
Citation: Yuan, W.; Zhang, X.; Shi, J.;

Wang, J. LiteST-Net: A Hybrid Model

of Lite Swin Transformer and

Convolution for Building Extraction

from Remote Sensing Image. Remote

Sens. 2023, 15, 1996.

https://doi.org/10.3390/rs15081996

Academic Editors: Yonghao Xu and

Pedram Ghamisi

Received: 1 March 2023

Revised: 6 April 2023

Accepted: 8 April 2023

Published: 10 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

LiteST-Net: A Hybrid Model of Lite Swin Transformer and
Convolution for Building Extraction from Remote
Sensing Image
Wei Yuan 1,2,* , Xiaobo Zhang 2,3, Jibao Shi 2,3 and Jin Wang 1

1 College of Computer Science, Chengdu University, Chengdu 610106, China
2 Sichuan Urban Informatization Surveying and Mapping Engineering Technology Research Center,

Chengdu 610084, China
3 Chengdu Institute of Survey & Investigation, Chengdu 610084, China
* Correspondence: yuanwei@cdu.edu.cn

Abstract: Extracting building data from remote sensing images is an efficient way to obtain geo-
graphic information data, especially following the emergence of deep learning technology, which
results in the automatic extraction of building data from remote sensing images becoming increas-
ingly accurate. A CNN (convolution neural network) is a successful structure after a fully connected
network. It has the characteristics of saving computation and translation invariance with improved
local features, but it has difficulty obtaining global features. Transformers can compensate for the
shortcomings of CNNs and more effectively obtain global features. However, the calculation number
of transformers is excessive. To solve this problem, a Lite Swin transformer is proposed. The three
matrices Q, K, and V of the transformer are simplified to only a V matrix, and the v of the pixel is
then replaced by the v with the largest projection value on the pixel feature vector. In order to better
integrate global features and local features, we propose the LiteST-Net model, in which the features
extracted by the Lite Swin transformer and the CNN are added together and then sampled up step
by step to fully utilize the global feature acquisition ability of the transformer and the local feature
acquisition ability of the CNN. The comparison experiments on two open datasets are carried out
using our proposed LiteST-Net and some classical image segmentation models. The results show
that compared with other networks, all metrics of LiteST-Net are the best, and the predicted image is
closer to the label.

Keywords: building extraction; Lite Swin transformer; swin transformer; deep learning; remote
sensing image

1. Introduction

Building data are a basic component of geographic information data, which can play
an important role in many fields such as urban management, illegal building investigation,
demolition cost estimation, etc. Extracting building data from remote sensing images is
undoubtedly the fastest and most efficient way to obtain city-level building data. However,
even though building data collection from remote sensing images is much more efficient
than field measurement, manually obtaining city-level building data remains a huge
project. Therefore, decades ago, numerous scholars attempted to use machine learning to
automatically extract building data from remote sensing images [1–8]. Although machine
learning can automatically extract ground objects from remote sensing images to a certain
extent, its performance largely depends on the characteristics of artificial design, for which it
is difficult to simultaneously achieve both comprehensiveness and high accuracy. Therefore,
the use of machine learning is greatly limited.

In recent years, deep learning has gradually replaced traditional machine learning
in the field of computer vision, because of its ability to automatically extract the features

Remote Sens. 2023, 15, 1996. https://doi.org/10.3390/rs15081996 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15081996
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3158-3486
https://doi.org/10.3390/rs15081996
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15081996?type=check_update&version=1

Remote Sens. 2023, 15, 1996 2 of 19

required by tasks. The early deep learning network is mainly fully connected; that is,
all neurons in each layer are connected with all neurons in the previous layer and the
next layer. This kind of network involves a huge amount of computation, which means
that the network is not too deep and can only be used for some simple classification
tasks. The emergence of LeNet [9] has alleviated this problem by adopting a convolutional
structure with shared weights, which substantially reduces the computational complexity.
LeNet still has a fully connected layer, which is because it ultimately outputs a probability
of 10 numbers. The calculation amount of the fully connected layer is still large, and
it does not allow images of unrestricted size to be input. In 2014, researchers from the
Visual Geometry Group of Oxford University and Google DeepMind jointly developed a
new deep convolution neural network: VGGNet [10]. VGGNet explores the relationship
between the depth of a convolution neural network and its performance. The authors
constructed a 16–19-layer deep convolution neural network and carried out experiments,
demonstrating that increasing the depth of the network can affect the final performance
of the network to a certain extent, significantly reducing the error rate. At the same time,
the generalization of VGGNet is also very good. VGG remains fully connected. Long
et al. [11] proposed a full convolution network in 2015, using convolution to replace
the full connection in the network such that images of any size can be input, and the
operation speed was improved. FCN realizes semantic segmentation in a real sense, but
the segmentation accuracy is not sufficiently high. In the same year, Ronneberger et al. [12]
proposed the classic UNet segmentation model based on the FCN network. It is simple,
efficient, easy to understand, and easy to build, and can be trained from few data. It
has quickly become the mainstream segmentation network in medicine, remote sensing,
and other fields. Badrinarayanan et al. [13] proposed a SegNet network model similar
to UNet. This model records the index information of the maximum value during max
pooling downsampling and then realizes nonlinear upsampling through the corresponding
pooling index during decoding, so there is no need to learn at the upsampling stage, and
there are fewer network parameters. Zhao et al. [14] proposed a network model called
PSPNet, which uses a pyramid pooling module to process feature information of the
backbone network and then concatenate them together, and the pyramid pooling module
enhances the receptive field of the network and improves the accuracy of segmentation.
In 2014, Google released DeepLabV1 [15], in which a dilated convolution is proposed to
increase the receptive field. Subsequently, Google has successively released some semantic
segmentation network models, such as DeepLabV2 [16] and DeepLabV3 [17], which have
increased image segmentation accuracy. Hou et al. [18] proposed a new pooling strategy,
called strip pooling, which considers a long but narrow kernel, i.e., 1xN or Nx1. Yu et al. [19]
proposed an efficient and effective architecture with a good trade-off between speed and
accuracy, termed Bilateral Segmentation Network or BiSeNet V2. The proposal of ViT [20]
introduced the transformer [21] from natural language processing to computer vision
and broke CNN’s dominant position in this field. The transformer uses only a standard
transformer encoder and can achieve the same or even better effect as a CNN, but its
structure can only be used for image classification. Zheng [22] proposed a network called
SETR, which reshapes the output of the transformer from vectors into an image. Although
the performance of SETR is not very good, it is the first attempt to apply a transformer to
the field of semantic segmentation. Since every token of the transformer has to be operated
with all other tokens, it is very difficult to apply to high-resolution images. In order to solve
this problem, Liu et al. [23] proposed a Swin transformer, which limits the operation of the
transformer to a small window, instead of the whole image, and improves the operation
speed.

With the rapid development of deep learning, many scholars have applied it to the
extraction of buildings from remote sensing images, mainly based on convolution neural
networks. Most of the innovations optimize the network according to the characteristics of
buildings in remote sensing images to improve the accuracy of building extraction. Liu
et al. [24] proposed a spatial residual convolution module called spatial residual initiation

