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Abstract: Combined with the ground, airborne, and CHAMP satellite data, the lithospheric field
over Xinjiang and Tibet is modeled through the three-dimensional Surface Spline (3DSS) model,
Regional Spherical Harmonic Analysis (RSHA) model, and CHAOS-7.11 model. Then, we compare
the results with the original measuring data, NGDC720, LCS-1, and the newest SHA model with the
degree to 1000 (SHA1000). Moreover, the error estimation and the geological analysis are carried
out, and we investigate the possible correspondence between the lithospheric field and the surface
heat flow. The results show that the 3DSS model can better describe the detailed distribution of the
lithospheric field after comparing it with other models. Some new features are reflected, particularly
in the areas of Southern Xinjiang and Tibet, such as a positive anomaly stripe in the southwest, its
neighboring Tashkurgan–Hotan–Cele–Minfeng–Qiemo–Ruoqiang belt, and the middle edge of the
Kunlun Mountains. The stripe, in terms of rock composition, has a shallow magnetic field source and
is related to magnetic intrusions; the lithospheric field in Tibet is weak. Additionally, when the heat
flow distribution is compared to our results, there is a good consistency between a positive stripe of
heat flow and a positive stripe of the lithospheric field in southern Tibet. The large heat flow values
may be related to the shallow Curie surface, which shows that demagnetization is happening close to
the surface. However, more of a ferromagnetic mineral, Titanium magnetite, is found there.

Keywords: geomagnetic field; lithospheric magnetic field; aeromagnetic; CHAMP; Tibet; heat flow

1. Introduction

The geomagnetic field fills up all spaces from the inner Earth to the magnetopause.
Although the lithospheric field (sometimes called the crustal field) is just a tiny part of the
geomagnetic field, it plays an important role in the evolution of the geological structure
and plate movement. The characteristics of this field are temporally stable and spatially
complex [1]. Generally, the core field mainly occupies the degree N = 1–20 of the Spherical
Harmonic Analysis (SHA) model, and, thus, the lithospheric magnetic field becomes
dominant for N > 20.

Based on the SHA theory combined with different kinds of surface, airborne, ma-
rine, and satellite measuring data, especially from the CHAMP [2] and the newest Swarm
satellites [3], which provide unprecedented high-quality data, a lot of state-of-the-art geo-
magnetic field models have been derived. For example, comprehensive models like the CM
series [4–6], the CHAOS series [7,8], pure lithospheric field models such as NGDC720 [9],
the MF series [10,11], and LCS-1 [12] have been continuously released. The last SHA [13]
model, with up to the highest degree, 1050, can simulate the 30 km wavelength of the mag-
netic field. These models provide a good reference for middle- and large-scale lithospheric
field distribution. However, due to the rapid attenuation along the altitude, the small scale
of the field cannot be excellently simulated at the satellite level. Using regional models,
such as the Taylor Polynomial model (2DTP) [14], the Spherical Cap Harmonic Analysis
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(SCHA) model [15], the Revised Spherical Cap Harmonic Analysis (R-SCHA) model [16],
the Surface Spline (2DSS) model [17], the Rectangular Harmonic model (RH) [18], etc.,
and dense ground measuring data is a common way to study regional lithospheric field
with more small-scale parts. In order to better model the spatial distribution, the 2DTP
and 2DSS are updated to the three-dimensional Taylor Polynomial (3DTP) [19] and the
three-dimensional Surface Spline (3DSS) [20] model; the latter shows better modeling, and
around a 50% reduction in the root-mean-squared error (RMSE) compared to 2D models.

Xinjiang and Tibet are the two largest provinces on the Chinese continent. The compli-
cated geological structures such as large mountains, basins, and deserts, which correspond
to the complicated lithospheric magnetic field [21], have been investigated by different
data and models. Yang et al. [22] created a 2DSS model over Kashiwuqia and found that
magnetic anomalies are related to local earthquakes, consistent with Ding et al.’s [23]
findings. They modeled the lithospheric field through vector components of repeat stations
in the north and south Tianshan Mountain area during 2013–2015. They found that the
lithospheric field and earthquakes may be related. Chen et al. [24] studied the lithospheric
area in Kashi and its adjacent regions with 45 measuring points and two phases of repeat
geomagnetic data during 2014–2016. They found total intensity F, declination D, and
inclination I were greatly influenced by the earthquake.

