densities rang-
ing from 45,000 to 81,000 plants/ha could maintain high prediction accuracy. Although
prediction accuracy decreased as planting density increased, the average accuracy was
greater than 91% (Figure 4A,B). However, prediction accuracy reduces significantly when
the planting density is above 90,000 plants/ha.

Version April 7, 2023 submitted to Journal Not Specified 4 of 13

Figure 3Figure 3. Output of the seedling measurement system. (A) Image with rectangular prediction box
from the output of the seedling measurement system; (B) enlarged view of part of the output image;
(C) the relationship between the output indicators of the measurement system.
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Table 3. Performance of the seedling measurement system in predicting maize seedling count.

Year Station R2 Accuracy RMSE ME MAE

2021 Gongzhuling 0.9937 92.00 28.82 1.14 1.15
2021 Zhangye 0.9641 83.93 32.50 1.88 3.20
2021 Zhuozhou 0.9984 96.99 11.50 0.78 0.88
2022 Gongzhuling 0.8897 77.76 120.19 3.77 3.81
2022 Zhangye 0.9358 43.96 214.02 12.36 12.36
2022 Zhuozhou 0.9753 89.00 68.52 2.53 2.57

Version April 7, 2023 submitted to Journal Not Specified 5 of 13

Figure 4

Figure 5

Figure 4. Evaluation of the seedling measurement system for predicting the seedling count of maize
under different planting densities. (A) Prediction performance of the seedling measurement system
in different planting density treatments at Zhuozhou Station in 2021; (B) prediction performance of
the seedling measurement system in different planting density treatments at Gongzhuling Station
in 2022.

3.3. Evaluation of the Seedling Measurement System on Prediction of Maize Seedling Distribution

Our system pays attention not only to seedling counts but also to their growth and
distribution characteristics. The distribution characteristics of seedlings were evaluated
using the coefficients of variation in seedling spacing and seedling size, while growth char-
acteristics were evaluated using the average seedling size. Field measurements, however,
cannot provide information about the seedling spacing or seedling size. Accordingly, UAV
aerial images were used to determine the coordinates and location of maize seedlings in
the field with manual markers. This information was used to calculate the characteristics of
the actual seedling spacing, seedling area, and seedling length and to compare the model
evaluation with the model prediction. According to Figure 5, the growth and distribution
characteristics of seedlings have an R2 value between 0.95 and 0.99, an accuracy value
between 82 and 91%, an RMSE of up to 4.95, an MAE of up to 0.52, and an ME of −0.05 to
0.002. Therefore, these traits also have excellent prediction performance.
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Figure 4

Figure 5Figure 5. The relationship between the model output and the manually measured data of seedling
spacing and seedling size-related indicators. SSm: the average value of seedling spacing in the exper-
imental plot; SScv: the coefficient of variation of seedling spacing in the experimental plot; SAm: the
average value of seedling area in the experimental plot; SScv: the coefficient of variation of seedling
area in the experimental plot; SLm: the average value of seedling spacing in the experimental plot.

3.4. Application of the Seedling Measurement System

A demonstration of maize emergence in various plots using the seedling measurement
system was conducted in 2021 at the experimental site in Zhangye. Heat maps were
generated by rebuilding the distribution of plots based on row and column numbers, and
different colors were assigned based on the values of different characteristics (Figure 6).
Seedling count characteristics indicated that some plots at the site had poor seedling
emergence, primarily in the middle and upper regions. The differences in average seedling
spacing were found to be relatively small. However, the coefficient of variation of the
seedling spacing was quite different, which correlated with the lower seedling counting
characteristics (Figures 6 and 7). Seedling size, on the other hand, showed a wide range of
variation in size. There were significant differences among materials at the station because
most of the materials were maize GWAS materials with different genetic backgrounds. To
analyze these parameters and compare maize emergence across plots, the TOPSIS analysis
approach [42] was applied to synthesize multiple characteristics into a score index and
rank the emergence of all plots based on this score index. The comprehensive score of the
emergence of all plots is presented in Table S1 of Support Information 1. The first 10 plots
and the last 10 plots in the order of emergence are summarized in Table 4, respectively.
The distribution characteristics of the seedling emergence scores of all plots are shown in
Figure 8; the result shows that the emergence score of most plots is about 0.1. Consequently,
we will be able to identify the plot with the poor seedlings of maize more effectively. In
this way, we can easily understand the emergence of all plots in the experimental area and
find plots with poor maize seedlings.

Table 4. Top 10 plots and last 10 plots of information based on TOPSIS for maize seedling emergence
at Zhangye Station in 2021.

The Type ID Row Col Score Rank

Top 10 plots

4_34 4 34 0.907732 1
4_35 4 35 0.737265 2
4_43 4 43 0.663084 3
4_36 4 36 0.602543 4
4_39 4 39 0.487979 5
4_9 4 9 0.450847 6

4_22 4 22 0.408759 7
4_41 4 41 0.401846 8
4_61 4 61 0.344274 9
4_52 4 52 0.328818 10
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Table 4. Cont.

The Type ID Row Col Score Rank

The last 10 plots

4_25 4 25 0.079492 207
2_73 2 73 0.078795 208
2_6 2 6 0.078173 209

3_30 3 30 0.077785 210
4_6 4 6 0.077404 211

2_44 2 44 0.07678 212
3_49 3 49 0.075722 213
3_74 3 74 0.075224 214
4_63 4 63 0.071147 215
4_47 4 47 0.061903 216Version April 7, 2023 submitted to Journal Not Specified 6 of 13

Figure 6

Figure 7

Figure 6. The growth and distribution characteristics of maize seedlings at Zhangye Station in 2021.
CV: the coefficient of variation.