Remote Sens. 2023, 15, 1996 3 of 19

(SRI). Yi et al. [25] proposed a deep convolutional neural network named DeepResUnet.
Diakogiannis et al. [26] proposed a network called Resunet-a. Ye et al. [27] proposed
a network named RFA-UNet. Yu et al. [28] proposed an end-to-end network to extract
buildings from high-resolution remote sensing images. Liu et al. [29] also used a residual
connection network to extract buildings from remote sensing images. Pan et al. [30]
proposed a generative countermeasure network based on spatial and channel attention
mechanisms. Protopapadakis et al. [31] proposed a deep neural network based on stacked
automatic encoder drive and semi-supervised learning. Cheng et al. [32] proposed an
automatic building segmentation network named deep active ray network (DARNet).
Chen et al. [33] proposed a novel fully convolutional neural network called the Context
Feature Enhancement Network (CFENet) to extract buildings from remote sensing images.
Na et al. [34] proposed segmentation networks based on a domain adaptive transfer
attack (DATA) scheme for building extraction from aerial images. Some scholars also start
with the loss function to improve the accuracy of building extraction. Yuan et al. [35]
proposed a loss function considering the spatial relationship of pixels. There are also
some scholars who start from a lightweight network to improve the running speed of the
network. Wang et al. [36] proposed a lightweight U-shaped residual network to extract
buildings from remote sensing images on low computing power or a portable device. Chen
et al. [37] proposed a dense residual neural network with fewer parameters to extract
buildings from remote sensing images. Miao et al. [38] proposed a Feature Residual
Analysis Network (FRA-Net) to realize fast and accurate building extraction. Liu et al. [39]
proposed a lightweight network for single-image super-resolution. Some scholars have
added attention mechanisms to convolutional neural networks to enhance the ability
to capture global features [40–45], achieving some improvements in performance, but
the transformer is a more effective global feature capture structure. With the increasing
popularity of transformers, many scholars have also applied them to the interpretation of
remote sensing images and achieved good results. Liu et al. [46] proposed a transformer-
based model, Informer, to predict rice yield across the Indian Indo-Gangetic Plains. Yuan
et al. [47] proposed a multi-scale adaptive network based on the Swin transformer. The
network fused the multi-level feature map of the Swin transformer to capture multi-scale
information and improved the accuracy of building segmentation. Chen et al. [48] proposed
a multi-scale feature learning transformer network. Chen et al. [49] proposed a sparse
token transformer to learn the global dependency of tokens in both spatial and channel
dimensions. Wang et al. [50] proposed a network called BuildFormer, which fuses the
features extracted by the CNN and the features extracted by the transformer to obtain
higher segmentation accuracy. However, it is easy to cause gradient explosion in the
network, making training difficult.

Although many networks using transformers have been proposed, most are spliced
and combined with different models or combined with a CNN, with little improvement to
the transformer itself. The combination of different structures can indeed achieve better
results, and an important direction of research involves reducing the computation amount
of the transformer while preserving its global feature acquisition ability.

The innovations and contributions of this paper are as follows.

(1) A simplified Swin transformer called Lite Swin transformer is proposed. The Q, K, and
V matrices of the transformer are simplified into only a V matrix. The contribution
weight between pixels is calculated as VVT. The output feature value is replaced by
the V value of the pixel with the largest weight rather than the weighted sum of all
pixels. In this way, the model has fewer parameters and faster calculation speed.

(2) A model integrating Lite Swin transformer and CNN is proposed. In the model, the
features extracted from the two are fused at all levels and upsampled step by step.

(3) We conduct experiments on common open datasets and compare the performance
with that of common network models.

The architecture of LiteST-Net, the Lite Swin transformer algorithm, and the dataset
used in the experiment are introduced in the next section. The software and hardware

Remote Sens. 2023, 15, 1996 4 of 19

equipment used in the experiment, the evaluation metrics of the experiment, and the
experimental results of various main network models on the dataset are introduced in the
third part. The fourth part is a discussion of the generalization and ablation. The last part
is the summary and prospects.

2. Methodology and Materials
2.1. LiteST-Net Architecture

Although the transformer can better capture global features and become a more
popular network structure, the transformer needs to perform a self-attention operation
with all points in the process of capturing the global features, which results in an excess
of captured information. In order to highlight the global features, the local features are
ignored to a certain extent. The convolution operation makes up for this shortcoming.
The convolution kernel generally has a size of 3 × 3, with more focus on local features.
Therefore, we fuse the convolution and transformer at the same level, upsample step by
step, and then fuse different levels to obtain the output.

LiteST-Net consists of three modules in total. The top orange part in Figure 1 is
the convolution module that captures local features. There are four stages in total, and
four levels of features are output. Each stage consists of two convolution blocks and one
MaxPooling block. The kernel size in the convolution block is 3 × 3, BatchNorm is used
for batch normalization, and ReLu is used as the activation function. The kernel size of
MaxPooling is 2, and the stride is also 2. Therefore, after MaxPooling, the length and width
of the feature map will be reduced by half.

The blue part in the middle of Figure 1 is the Lite Swin transformer module, which
can also be seen as four stages, where each stage outputs one feature map, and the size of
the feature map is consistent with that of the convolution module. The structure of the Lite
Swin transformer module is basically the same as that of the Swin transformer, except that
the transformer used is the Lite Swin transformer. The algorithm of Lite Swin transformer
will be described in detail later. The first stage of Swin transformer module includes a
PatchPartition, a LinearEmbedding, and two Lite Swin transformer blocks. The role of
PatchPartition is to convert the input image into tokens, while the role of LinearEmbedding
is to stretch the dimensions of the tokens to better extract features in Lite Swin transformer.
The second and fourth stages of Swin Transformer module contain a PatchMerging block
and two Lite Swin transformer blocks. The third stage contains a PatchMerging block
and six Lite Swin transformer blocks. PatchMerging results in halving of the length and
width of a feature map and doubling the number of channels to save computation and
extract more abstract features. The number of Lite Swin transformer blocks in each stage is
consistent with the original Swin transformer.

The feature maps of different levels are obtained by fusing features of the convolution
module and the Lite Swin transformer module, which is the yellow part in Figure 1.
Differently from the way channels are spliced in other papers, in this paper, we directly use
the method of adding for fusion to reduce the amount of model parameters.

The gray part in Figure 1 is the decoding module. In all gray rectangular boxes, there
are two convolutional blocks, and each convolutional block has convolution with a kernel
size of 3 × 3, BatchNorm, and ReLu activation function. The green down arrow represents
transpose convolution. The kernel size of transpose convolution is 2, and the stride is also
2. Therefore, after each transpose convolution, the length and width of the feature map will
be doubled, and the number of channels will be halved. The red curve represents a skip
connection, which means adding two features in the channel. The decoding process is to
upsample step by step and fuse the features of the same level at the same time.

The decoding of level 1 involves doubling the length and width and halving the
channels through a transpose convolution block (that is, the green arrow down in the
figure), and the decoded image is obtained through two convolution blocks. The decoding
of level 2 involves doubling the length and width, halving the channels through a transpose
convolution block, adding level 1 to it, and then fusing it through two convolution blocks.

Remote Sens. 2023, 15, 1996 5 of 19

The above operation is repeated to obtain a decoded image. The process of decoding
level 3 is to first double the length and width, halve the channels through a transpose
convolution block, add level 2 to it, and then fuse it with two convolution blocks. The
above operation is repeated twice, and level 1 added during the process to obtain the
decoded image. The process of decoding level 4 is to double the length and width, halve
the number of channels through a transpose convolution block, add level 3 to it, and then
fuse it with two convolution blocks. The above operation is repeated three times; level 2
and level 1 are added during the process to obtain the decoded image.

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 19

The decoding of level 1 involves doubling the length and width and halving the
channels through a transpose convolution block (that is, the green arrow down in the
figure), and the decoded image is obtained through two convolution blocks. The decod-
ing of level 2 involves doubling the length and width, halving the channels through a
transpose convolution block, adding level 1 to it, and then fusing it through two convo-
lution blocks. The above operation is repeated to obtain a decoded image. The process of
decoding level 3 is to first double the length and width, halve the channels through a
transpose convolution block, add level 2 to it, and then fuse it with two convolution
blocks. The above operation is repeated twice, and level 1 added during the process to
obtain the decoded image. The process of decoding level 4 is to double the length and
width, halve the number of channels through a transpose convolution block, add level 3
to it, and then fuse it with two convolution blocks. The above operation is repeated three
times; level 2 and level 1 are added during the process to obtain the decoded image.

The decoding of four levels of features will result in four decoded images, all of
which are 512 × 512 × 32 in size. After adding the four decoded images, a convolution
layer is used to change the number of channels into the number of segmentation catego-
ries (which is two in this paper, namely, buildings and background) so as to obtain the
final output.

Figure 1. Architecture of the LiteST-Net network model. The orange part is the convolution module,
the blue part is the Lite Swin transformer module, and the yellow part shows the extracted features
of different levels. The gray part is the decoding module, in which the thick green down arrow is the
transpose convolution, and the red curve is the addition of features. The number in the lower right
corner of blocks shows the size and channels of the feature.