The lithospheric field and the geological structure, Curie surface, and heat flow are
closely related. Gao et al. [25] analyzed Xinjiang’s crustal field and geological structure
using the NGDC720V3 model. The magnetic anomaly reflects the regional tectonic structure
well. The decay of the magnetic anomaly with altitude indicates that Xinjiang is a large
massif composed of several magnetic blocks with different sizes and directions. Using the
same model, Gao et al. [26] also investigated the lithospheric field and the Curie surface
over Tarim Basin. These results show that the spatial distribution of the magnetic anomalies
in the Tarim Basin coincides with the regional tectonic structure. The shallow parts of the
Curie surface are located in uplifted zones of the basin and correspond to high heat flow
values well. Zhao et al. [27] attempted to probe the basement structure and properties of the
eastern Junggar Basin of Xinjiang based on gravitational and geomagnetic data. However,
the basin comprises the upper, middle, and lower layers.

Plenty of work on the lithospheric field of Tibet has also been completed. From 1964 to
1966, the Institute of Geology and Geophysics of the Chinese Academy of Sciences made
an absolute measurement of the geomagnetic field in Tibet. This provides valuable data
for the study of the lithospheric field. Zhang [28] believed that the magnetic layer in this
region is about 30 km, its magnetic susceptibility is similar to that of I-type granite, and it
exhibits no magnetism below this depth. Wang et al. [29] analyzed the magnetic anomaly
in Tibet using measuring data from 1965 and the IGRF and RH models. According to the
results, the distribution of mountains is closely related to the geological structure. An [30]
used the same data to calculate the geomagnetic residual field model of the Qinghai Tibet
Plateau using the 2DTP and SCH model; Kang et al. [31] adopted the NGDC720 model
to analyze the distribution characteristics of the crustal magnetic field of the same region
and its surrounding areas. They believed that the boundary of the magnetic anomaly was
consistent with the perimeter of the regional structure of the surrounding plateau. The
distribution was consistent with the trend of the geological structure. These works provide
some groundbreaking results on Xinjiang and Tibet’s lithospheric field. However, their
data are not dense enough to reflect the precise distribution. In addition, the models they
created are two-dimensional, which does not illustrate the change in the lithospheric field
along with the altitude.

Furthermore, the temperature is significant in estimating the association between the
lithospheric magnetic field and the thermal structure of the atmosphere. The temperature
of the Earth’s interior rises as one descends. The temperature of the Curie point, the
remanent magnetization of ferromagnetic materials, drops. This makes the bottom edge
of the magnetic source material of the lithospheric magnetic field. This depth is called the
Curie isothermal surface (Curie surface), which largely depends on the distribution of the
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heat flow in the crust and the size of the vertical geothermal gradient [32]. The distribution
of the lithospheric field is closely related to the surface heat flow [33,34]. Hu et al. [35]
pointed out that the thermal state of the lithosphere can be characterized by the heat flow
observed on the surface, which is composed of the crustal heat flow and mantle heat flow.

On the one hand, establishing a three-dimensional lithospheric magnetic field model
can be used to estimate the depth of the Curie surface. On the other hand, it can be used
to study the crustal geothermal distribution and layered structure—a three-dimensional
lithospheric magnetic field model with a ground and aviation fusion ability. The magnetic
satellite data can restore information on the changes in the lithospheric magnetic field with
height, extract the fine spatial structure of the rock’s residual magnetism at different crust
depths, and finally realize the estimation and cognition of the three-dimensional crustal
heat flow and mantle heat flow state. This research aims to create a precise model of the
lithospheric field in Xinjiang and Tibet and to figure out how the lithospheric field and heat
flow are related. We combine ground, aeromagnetic, and CHAMP satellite data to create
the regional model 3DSS, the SHA-based regional model, and RSHA [36] and then verify
and compare our results with the state-of-the-art global model LCS-1, NGDC720, and the
latest SHA model with the degree to 1000 (SHA1000). The second section is about the data.
The third section describes the involved methods and then presents the error estimation,
the geological and heat flow analyses, and the related conclusions.