Version April 7, 2023 submitted to Journal Not Specified 6 of 13

Figure 6

Figure 7Figure 7. Correlation analysis between growth and distribution characteristics of seedlings at Zhangye
Station in 2021. Count: seedling count; SSm: the average value of seedling spacing in the experimental
plot; SScv: the coefficient of variation of seedling spacing in the experimental plot; SAm: the average
value of seedling area in the experimental plot; SScv: the coefficient of variation of seedling area in the
experimental plot; SLm: the average value of seedling spacing in the experimental plot.
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Figure 8

Table 1. This is a table caption. Tables should be placed in the main text near to the first time they
are cited.

Title 1 Title 2 Title 3

Entry 1 Data Data
Entry 2 Data Data 1

1 Tables may have a footer.

The text continues here (Figure 9 and Table 2). 64

Figure 8. Probability distribution diagram of the TOPSIS score value of seedling emergence in all
plots of Zhangye Experimental Station in 2021.

4. Discussion

A critical aspect of early field management is crop emergence, which may be assessed
by the seedling count, seedling size, and seedling uniformity [19,43]. However, the current
crop seedling evaluation is based on the number of seedlings [3,19,44–46], which does not
account for seedling uniformity. Presently, seedling uniformity is primarily determined
through manual qualitative evaluation, which greatly affects the uniformity index [6]. In
this measurement system, the growth and distribution characteristics of seedlings are
incorporated. Seedling coordinates as well as experimental plot coordinates are used to
calculate the seedling count in each experimental plot, and the mean and coefficient of
variation of the seedling spacing, as well as seedling size (seedling area and seedling
length). A coefficient of variation based on seedling spacing and seedling size in the
experimental area is calculated to reflect the characteristics of distribution uniformity and
growth uniformity. Despite some research having been conducted on seedling uniformity
analysis, this method of evaluating seedling distribution in plots using seedling coordinate
information has significant advantages when compared to other evaluation methods that
use spectrum [22] or complex algorithms (such as pixel distribution features) [6] in terms
of efficiency, cost, and accuracy.

According to our results, the measurement system in this study was able to accurately
predict the seedlings count for most scenarios, similar to Barreto et al. [47] and Bai et al. [4].
However, a high error rate was observed at Zhangye Station in 2022, with an accuracy
of only 43.96%. Aerial images of this station showed that seedlings in the field were
clearly visible and in shadow, which affected the accuracy of the measurement system
(Figure S1). Furthermore, maize GWAS inbred line materials were the primary planting
materials at Zhangye Station in 2021 and the three stations in 2022. Maize inbred lines
tend to have more complex morphological characteristics [48], which can impact accuracy.
The impact of planting density on measurement accuracy was also studied. Plant density
will not significantly affect the prediction performance of the measurement system in the
appropriate range (45,000–81,000 plants/ha). However, when planting density exceeds
81,000 plants/ha, the measurement system will significantly lower its prediction perfor-
mance. The same phenomenon was observed by Liu et al. [49] and has been attributed
to the overlapping of leaves under high density. Recent decades have seen an increase in
planting density as an effective way to improve maize yield [50], and to a substantial extent,
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this has contributed to the rise in yield [51]. Our measuring system is well suited to adapt
to the influence of planting density in the future.

A seedling measurement system’s prediction accuracy can be affected by the choice
of models and the quality of UAV image acquisition [22,32,52]. Yolov3 was used as the
target detection model in this measurement system. Our previous work reported that
several algorithms and backbone networks (Faster_RCNN_resnet50, Faster_RCNN_VGG16,
Yolov3, and Yolov5) had differences in model accuracy, and Yolo v3 and v5 had better
seedling detection performance than Fast RNN (Figures S3 and S4). The Yolo v3 model
performed better than Yolov5 in detecting maize seedlings at different sites. This study
uses Yolo v3 as a seedling detection algorithm (Table S2). In subsequent iterations, the
updated model will be further enhanced. Second, we have selected relatively cheap UAVs,
which will reduce the promotion and application costs. In spite of the fact that cameras
with higher resolution and UAV platforms with stronger performance can achieve better
performance, this inevitably increases the cost of usage. As part of this system, relatively
low-performance UAVs were utilized to collect UAV images at a low cost. Compared
with other more powerful devices for seedling detection research [3,14,53], this device was
more practical.

5. Conclusions

In this study, a maize seedling measurement system was developed that considered
the characteristics of the seedling count, size, uniformity, and distribution comprehensively.
Images were captured by unmanned aerial vehicles. The measurement system for maize
emergence is accurate, but shadows and planting density influence its accuracy.

The TOPSIS method was used to synthesize multiple maize emergence indicators
into a single emergence score. The emergence of all experimental plots can be efficiently
sorted based on this score so that the best and worst plots for emergence can be identified.
The distribution characteristics of the emergence of all plots can also be easily determined
based on this score. The emergence of seedlings on the experimental plot is analyzed
in this way efficiently. Therefore, our system allows us to easily analyze the seeding
quality and seedling emergence of various experimental plots and locate those with poor
seedling emergence.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15081979/s1, Figure S1: Aerial image of maize seedlings at
Zhangye Experimental Station in 2022; Figure S2: The measurement system removes the influence
of weeds outside the row through the detection of maize rows; Figure S3: Performance comparison
of four algorithms (Faster_RCNN_resnet50, Faster_RCNN_VGG16, YOLO_v3, and YOLO_v5) in
maize seedling prediction; Figure S4: Model performance comparison of different models (YOLO_v3
and YOLO_v5). Table S1: Ranking of maize emergence at experimental plots of Zhangye Station in
2021 based on TOPSIS; Table S2: Comparison of accuracy between YOLO_v3 and YOLO_v5 in the
prediction of seedling count of maize.
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