The decoding of four levels of features will result in four decoded images, all of which
are 512 × 512 × 32 in size. After adding the four decoded images, a convolution layer is
used to change the number of channels into the number of segmentation categories (which
is two in this paper, namely, buildings and background) so as to obtain the final output.

Remote Sens. 2023, 15, 1996 6 of 19

2.2. Lite Swin Transformer

The core of the transformer is the self-attention mechanism, in which the input feature
is multiplied by three matrices, WQ, WK, and WV, which are learnable parameters. There-
fore, after multiplication, three token matrices, Q, K, and V will be obtained. Q is the query
token, K is the queried token, and V is the learned token. We can obtain the weight of the
contribution of all other pixels to the pixel by multiplying the q token of a pixel to the k
tokens of all other pixels. After normalizing the weight, we multiply it to the corresponding
v values of these pixels, respectively, and then add them to get the final contribution value
of all pixels to the pixel. The formula is as follows.

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (1)

Since each pixel in the image needs to be multiplied with all other pixels, the results
are weighted and summed. With the increase in image size and channels, the amount
of computation also sharply increases. If the number of pixels is N, the time complexity
is O (N2). Therefore, some algorithms, such as the Swin transformer, limit self-attention
to a small window to reduce the amount of computation. However, the consequence of
this is that it limits the global feature acquisition ability of self-attention, and even if the
operation is limited in a small window, the amount of operation is still relatively large. This
means that many computers with a general configuration are unable to use self-attention
for model training or the training time is very long.

In order to reduce computing cost, we simplify the three matrices WQ, WK, and WV
of self-attention into one WV matrix. The transformer uses QKT to obtain the contribution
weight of all pixels to a certain pixel, then multiplies this weight by the corresponding
v, and sums to get the feature value of this pixel. Because we remove Q and K, we use
VVT to obtain the contribution weight of all pixels to a certain pixel, and because VVT is a
symmetric matrix, the theoretical time complexity can be reduced to O (N2/2). As shown
in Figure 2, for a two-dimensional token, the contribution weight of token 2 and token 3 to
token 1 is the projection of token 2 and token 3 on token 1. This projection can be calculated
by the inner product, namely, VVT. However, if V is normalized, the pixel with the largest
projection in the V direction of a pixel must be the pixel itself. Therefore, we do not use
softmax, which also saves the amount of computation.

After calculating the weight of all pixels to a certain pixel, we do not use the weighted
sum of the transformer to calculate the final feature value of the pixel. Inspired by the idea
of maximum pooling, we consider that the final contribution value of all pixels to a certain
pixel does not need to be weighted and summed by the contribution of all pixels but only
replaced by the token v of the pixel with the largest contribution to a certain pixel; that is, it
only needs to be replaced by the token v of the pixel that has the largest projection on a
certain pixel. As shown in Figure 3, the feature value of pixel 1 is yellow before the Lite
Swin transformer, as shown in Figure 3a. If the contribution weight of pixel 23 to pixel 1 is
greater than that of all other pixels, then the feature value of the pixel 1 becomes red after
the Lite Swin transformer, the same as the feature value of pixel 23, as shown in Figure 3b.

Remote Sens. 2023, 15, 1996 7 of 19Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 19

Figure 2. Schematic diagram of contribution weight of two-dimensional tokens.

After calculating the weight of all pixels to a certain pixel, we do not use the
weighted sum of the transformer to calculate the final feature value of the pixel. Inspired
by the idea of maximum pooling, we consider that the final contribution value of all pix-
els to a certain pixel does not need to be weighted and summed by the contribution of all
pixels but only replaced by the token v of the pixel with the largest contribution to a cer-
tain pixel; that is, it only needs to be replaced by the token v of the pixel that has the
largest projection on a certain pixel. As shown in Figure 3, the feature value of pixel 1 is
yellow before the Lite Swin transformer, as shown in Figure 3a. If the contribution
weight of pixel 23 to pixel 1 is greater than that of all other pixels, then the feature value
of the pixel 1 becomes red after the Lite Swin transformer, the same as the feature value
of pixel 23, as shown in Figure 3b.

(a) (b)

Figure 3. Schematic diagram of maximum weight replacement of the Lite Swin transformer. The
number is the sequence number of the pixel, and the color is the feature value of the pixel, that is,
v in Lite Swin transformer. (a) is the feature map before the Lite Swin transformer, and (b) is the
feature map of the first pixel after being calculated by the Lite Swin transformer.

Figure 2. Schematic diagram of contribution weight of two-dimensional tokens.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 19

Figure 2. Schematic diagram of contribution weight of two-dimensional tokens.

After calculating the weight of all pixels to a certain pixel, we do not use the
weighted sum of the transformer to calculate the final feature value of the pixel. Inspired
by the idea of maximum pooling, we consider that the final contribution value of all pix-
els to a certain pixel does not need to be weighted and summed by the contribution of all
pixels but only replaced by the token v of the pixel with the largest contribution to a cer-
tain pixel; that is, it only needs to be replaced by the token v of the pixel that has the
largest projection on a certain pixel. As shown in Figure 3, the feature value of pixel 1 is
yellow before the Lite Swin transformer, as shown in Figure 3a. If the contribution
weight of pixel 23 to pixel 1 is greater than that of all other pixels, then the feature value
of the pixel 1 becomes red after the Lite Swin transformer, the same as the feature value
of pixel 23, as shown in Figure 3b.

(a) (b)

Figure 3. Schematic diagram of maximum weight replacement of the Lite Swin transformer. The
number is the sequence number of the pixel, and the color is the feature value of the pixel, that is,
v in Lite Swin transformer. (a) is the feature map before the Lite Swin transformer, and (b) is the
feature map of the first pixel after being calculated by the Lite Swin transformer.

Figure 3. Schematic diagram of maximum weight replacement of the Lite Swin transformer. The
number is the sequence number of the pixel, and the color is the feature value of the pixel, that is, v in
Lite Swin transformer. (a) is the feature map before the Lite Swin transformer, and (b) is the feature
map of the first pixel after being calculated by the Lite Swin transformer.

The Lite Swin transformer is represented by pseudocode as Algorithm 1:

Algorithm 1: Lite Swin transformer

Input: feature map, window size
Output: V
1: Cut the feature map into small feature maps according to the window size
2: for small feature in small feature maps
3: Flatten small feature to get a series of Tokens, marked as A
4: Multiply A by WV to get the V of all Tokens
5: For each token, calculate the inner product of all other tokens and it, and the formula

is emphVVT

6: for v in V
7: take v of the token with the largest inner product to replace its v
8: end for
9: reshape V as same as small feature
10: end for
11: Splice V as same shape as original input feature map
12: Move the window position by half the window size, and perform steps 1-11 again
13: Return V

Remote Sens. 2023, 15, 1996 8 of 19

2.3. WHU Building Dataset and Preprocessing

For our experiment, we selected the aerial dataset of the WHU building dataset [51].
This dataset is labeled by Professor Ji Shunping. The aerial dataset includes more than
220,000 independent buildings extracted from aerial images with a spatial resolution of
0.075 m and covering 450 square kilometers of Christchurch, New Zealand. The original
aerial data are from the New Zealand Land Information Service website with a ground
resolution of 0.075 m. For training on most computers, the data are sampled to 0.3 m at
ground resolution and then cropped into 8189 tiles of 512 × 512 pixels. We divided all
tiles into three parts: a training set (4736 tiles, including 130,500 buildings), a validation set
(1036 tiles, including 14,500 buildings), and a test set (2416 tiles, including 42,000 buildings).
Each tile contains a TIF format image that has three channels and a label that has a single
channel.

2.4. Massachusetts Building Dataset and Preprocessing

In order to widely verify the progressiveness of our method, we also chose the Mas-
sachusetts Buildings Dataset [52] for experiments. The area covered by this dataset of im-
ages corresponding to locations in Boston, USA, corresponds to an area of about 340 square
kilometers. There are 151 aerial images in the original dataset, and the size of each image is
1500 × 1500 pixels, with a ground resolution of 1 m and three-channel TIF image format,
and the corresponding label is single-channel TIF.