2. Research Data
2.1. Ground Data

Ground-based data from the Chinese continent are chosen in joint modeling. There
are 426 measuring points for declination D, horizontal element H, and downward element
Z in 1936.0; 246 points for D and an inclination I and H in 1950.0; 445 points for D,
I, and H in 1960.0; 1887 points for D, I, and H in 1970.0; 255 points for D, I, and F in
1980.0; 137 points for D, I, and F in 1990.0; and 156 points for D, I, and F in 2000.0. The
Institute of Geology and Geophysics, Chinese Academy of Sciences, provides the data.
Diurnal variations and disturbances at the stations are eliminated by referring to the nearest
magnetic observatories.

Due to the temporal stability, all available measuring data from 1936.0–1990.0 can
be calculated into 2000.0, generating 179 overlap points. We, thus, retained the data
that are closer to the corresponding lithospheric field of CM4 [4]. Finally, 519 ground
data were selected over Xinjiang and Tibet areas. In order to obtain clean and consistent
anomaly data, we uniformly subtracted the main field with degree 10 by IGRF13 [37]
from 1936.0 and 1950.0’s points and by CM4 from 1960.0 to 2000.0’s points. In addition,
the external noise is seen as the large-scale magnetosphere ring currents and is, thus,
eliminated by the CM4 model.

2.2. Aeromagnetic Data

The aeromagnetic measuring data are also adopted. These data come from China’s
Aero Geophysical Survey and Remote Sensing Center for Natural Resource between
1970 and 2011. The aeromagnetic modeling data are scalar data grids at a 1 km altitude,
including 97,994 valid values covering 979.6 km2 [38]. These data are the magnetic data
with the best consistency in China. The corresponding distribution of the lithospheric field
with the resolution of 10 km × 10 km is perfect for investigating the national magnetic field.
At most, 12,511 aeromagnetic points are adopted in this study.

2.3. Satellite Data

We chose CHAMP satellite data to participate in the modeling due to their low alti-
tude (~300 km) vector data in 2010. The selection criteria are as follows, after referencing
other models:

(I) The data from dark regions (sun at least 10◦ below the horizon) are chosen;
(II) Kp ≤ 2◦ and |RC| ≤ 2nT/h RC index are used;
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(III) All vector data are only selected for the equatorward of ±55◦ QD latitude;
(IV) The data are chosen for when the average electric field at the magnetopause over

the last 2 h was Em ≤ 0.8 mV/m. The IMF Bz index at the magnetopause averaged over
the last 2 h is positive.

2.4. Satellite Model Data

Experiments show that the satellite model provides a good constraint for the modeling,
so the lithospheric field prediction of the newest version of the CHAOS-7 model, CHAOS-
7.11, was chosen. Here, we uniformly selected 10,236 CHAOS prediction coverages from
0~200 km in each 50 km interval to create a model.

The 3655 complementary data of the CHAOS model were chosen to largely avoid the
boundary effect that the lack of control of the points outside the boundary might cause.

In order to test the sensitivity of the data number of the 3DSS model, we evenly
selected different numbers of data at 1 km and 300 km four times. Finally, 20,687, 24,239,
29,776, and 34,039 points (Table 1) were used to create the four 3DSS models.

Table 1. Four combinations of modeling data.

Total Data Ground
Data

Aeromagnetic
Data

CHAOS-7.11
Data

CHAMP
Data

Supplementary
Data

20,678 519 5005 5661 5847 3655
24,239 519 6256 6793 7016 3655
29,776 519 8341 8491 8770 3655
34,039 519 12,511 5661 11,693 3655

2.5. Surface Heat Flow Data

It is known that the Curie surface and heat flow are linked to the rock’s magnetization
process. This study examines a possible link between the lithospheric field and heat flow.
We selected 1230 surface measuring points from 1989~2016 all over China [39–41]. Finally,
252 points were fixed in Xinjiang and Tibet areas after selection. These data include the
location, lower and upper depth, geothermal gradient, thermal conductivity, heat flow, and
data quality level. The related analysis is described in Section 6.

Here, we list the 2D and 3D distributions of 34,039 modeling points in Figure 1.
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Figure 1. All 34039 data points over Xinjiang and Tibet are distributed in 2D (top) and 3D
(bottom) views. Lambert conformal projection.
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3. Modeling Methods
3.1. Three-Dimensional Surface Spline Model

Based on the 2DSS model [17], Feng et al. [20] added an altitude term and obtained
the three-dimensional Surface Spline (3DSS) model. The expressions are as follows:

W = a0 + a1x + a2y + a3z +
M

∑
i=1

Fir2
i ln(r2

i + ε) (1)

M

∑
i=1

Fi =
M

∑
i=1

xiFi =
M

∑
i=1

yiFi =
M

∑
i=1

ziFi = 0 (2)

where W is a geomagnetic component; x, y, z refer to latitude, longitude, and altitude,
respectively; r2

i = (xi − x)2 + (yi − y)2 + (zi − z)2; M is the number of data;a0, a1, a2, a3
and Fi are undetermined coefficients; xi, yi, zi are the latitudes, longitudes, and altitudes
of all measuring points; and ε is a small value that controls the changes on the surface
curvature and is generally chosen as 1 × 10−7.