In order to maintain consistency with the image size of the WHU building dataset
and not adjust the depth learning model parameters, the original image is cropped to a
size of 512 × 512 pixels, one original image is cut into nine images, and the places without
pixels are filled with 0 value. A total of 1359 images were obtained after cropping, with
1233 images for the training set and 126 images for the test set.

3. Experiment and Results
3.1. Hardware and Software for Experiment

The computer hardware used in the experiment is configured as follows: the CPU is
Intel i5-9400f, the memory is Kingston DDR4 8G, and the GPU is one NVIDIA GeForce
RTX 2060 Super 8G. The version of Python is 3.6.8, and both Tensorflow and Pytorch are
used as the deep learning framework for model training, depending on the original code of
the author.

AdamOptimizer [53] was used for back propagation, and the learning rate was set to
0.0001 during training. The sum of L2 regularization and binary cross entropy was used as
the total loss to prevent overfitting. The total loss is shown in Equation (1). The maximum
number of training epochs was set to 100. After each epoch, evaluation was performed on
the validation dataset. Unlike the stopping standard used in [47], in which training was
stopped if the metrics in the validation set no longer increased for 10 consecutive epochs,
our stopping standard was that if loss in the validation set was no longer reduced for 10
consecutive epochs, then training was stopped.

TotalLoss = BinaryCrossEntropy + L2
L2 = ||w||22 = ∑

i

∣∣w2
i

∣∣ }
(2)

3.2. Evaluation Metrics

When the recall value rises, the precision will decline, and vice versa. Therefore, we
do not use them alone as the evaluation metric but in combination for F1-score as the
evaluation metric. The other two evaluation metrics are the most commonly used, mIoU
and Accuracy. The method for calculation of these is shown in Equations (3)–(7).

The formula for mIoU is:

mIoU =
1

N + 1

N

∑
i=0

TP
TP + FN + FP

(3)

Remote Sens. 2023, 15, 1996 9 of 19

The formula for Accuracy is:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

The formula for the F1-score is:

F1-Score =
2× Precison× Recall

Precison + Recall
(5)

where precision and recall are:

Precison =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

In all formulas, N is the number of the foreground. TP is the abbreviation for true
positive, which is the number of pixels correctly predicted as the foreground. FP is the
abbreviation for false positive, which is the number of background pixels misjudged as
the foreground. TN is the abbreviation for true negative, which is the number of pixels
correctly predicted as the background. FN is the abbreviation for false negative, which is
the number of foreground pixels misjudged as background. In Equation (3), the building
and background are regarded as the foreground to obtain IoU, and the average value is
then taken as mIoU. The foreground in Equations (5)–(7) is the building.

3.3. Results on the WHU Building Dataset

The experimental results on the WHU building dataset are shown in Table 1. It can
be seen that our method performs best in three evaluation metrics: mIoU, F1-score, and
Accuracy.

Table 1. Results of classic networks on the WHU building test dataset.

Encoder Methods mIoU (%) F1-Score (%) Accuracy (%)

CNN

SegNet 83.8 83.5 96.4
DeepLab V3 84.6 84.3 96.7

PSPNet 86.7 86.8 97.0
SPNet 87.3 87.5 97.2

CFENet 88.1 88.2 97.5
Shift Pooling PSPNet 89.1 89.4 97.7

Transformer

SETR 83.5 83.1 96.3
MSST-Net 88.0 88.2 97.4

BuildFormer 90.2 90.6 97.9
LiteST-Net 92.1 92.5 98.4

The encoders of SegNet, DeepLabV3, SPNet, CFENet, PSPNet, and Shift Pooling
PSPNet are pure convolutional neural networks. Among them, the best performer is Shift
Pooling PSPNet, followed by CFENet. The worst performer is SegNet, and DeepLab V3 is
the second worst. PSPNet and SPNet are in the middle. Shift Pooling PSPNet uses the Shift
Pooling pyramid pooling module instead of PSPNet’s pyramid pooling module, so that
the pixels at the edge of the pooling grid can also capture complete local features, and the
performance is greatly improved. It can be seen from Table 1 that the mIoU of Shift Pooling
PSPNet is 2.4% higher than that of PSPNet and 1% higher than that of CFENet, which is
the second best performer; the F1-score of Shift Pooling PSPNet is 2.6% higher than that
of PSPNet and 1.2% higher than that of CFENet; the Accuracy of Shift Pooling PSPNet is
0.7% higher than that of PSPNet and 0.2% higher than that of CFENet; the mIou, F1-Score,
and Accuracy of Shift Pooling PSPNet are 5.3%, 5.9%, and 1.3% higher, respectively, than
the worst SegNet. This is enough to show that the receptive field of the network is an

Remote Sens. 2023, 15, 1996 10 of 19

important factor to improve the performance of the model. However, the convolution
kernel of the convolutional neural network is usually small, and its performance is superior
when capturing local features but inadequate for global features.

The introduction of the transformer into the coder of SETR, MSST-Net, BuildFormer,
and LiteST-Net can compensate for the deficiency of the convolutional neural network in
capturing global features. The SETR and MSST-Net encoders are pure transformers, while
BuildFormer and LiteST-Net encoders have both transformers and convolutional neural
networks. From Table 1, it can be seen that the performance of encoders with the pure
transformer is poor even for MSST-Net, which has relatively good performance among
these encoders but is slightly worse than some encoders using only convolutional neural
network, while the encoders using both transformer and convolutional neural network
have better performance. This shows that although the transformer can capture global
information, it needs to calculate with all pixels, so the amount of captured information is
huge, and the information of local features will be submerged. If both the transformer and
convolutional neural network are used for encoding, they can complement each other so as
to achieve better results.

Our proposed LiteST-Net not only uses the transformer and convolution neural net-
work at the same time but also carries out feature fusion at each level, which is more able
to capture information of different scales than BuildFormer which only carries out feature
fusion at one level. It can be seen from Table 1 that the mIoU of LiteST-Net is 1.9% higher
than that of BuildFormer; for F1-score, LiteST-Net is 1.9% higher than BuildFormer; for
Accuracy, LiteST-Net is 0.5% higher than BuildFormer, because the value of the evaluation
metric has exceeded 90%, so it is excellent to increase 1.9%. On the other hand, compared
with Shift Pooling PSPNet, which is the best in the pure convolution neural network, mIoU
increased by 3%, F1-score increased by 3.1%, and Accuracy increased by 0.7%, and it can be
said that the improvement is significant.

Figures 4 and 5 show the visualization results of some recent deep learning networks
on the WHU building test dataset. Figure 4 shows the visualization results for small
buildings, and Figure 5 shows the visualization results for large buildings.

From Figure 4, we can see that SegNet, DeepLabV3, PSPNet, SPNet, CFENet, and Shift
Pooling PSPNet, which use the convolution as the encoder, rarely miss in the detection of
small houses, but we can see that the edges of the houses are too smooth, and the right
angles and straight lines of the houses are simplified into curves, as shown in the red
rectangular box in Figure 4.

SETR, MSST-Net, and BuildFormer, which use the transformer as the encoder, may
miss detection in some cases. As shown in the red rectangle in Figure 4, many pixels of the
house are misjudged as background. However, the right angles and straight lines of the
house extracted by the network model with transformer as the encoder are more obvious,
and the segmentation ability of the house edge pixels is stronger. Because our network
model uses the convolution and transformer encoders at the same time and integrates
at different levels, it can have the advantages of the convolution and transformer at the
same time, so the extracted houses are less likely to be missed in detection, and the edge
information of houses can be well retained, matching closest to the labels.

As seen from the house extraction results shown in Figure 5, SegNet has the worst
extraction effect and misjudges the different texture parts on both sides of the house as the
background. This is basically consistent with the metric ranking in Table 1. Among the
other networks using convolution as encoder, DeepLabV3, PSPNet, SPNet, CFENet, and
Shift Pooling PSPNet, the best performing is CFENet, which can show the right angle of the
building clearly, but there are some errors, as shown in the two spots up the red rectangle
in Figure 5. For the other convolution networks, although missed detection is not obvious,
the pixel segmentation effect of the edge of the building is poor, and the right angles and
straight lines cannot be recognized, as shown in the red rectangle in Figure 5.

The networks with transformer as encoder, SETR, MSST-Net, and BuildFormer, are
better than the networks with the convolutional encoder. For the networks with the

Remote Sens. 2023, 15, 1996 11 of 19

transformer as the encoder, there are fewer missed houses in detection, and the straight line
and right angle of the house edge are clearly identifiable, as shown in the red rectangular
box in Figure 5. However, some false detections are also found using this kind of network,
as shown in the upper part of the red rectangle in Figure 5, which is particularly obvious
for SETR. Our network model uses convolution and transformer encoders at the same time
and integrates them at different levels, so it can have the advantages of both convolution
and transformer at the same time. Even if there are some false positives, the amount is very
small. The straight line and right angle of the edge are basically consistent with the label.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 19

Figures 4 and 5 show the visualization results of some recent deep learning net-
works on the WHU building test dataset. Figure 4 shows the visualization results for
small buildings, and Figure 5 shows the visualization results for large buildings.

From Figure 4, we can see that SegNet, DeepLabV3, PSPNet, SPNet, CFENet, and
Shift Pooling PSPNet, which use the convolution as the encoder, rarely miss in the de-
tection of small houses, but we can see that the edges of the houses are too smooth, and
the right angles and straight lines of the houses are simplified into curves, as shown in
the red rectangular box in Figure 4.

SETR, MSST-Net, and BuildFormer, which use the transformer as the encoder, may
miss detection in some cases. As shown in the red rectangle in Figure 4, many pixels of
the house are misjudged as background. However, the right angles and straight lines of
the house extracted by the network model with transformer as the encoder are more ob-
vious, and the segmentation ability of the house edge pixels is stronger. Because our
network model uses the convolution and transformer encoders at the same time and in-
tegrates at different levels, it can have the advantages of the convolution and transform-
er at the same time, so the extracted houses are less likely to be missed in detection, and
the edge information of houses can be well retained, matching closest to the labels.

Figure 4. Prediction of classic networks for small buildings on the WHU building test dataset. The
red box shows the predicted results of various models for the same small building.

As seen from the house extraction results shown in Figure 5, SegNet has the worst
extraction effect and misjudges the different texture parts on both sides of the house as
the background. This is basically consistent with the metric ranking in Table 1. Among

Figure 4. Prediction of classic networks for small buildings on the WHU building test dataset. The
red box shows the predicted results of various models for the same small building.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 19

the other networks using convolution as encoder, DeepLabV3, PSPNet, SPNet, CFENet,
and Shift Pooling PSPNet, the best performing is CFENet, which can show the right an-
gle of the building clearly, but there are some errors, as shown in the two spots up the
red rectangle in Figure 5. For the other convolution networks, although missed detection
is not obvious, the pixel segmentation effect of the edge of the building is poor, and the
right angles and straight lines cannot be recognized, as shown in the red rectangle in
Figure 5.

The networks with transformer as encoder, SETR, MSST-Net, and BuildFormer, are
better than the networks with the convolutional encoder. For the networks with the
transformer as the encoder, there are fewer missed houses in detection, and the straight
line and right angle of the house edge are clearly identifiable, as shown in the red rec-
tangular box in Figure 5. However, some false detections are also found using this kind
of network, as shown in the upper part of the red rectangle in Figure 5, which is partic-
ularly obvious for SETR. Our network model uses convolution and transformer encod-
ers at the same time and integrates them at different levels, so it can have the advantages
of both convolution and transformer at the same time. Even if there are some false posi-
tives, the amount is very small. The straight line and right angle of the edge are basically
consistent with the label.

Figure 5. Prediction of classic networks for large buildings on the WHU building test dataset. The
red box shows the predicted results of various models for the same large building.

Figure 5. Cont.

Remote Sens. 2023, 15, 1996 12 of 19

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 19

the other networks using convolution as encoder, DeepLabV3, PSPNet, SPNet, CFENet,
and Shift Pooling PSPNet, the best performing is CFENet, which can show the right an-
gle of the building clearly, but there are some errors, as shown in the two spots up the
red rectangle in Figure 5. For the other convolution networks, although missed detection
is not obvious, the pixel segmentation effect of the edge of the building is poor, and the
right angles and straight lines cannot be recognized, as shown in the red rectangle in
Figure 5.

The networks with transformer as encoder, SETR, MSST-Net, and BuildFormer, are
better than the networks with the convolutional encoder. For the networks with the
transformer as the encoder, there are fewer missed houses in detection, and the straight
line and right angle of the house edge are clearly identifiable, as shown in the red rec-
tangular box in Figure 5. However, some false detections are also found using this kind
of network, as shown in the upper part of the red rectangle in Figure 5, which is partic-
ularly obvious for SETR. Our network model uses convolution and transformer encod-
ers at the same time and integrates them at different levels, so it can have the advantages
of both convolution and transformer at the same time. Even if there are some false posi-
tives, the amount is very small. The straight line and right angle of the edge are basically
consistent with the label.

Figure 5. Prediction of classic networks for large buildings on the WHU building test dataset. The
red box shows the predicted results of various models for the same large building.

Figure 5. Prediction of classic networks for large buildings on the WHU building test dataset. The
red box shows the predicted results of various models for the same large building.

3.4. Results on the Massachusetts Building Dataset

The experimental results on the Massachusetts building dataset are shown in Table 2.
It can be seen that our method performs best in the three evaluation metrics of mIoU,
F1-score, and Accuracy. Compared with Shift Pooling PSPNet, which is the second best
among all encoders, the mIoU increased by 1.1%; the F1-score increased by 1.8%. On the
other hand, the mIoU of LiteST-Net is 3.6% higher than that of BuildFormer, which is the
second best among transformer encoders; for F1-score, LiteST-Net is 5.4% higher than
BuildFormer; for Accuracy, LiteST-Net is 0.5% higher than BuildFormer.

The encoders of SegNet, DeepLabV3, SPNet, CFENet, PSPNet, and Shift Pooling
PSPNet are pure convolutional neural networks. Among them, the best performing is
Shift Pooling PSPNet; it is consistent with the WHU building dataset, but different from
the WHU building dataset; the second best is PSPNet. DeepLab V3 is the worst network,
SegNet is the second worst, and CFENet and SPNet are in the middle. The ranking of
networks is slightly different from that on the WHU building dataset, but in general, Shift
Pooling PSPNet is the best. It can be seen from Table 2 that the mIoU of Shift Pooling
PSPNet is 3.6% higher than PSPNet, the second best, and 4% higher than CFENet, the third
best; the F1-score of Shift Pooling PSPNet is 4.3% higher than that of PSPNet and 5.6%
higher than that of CFENet; the Accuracy of Shift Pooling PSPNet is 1.8% higher than that
of PSPNet and 1.2% higher than that of CFENet.

SETR, MSST-Net, BuildFormer, and LiteST-Net introduce transformer into the encoder
to compensate for the lack of a convolutional neural network to capture global features.
Among them, the encoders of SETR and MSST-Net are pure transformers, while the
encoders of BuildFormer and LiteST-Net have both transformers and convolutional neural
networks. From Table 2, it can be seen that the performance of the pure transformer encoder
is poor. Even the good MSST-Net among them is slightly worse than many encoders that
only use the convolutional neural network. This is different from the performance of the
WHU building dataset. We find that the performance of the pure transformer network
is not as good as that of the pure convolution neural network on the dataset with low
labeling accuracy, and the error tolerance is lower than that of CNN. The encoder using
both transformer and convolutional neural network has better performance, which shows
that this network has better error-tolerance ability even on the dataset with low labeling
accuracy.

Remote Sens. 2023, 15, 1996 13 of 19

Table 2. Results of classic semantic segmentation on the Massachusetts building test dataset.