The coefficients can finally be calculated by the Gaussian elimination method,

ci = (bi −
n
∑

k=i+1
uikck)/uii, i = n, n− 1, . . . , 1, where n is the number of measuring points,

and ci are coefficients.

3.2. Regional Spherical Harmonic Analysis Model

The Regional Spherical Harmonic Analysis (RSHA) model is based on a depleted
basis of the global spherical harmonic function [36]. We focus on the lithospheric field over
Xinjiang, which can be seen as a spheric cap, so the eigenvalues through Gauss coefficients
are used to calculate the new coefficients that only work in the research area. Due to the
uneven distribution of measuring data, we suppose the magnetic field is

B = Am (3)

where B is the magnetic field, A is the spherical harmonic series of the cap, and m is a
vector of coefficients; thus, a normal equation ATA can be obtained, and its eigenvectors
are V = {qm

n , sm
n }.

Two simplified methods, the three largest eigenvalues, and the basis function’s symme-
try simplify the calculation and enable the calculation to be much simpler. By transforming
the spherical cap coordinate, the residuals E can be followed as

E = ÃṼe (4)

where Ã are kernels matrices, Ṽ are new coordinate system vectors, e are errors, and new
coefficients that are given by eigenvectors. The new Gauss coefficients can then be finally
derived by

m̃ = Ṽe + m (5)

by which the resulting RSH model suitable for Xinjiang can be obtained.
Coefficients m comes from the classical spherical harmonic function

Vint(r, λ, θ, t) = a
∞

∑
n=1

n

∑
m=0

( a
r

)n+1
[gm

n (t) cos(mλ) + hm
n (t) sin(mλ)]Pm

n (cos θ) (6)

where r, λ, θ, t are radial distance, co-latitude, longitude, and time; a is the reference radius
of the Earth (a = 6371.2km); gm

n , hm
n are Gauss coefficients; and Pm

n (cos θ) is the Schmidt
semi-normalized associated Legendre function of degree n and order m.
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3.3. Other Models

Besides the two regional 3D models, the global magnetic models, SHA1000, LCS-1,
and NGDC720, with higher truncation degrees, are also adopted for verification
and comparison.

Thébault et al. [13] derived a global magnetic field model based on Swarm, CHAMP,
WDMAM-2 grids, and the R-SCHA model. They converted this regional model into the
global model with SH degree 1050 and obtained an excellent consistency with previous
models. They paid more attention to the anomalies over the South Atlantic Anomaly
(SAA) and found the sign’s change in the secular acceleration of element Z on the Pacific
Ocean. The LCS-1 model was derived only from satellite data [12], with coefficients that
are the as same as CHAOS-7 while N > 25. The NGDC720 [9] with a degree of 720 is
also used for comparison. This model was derived by the National Geophysical Data
Center (NGDC) of the United States by combining data from satellite, ground, oceanic, and
aeromagnetic surveys.

4. Modeling Results
4.1. Comparison between Different Models

The investigations are all about the total intensity F throughout the article. After inver-
sion and forward modeling, the 3DSS and RSHA model with degree 400 (RSHA400) that
correspond to resolutions with 0.01◦ (about 1.11 km) are derived. We list the lithospheric
field distributions based on different numbers of measuring data and models at the 1km
altitude (Figure 2); they have the same color bar.
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Figure 2. The lithospheric field distribution over Xinjiang and Tibet based on different models.
Units: nT. (a) Original aeromagnetic data; (b) 3DSS20678; (c) 3DSS24239; (d) 3DSS29776; (e) 3DSS34039;
(f) SHA1000; (g) SHA720; (h) NGDC720; (i) RSHA400; (j) LCS−1.