Encoder Methods mIoU (%) F1-Score (%) Accuracy (%)

CNN

SegNet 69.9 66.7 90.7
DeepLab V3 67.5 63.8 89.3

PSPNet 71.8 70.0 90.8
SPNet 70.6 68.0 90.6

CFENet 71.4 68.7 91.4
Shift Pooling PSPNet 75.4 74.3 92.6

Transformer

SETR 67.9 63.5 90.2
MSST-Net 71.0 68.6 90.9

BuildFormer 72.9 70.7 92.0
LiteST-Net 76.5 76.1 92.5

Figure 6 shows the visualization of networks for large buildings on the Massachusetts
building dataset. DeepLabV3 and SETR have the worst performance on the large buildings,
with a high rate of false negative. MSST-Net also has a high rate of false negative on large
buildings. This shows that the false negative of these three networks will increase on the
dataset with low labeling accuracy and low resolution. For the rest of the network models,
except for a small amount of false negative in SegNet and BuildFormer, most of the network
models can detect complete large houses, as shown in the red circle in Figure 6.

From all the visual images on the test data of Massachusetts buildings, we can see that
the performance of our LiteST-Net is the best; there are basically no false negatives, the
house edges are very clear, and the straight lines and right angles of the house are clear.
This is consistent with the results on the WHU building dataset.

Figure 7 shows the visualization of small buildings on the Massachusetts building
dataset. Due to the fact that networks using convolutional encoders pay more attention
to local features, there are many false positive pixels in the prediction of small buildings,
especially in SegNet. The least false positive pixels are in CFENet, but they have some false
negative pixels, as shown in the prediction results in the red circle in Figure 7. Networks
using transformer as an encoder have a stronger ability to capture global features, so there
are far fewer false positive pixels. Of these, SETR is the worst but it is also better than most
convolutional networks. BuildFormer and LiteST-Net have the fewest false positive pixels,
but BuildFormer has some false negative pixels.

From all the images, we can see that the LiteST-Net proposed by us is also the best in
extracting small buildings, with not only the fewest false positive pixels but also the fewest
false negative pixels, and it is closest to the label.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 19

network models, except for a small amount of false negative in SegNet and BuildFormer,
most of the network models can detect complete large houses, as shown in the red circle
in Figure 6.

From all the visual images on the test data of Massachusetts buildings, we can see
that the performance of our LiteST-Net is the best; there are basically no false negatives,
the house edges are very clear, and the straight lines and right angles of the house are
clear. This is consistent with the results on the WHU building dataset.

Figure 6. Prediction of large building on the Massachusetts building test dataset. The red circle
shows the predicted results of various models for the same large building.

Figure 7 shows the visualization of small buildings on the Massachusetts building
dataset. Due to the fact that networks using convolutional encoders pay more attention
to local features, there are many false positive pixels in the prediction of small buildings,
especially in SegNet. The least false positive pixels are in CFENet, but they have some
false negative pixels, as shown in the prediction results in the red circle in Figure 7.
Networks using transformer as an encoder have a stronger ability to capture global fea-
tures, so there are far fewer false positive pixels. Of these, SETR is the worst but it is also
better than most convolutional networks. BuildFormer and LiteST-Net have the fewest
false positive pixels, but BuildFormer has some false negative pixels.

Figure 6. Cont.

Remote Sens. 2023, 15, 1996 14 of 19

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 19

network models, except for a small amount of false negative in SegNet and BuildFormer,
most of the network models can detect complete large houses, as shown in the red circle
in Figure 6.

From all the visual images on the test data of Massachusetts buildings, we can see
that the performance of our LiteST-Net is the best; there are basically no false negatives,
the house edges are very clear, and the straight lines and right angles of the house are
clear. This is consistent with the results on the WHU building dataset.

Figure 6. Prediction of large building on the Massachusetts building test dataset. The red circle
shows the predicted results of various models for the same large building.

Figure 7 shows the visualization of small buildings on the Massachusetts building
dataset. Due to the fact that networks using convolutional encoders pay more attention
to local features, there are many false positive pixels in the prediction of small buildings,
especially in SegNet. The least false positive pixels are in CFENet, but they have some
false negative pixels, as shown in the prediction results in the red circle in Figure 7.
Networks using transformer as an encoder have a stronger ability to capture global fea-
tures, so there are far fewer false positive pixels. Of these, SETR is the worst but it is also
better than most convolutional networks. BuildFormer and LiteST-Net have the fewest
false positive pixels, but BuildFormer has some false negative pixels.

Figure 6. Prediction of large building on the Massachusetts building test dataset. The red circle shows
the predicted results of various models for the same large building.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 19

From all the images, we can see that the LiteST-Net proposed by us is also the best
in extracting small buildings, with not only the fewest false positive pixels but also the
fewest false negative pixels, and it is closest to the label.

Figure 7. Prediction of small buildings on the Massachusetts building test dataset. The red circle
shows the predicted results of various models for the same small building.

4. Discussion
4.1. Ablation Experiment

In order to directly compare the complexity of the models, we use get_ model_
complexity_ info function in ptflops library to obtain the parameter amounts of several
models that perform well on the WHU building dataset, as shown in Table 3.

From the table, we can see that MSST-Net has the least number of parameters, only
16.28 M. CFENet has highest parameter amount, at 44.06 M. If our network LiteST-Net
uses the original transformer algorithm, the parameter amount is 20.97 M, and when
Lite Swin transformer is used, since the three matrices Q, K, and V are simplified into a
V matrix, the parameter amount is reduced to 18.03 M. Although the parameter amount
of our LiteST-Net is not the least, it is the second least and only 1 M more than the least,
MSST-Net. Therefore, it is very worthwhile to increase the segmentation accuracy by
adding only 1.75 M parameters.

Figure 7. Prediction of small buildings on the Massachusetts building test dataset. The red circle
shows the predicted results of various models for the same small building.

Remote Sens. 2023, 15, 1996 15 of 19

4. Discussion
4.1. Ablation Experiment

In order to directly compare the complexity of the models, we use get_ model_ com-
plexity_ info function in ptflops library to obtain the parameter amounts of several models
that perform well on the WHU building dataset, as shown in Table 3.

Table 3. Parameter amount of several models that perform well on the WHU building dataset.

Methods Params (M)

CFENet 44.06
Shift Pooling PSPNet 42.69

MSST-Net 16.28
BuildFormer 18.08

LiteST-Net (Swin transformer) 20.97
LiteST-Net (Lite Swin transformer) 18.03

From the table, we can see that MSST-Net has the least number of parameters, only
16.28 M. CFENet has highest parameter amount, at 44.06 M. If our network LiteST-Net uses
the original transformer algorithm, the parameter amount is 20.97 M, and when Lite Swin
transformer is used, since the three matrices Q, K, and V are simplified into a V matrix,
the parameter amount is reduced to 18.03 M. Although the parameter amount of our
LiteST-Net is not the least, it is the second least and only 1 M more than the least, MSST-Net.
Therefore, it is very worthwhile to increase the segmentation accuracy by adding only
1.75 M parameters.

In order to verify whether the performance would decrease after reducing the parame-
ter, we conducted an ablation experiment on the WHU building dataset. In the experiment,
we used the same LiteST-Net network, including the same decoding structure, the same
training strategy, same loss function, etc.

The experimental results in Table 4 show that when we use the original Swin trans-
former fused by multi-level convolutional, the mIoU is 91.8, F1-score is 92.2, and Accuracy
is 98.3. When using our proposed Lite Swin transformer fused by multi-level fusion, all
metrics have been improved by 0.1 to 0.3. Although the improvement is not significant,
at least it has been proven that our method does not lose accuracy while reducing weight.
When using Lite Swin transformer to fuse with the final level of convolution, the mIoU
is 91.3, F1-score is 91.7, and accuracy is 98.2, which is a significant decrease compared with
the metrics of multi-level fusion. Through ablation experiments, it can be seen that the
Lite Swin transformer proposed by us not only does not have reduced accuracy, but that
it is even slightly improved. The multi-level fusion with convolution greatly improves
accuracy.

Table 4. Results of LiteST-Net on the WHU building test dataset.

Methods mIoU (%) F1-Score (%) Accuracy (%)

LiteST-Net
(original Swin transformer + multi-level Conv) 91.8 92.2 98.3

LiteST-Net
(Lite Swin transformer + last level Conv) 91.3 91.7 98.2

LiteST-Net
(Lite Swin transformer + multi-level Conv) 92.1 92.5 98.4

4.2. Generalizations Discussion

Generalization performance is an important indicator to measure the quality of a net-
work. In Table 5, we list the mIoU of all networks on the WHU building validation dataset
and test dataset and their difference. From the table, we can see that the most differences
are between 0 and −1, which indicates that most networks have good generalization.

Remote Sens. 2023, 15, 1996 16 of 19

Table 5. mIoU of all networks on validation and test dataset of the WHU building dataset.

Methods mIoU of Validation Dataset (%) mIoU of Test Dataset (%) Test Validation (%)

SegNet 86.3 83.8 −2.5
DeepLab V3 85.2 84.6 −0.6

PSPNet 87.4 86.7 −0.7
SPNet 87.9 87.3 −0.6

CFENet 89.0 88.1 −0.9
Shift Pooling PSPNet 89.6 89.1 −0.5

SETR 82.8 83.5 0.7
MSST-Net 88.1 88.0 −0.1

BuildFormer 91.5 90.2 −1.3
LiteST-Net 92.6 92.1 −0.5

The generalization of SETR is the best; the mIoU on the test set is 0.7 higher than that
on the validation set. MSST-Net is the second best in generalization; the mIoU on the test
set is only 0.1 lower than that on the validation set. Shift Pooling PSPNet and LiteST-Net
ranked third, with the mIoU on the test set 0.5 lower than that on the validation set.

SegNet has the worst generalization, with the mIoU on the test set 2.5 lower than that
on the validation set. The generalization of BuildFormer is the second worst, with the mIoU
on the test set 1.3 lower than that on the validation set.

5. Conclusions

In this paper, we have made improvements to the Swin transformer and proposed a
new network called LiteST-Net. Specifically, first of all, the original Q, K, and V matrices
are simplified into a V matrix, and VVT is used as the weight of the contribution between
pixels. Then, we present the method of calculating the features by weighting all pixels
and directly use the V of the pixel with the largest weight to replace it. Through these
improvements, Swin transformer’s training parameters have been reduced by two-thirds.
Using the improved Swin transformer, we propose a multi-level fusion network named
LiteST-Net. In this network, we fused the features of improved Swin Transformer and
convolution at four scales, and then decoded them.

On the two open building datasets, we use the classic convolutional neural networks
SegNet, DeepLab V3, PSPNet, SPNet, CFENet, Shift Pooling PSPNet, and some networks
with transformer as the encoder, SETR, MSST-Net, and BuildFormer, to compare with our
proposed networks. The results show that compared with other networks, our network is
almost the best in three metrics: mIoU, F1-score, and Accuracy. From the visual images on
the test set, our network has the least erroneous pixels, most of the building edge pixels
are classified correctly, and building edge straight lines and right angles can be clearly
distinguished, even the same as ground truth. Although this article only explores the
performance of our proposed network in extracting buildings from remote sensing images,
theoretically, our network can also be used for segmentation of other objects, such as roads
and water.

Our Lite Swin transformer is lighter than the original swin transformer, but the
computational complexity has not decreased, and we still need to calculate the weight score
of pixels one by one. In future work, we will further explore a new network that can replace
the global feature capture capability of transformer, a network with faster computing speed,
to save hardware resources.

Author Contributions: W.Y. designed the comparative experiments, coded the software, and wrote
the manuscript; J.S. prepared data; X.Z. managed the project; J.W. revised the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was Funded by Sichuan Urban Informatization Surveying and Mapping
Engineering Technology Research Center, No. CDKC-2022001.

Remote Sens. 2023, 15, 1996 17 of 19

Data Availability Statement: The data used in this study are from open datasets. The datasets can
be downloaded from https://gpcv.whu.edu.cn/data/building_dataset.html (accessed on 20 June
2020). Code can be downloaded from https://github.com/chinaericy/LiteST-Net (accessed on 2
April 2023).

Acknowledgments: We would like to thank the anonymous reviewers for their constructive and
valuable suggestions on the earlier drafts of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Turker, M.; Koc-San, D. Building extraction from high-resolution optical spaceborne images using the integration of support

vector machine (SVM) classification, Hough transformation and perceptual grouping. Int. J. Appl. Earth Obs. Geoinf. 2015, 34,
58–69. [CrossRef]

2. Dornaika, F.; Moujahid, A.; El Merabet, Y.; Ruichek, Y. Building detection from orthophotos using a machine learning approach:
An empirical study on image segmentation and descriptors. Expert Syst. Appl. 2016, 58, 130–142. [CrossRef]

3. Ok, A.O. Automated detection of buildings from single VHR multispectral images using shadow information and graph cuts.
ISPRS J. Photogramm. Remote Sens. 2013, 86, 21–40. [CrossRef]

4. Awrangjeb, M.; Zhang, C.; Fraser, C.S. Improved building detection using texture information. Int. Arch. Photogramm. Remote
Sens. Spat. Inf. Sci. 2011, 38, 143–148. [CrossRef]

5. Huang, X.; Zhang, L. A multidirectional and multiscale morphological index for automatic building extraction from multispectral
GeoEye-1 imagery. Photogramm. Eng. Remote Sens. 2011, 77, 721–732. [CrossRef]

6. Huang, X.; Zhang, L. Morphological building/shadow index for building extraction from high-resolution imagery over urban
areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 5, 161–172. [CrossRef]

7. Li, Z.; Shi, W.; Wang, Q.; Miao, Z. Extracting manmade objects from high spatial resolution remote sensing images via fast level
set evolutions. IEEE Trans. Geosci. Remote Sens. 2014, 53, 883–899.

8. Zhang, T.; Huang, X.; Wen, D.; Li, J. Urban building density estimation from high-resolution imagery using multiple features and
support vector regression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3265–3280. [CrossRef]

9. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

10. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–14. Available online:
https://arxiv.org/abs/1409.1556 (accessed on 3 July 2021).

11. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Washington, DC, USA, 7–12 June 2015; pp. 3431–3440.

12. Ronneberger, O.; Fischer, P.; Brox, T. Convolutional networks for biomedical image segmentation. In Proceedings of the 2015
Medical Image Computing and Computer Assisted Intervention, Piscataway, NJ, USA, 5–9 October 2015; pp. 234–241.

13. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

14. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239.

15. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets
and fully connected crfs. arXiv 2014, arXiv:1412.7062.

16. Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [CrossRef] [PubMed]

17. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017,
arXiv:1706.05587.

18. Hou, Q.; Zhang, L.; Cheng, M.M.; Feng, J. Strip Pooling: Rethinking Spatial Pooling for Scene Parsing. In Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.

19. Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. BiSeNet V2: Bilateral Network with Guided Aggregation for Real-Time
Semantic Segmentation. Int. J. Comput. Vis. 2021, 129, 3051–3068. [CrossRef]

20. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words:Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

21. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need.
arXiv 2017, arXiv:1706.03762.

22. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.S.; et al. Rethinking Semantic
Segmentation from a Sequence-to-Sequence Perspective with Transformers. arXiv 2020, arXiv:2012.15840.

23. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. arXiv 2021, arXiv:2103.14030.

https://gpcv.whu.edu.cn/data/building_dataset.html
https://github.com/chinaericy/LiteST-Net
https://doi.org/10.1016/j.jag.2014.06.016
https://doi.org/10.1016/j.eswa.2016.03.024
https://doi.org/10.1016/j.isprsjprs.2013.09.004
https://doi.org/10.5194/isprsarchives-XXXVIII-3-W22-143-2011
https://doi.org/10.14358/PERS.77.7.721
https://doi.org/10.1109/JSTARS.2011.2168195
https://doi.org/10.1109/JSTARS.2017.2669217
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2017.2699184
https://www.ncbi.nlm.nih.gov/pubmed/28463186
https://doi.org/10.1007/s11263-021-01515-2

Remote Sens. 2023, 15, 1996 18 of 19

24. Liu, P.; Liu, X.; Liu, M.; Shi, Q.; Yang, J.; Xu, X.; Zhang, Y. Building footprint extraction from high-resolution images via spatial
residual inception convolutional neural network. Remote Sens. 2019, 11, 830. [CrossRef]

25. Yi, Y.N.; Zhang, Z.J.; Zhang, W.C.; Zhang, C.R.; Li, W.D.; Zhao, T. Semantic segmentation of urban buildings from vhr remote
sensing imagery using a deep convolutional neural network. Remote Sens. 2019, 11, 1774. [CrossRef]

26. Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. Resunet-a: A deep learning framework for semantic segmentation of remotely
sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [CrossRef]

27. Ye, Z.; Fu, Y.; Gan, M.; Deng, J.; Comber, A.; Wang, K. Building extraction from very high resolution aerial imagery using joint
attention deep neural network. Remote Sens. 2019, 11, 2970. [CrossRef]

28. Yu, B.; Yang, L.; Chen, F. Semantic segmentation for high spatial resolution remote sensing images based on convolution neural
network and pyramid pooling module. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3252–3261. [CrossRef]

29. Liu, Y.H.; Zhou, J.; Qi, W.H.; Li, X.L.; Gross, L.; Shao, Q.; Zhao, Z.G.; Ni, L.; Fan, X.W.; Li, Z.Q. Arc-net: An efficient network for
building extraction from high-resolution aerial images. IEEE Access 2020, 8, 154997–155010. [CrossRef]

30. Pan, X.; Yang, F.; Gao, L.; Chen, Z.; Zhang, B.; Fan, H.; Ren, J. Building extraction from high-resolution aerial imagery using a
generative adversarial network with spatial and channel attention mechanisms. Remote Sens. 2019, 11, 917. [CrossRef]

31. Protopapadakis, E.; Doulamis, A.; Doulamis, N.; Maltezos, E. Stacked autoencoders driven by semi-supervised learning for
building extraction from near infrared remote sensing imagery. Remote Sens. 2021, 13, 371. [CrossRef]

32. Cheng, D.; Liao, R.; Fidler, S.; Urtasun, R. Darnet: Deep active ray network for building segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7431–7439.

33. Chen, J.; Zhang, D.; Wu, Y.; Chen, Y.; Yan, X. A Context Feature Enhancement Network for Building Extraction from High-
Resolution Remote Sensing Imagery. Remote Sens. 2022, 14, 2276. [CrossRef]

34. Na, Y.; Kim, J.H.; Lee, K.; Park, J.; Hwang, J.Y.; Choi, J.P. Domain Adaptive Transfer Attack (DATA)-based Segmentation Networks
for Building Extraction from Aerial Images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5171–5182. [CrossRef]

35. Yuan, W.; Xu, W. NeighborLoss: A Loss Function Considering Spatial Correlation for Semantic Segmentation of Remote Sensing
Image. IEEE Access 2021, 9, 75641–75649. [CrossRef]

36. Wang, Y.; Zhao, L.; Liu, L.; Hu, H.; Tao, W. URNet: A U-Shaped Residual Network for Lightweight Image Super-Resolution.
Remote Sens. 2021, 13, 3848. [CrossRef]

37. Chen, M.; Wu, J.; Liu, L.; Zhao, W.; Tian, F.; Shen, Q.; Zhao, B.; Du, R. DR-Net: An Improved Network for Building Extraction
from High Resolution Remote Sensing Image. Remote Sens. 2021, 13, 294. [CrossRef]

38. Miao, Y.; Jiang, S.; Xu, Y.; Wang, D. Feature Residual Analysis Network for Building Extraction from Remote Sensing Images.
Appl. Sci. 2022, 12, 5095. [CrossRef]

39. Liu, H.; Cao, F.; Wen, C.; Zhang, Q. Lightweight multi-scale residual networks with attention for image super-resolution. Knowl.
Based Syst. 2020, 203, 106103. [CrossRef]

40. Guo, M.; Liu, H.; Xu, Y.; Huang, Y. Building extraction based on U-Net with an attention block and multiple losses. Remote Sens.
2020, 12, 1400. [CrossRef]

41. Tian, Q.; Zhao, Y.; Li, Y.; Chen, J.; Chen, X.; Qin, K. Multiscale building extraction with refined attention pyramid networks. IEEE
Geosci. Remote Sens. Lett. 2021, 19, 8011305. [CrossRef]

42. Das, P.; Chand, S. AttentionBuildNet for Building Extraction from Aerial Imagery. In Proceedings of the 2021 International
Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 19–20 February 2021; pp.
576–580.

43. Chen, Z.; Li, D.; Fan, W.; Guan, H.; Wang, C.; Li, J. Self-attention in reconstruction bias U-Net for semantic segmentation of
building rooftops in optical remote sensing images. Remote Sens. 2021, 13, 2524. [CrossRef]

44. Deng, W.; Shi, Q.; Li, J. Attention-Gate-Based Encoder–Decoder Network for Automatical Building Extraction. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2021, 14, 2611–2620. [CrossRef]

45. Cai, J.; Chen, Y. MHA-Net: Multipath Hybrid Attention Network for building footprint extraction from high-resolution remote
sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5807–5817. [CrossRef]

46. Liu, Y.; Wang, S.; Chen, J.; Chen, B.; Wang, X.; Hao, D.; Sun, L. Rice Yield Prediction and Model Interpretation Based on Satellite
and Climatic Indicators Using a Transformer Method. Remote Sens. 2022, 14, 5045. [CrossRef]

47. Yuan, W.; Xu, W. MSST-Net: A Multi-Scale Adaptive Network for Building Extraction from Remote Sensing Images Based on
Swin Transformer. Remote Sens. 2021, 13, 4743. [CrossRef]

48. Chen, X.; Qiu, C.; Guo, W.; Yu, A.; Tong, X.; Schmitt, M. Multiscale feature learning by transformer for building extraction from
satellite images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2503605. [CrossRef]

49. Chen, K.; Zou, Z.; Shi, Z. Building Extraction from Remote Sensing Images with Sparse Token Transformers. Remote Sens. 2021,
13, 4441. [CrossRef]

50. Wang, L.; Fang, S.; Meng, X.; Li, R. Building extraction with vision Transformer. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5625711.
[CrossRef]

51. Ji, S.P.; Wei, S.Q. Building extraction via convolutional neural networks from an open remote sensing building dataset. Acta Geod.
Cartogr. Sin. 2019, 48, 448–459.

52. Mnih, V. Machine Learning for Aerial Image Labeling; University of Toronto: Toronto, ON, Canada, 2013.

https://doi.org/10.3390/rs11070830
https://doi.org/10.3390/rs11151774
https://doi.org/10.1016/j.isprsjprs.2020.01.013
https://doi.org/10.3390/rs11242970
https://doi.org/10.1109/JSTARS.2018.2860989
https://doi.org/10.1109/ACCESS.2020.3015701
https://doi.org/10.3390/rs11080917
https://doi.org/10.3390/rs13030371
https://doi.org/10.3390/rs14092276
https://doi.org/10.1109/TGRS.2020.3010055
https://doi.org/10.1109/ACCESS.2021.3082076
https://doi.org/10.3390/rs13193848
https://doi.org/10.3390/rs13020294
https://doi.org/10.3390/app12105095
https://doi.org/10.1016/j.knosys.2020.106103
https://doi.org/10.3390/rs12091400
https://doi.org/10.1109/LGRS.2021.3075436
https://doi.org/10.3390/rs13132524
https://doi.org/10.1109/JSTARS.2021.3058097
https://doi.org/10.1109/JSTARS.2021.3084805
https://doi.org/10.3390/rs14195045
https://doi.org/10.3390/rs13234743
https://doi.org/10.1109/LGRS.2022.3142279
https://doi.org/10.3390/rs13214441
https://doi.org/10.1109/TGRS.2022.3186634

Remote Sens. 2023, 15, 1996 19 of 19

53. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference for Learning
Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Methodology and Materials
	LiteST-Net Architecture
	Lite Swin Transformer
	WHU Building Dataset and Preprocessing
	Massachusetts Building Dataset and Preprocessing

	Experiment and Results
	Hardware and Software for Experiment
	Evaluation Metrics
	Results on the WHU Building Dataset
	Results on the Massachusetts Building Dataset

	Discussion
	Ablation Experiment
	Generalizations Discussion

	Conclusions
	References