All the figures show similar fundamental trends inside the research area. According
to Figure 2a–e, the distributions of 3DSS with different data numbers look consistent and
highly identical to the original aeromagnetic distribution. The more modeling data there is,
the more details each figure reflects, particularly in the north and east parts of Xinjiang and
the south-positive stripe of Tibet. Regarding the other models, it is obvious that the higher
the degree of the model is, the more details it has; RSHA400 looks much simpler than
SHA1000 and only reflect the medium-scale part of the magnetic field. Nevertheless, the
LCS-1 model is the simplest because it is only 185 degrees and corresponds to a large scale
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of about 216 km. In addition, the distributions of the 3DSS model nearby and outside the
boundary are not continuous, so we added supplementary points to alleviate this situation.
The main reason is the need for measuring data outside the Chinese boundary; however,
the four other models were derived by measuring data worldwide.

4.2. Comparison of the 3DSS Model at Different Altitudes

Here, we model the lithospheric field from 0 km to 2.0 km in intervals of 0.1 km, and
list them in Figure 3, they have the same color bar. The densest data are aeromagnetic
data at 1 km.
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Figure 3. The lithospheric field distribution over Xinjiang and Tibet based on 3DSS34039 at different
altitudes. Units: nT. (a–u): 0, 0.1, 0.2, . . . , 2.0 km.

Figure 3a–h show the consistent and straightforward structures due to the unevenly
distributed grounded data from 0 to 0.7 km. The number of grounded data is 519 and
accounts for only 1.52%. With the increases in altitude and the number of modeling points,
the distributions gradually show more details of the middle- and small-scale magnetic
fields. There are 12,511 aeromagnetic points at 1.0 km (Figure 3k), accounting for 36.75%,
especially in the north and east of Xinjiang and the south of Tibet. From Figure 3l, The
number of points gradually decreases, and the distribution becomes simple and almost
fixed since Figure 3p. This decrease is because of the modeling data being rapidly decreased,
and there was a lack of control in the redial direction. Some anomalies rapidly change
its intensity, such as the positive anomaly in the southwestern Xinjiang, and the negative
anomaly in the southeastern Tibet. This means the distributions could be more reliable due
to the uneven data coverage in a radial direction.

In order to verify the result, we calculate the lithospheric field by using only
519 pieces of ground data and compare it with the 3DSS model at 0 km. Two distri-
butions are shown is Figure 4.
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only based on 519 pieces of ground data. •: ground points.

After careful comparison, there are some differences between the two models, espe-
cially in the western part of Tibet, which shows a small negative area of the ground data
model. In contrast, there is only a positive part of the 3DSS model; part of the reason is that
the points in the Qinghai−Tibet Plateau are around 4 km. Hence, the exact distribution
is negative and different from the distribution at 0 km by the 3DSS model. However,
the total distributions of the two figures are similar, particularly in the negative part that
crosses Xinjiang and Tibet and the positive part in the western parts of Xinjiang. Thus, this
comparison shows that the new model is reliable.

4.3. Error Analysis
4.3.1. Comparison of Different Distributions

We calculate and illustrate the difference figures among the 3DSS34039, SHA1000, and
NGDC720 models in Figure 5 to test the modeling error and to inspect the differences.
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3DSS34039, SHA1000, and NGDC720 models. Units: nT. (a) 3DSS−SHA1000; (b) 3DSS−NGDC720;
(c) SHA1000− NGDC720.

The differences between 3DSS34039 and the other two models (Figure 5a,b) are highly
consistent, except for several large anomalies in central Xinjiang; the northern, eastern,
and western parts of Xinjiang; and the southern part of Tibet. However, the difference
between SHA1000 and NGDC720 is minimal, which means the 3DSS model reflects more
lithospheric details than the other models and illustrates the regional model’s advantages
based on the dense-enough measuring data. Due to the lack of data in the southeast part of
Tibet, the significant anomaly is unreliable.

4.3.2. Error Test

Due to the modeling theory of 3DSS, we abstract 11 3DSS modeling points (Figure 6),
one grounded, three aeromagnetic, one supplementary, three CHAOS, and three CHAMP
points, randomly according to the percentage of data and then derive the models based on
the rest of the data (34,028, 29,765, 24,228, and 20,676 points). Finally, we forward predicted
these 11 points to check the RMSE in Figure 7 and Table 2.
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Table 2. The RMSE values of 11 absent points based on different models.

Model RMSE (nT)

3DSS34028
3DSS29765
3DSS24228
3DSS20676
SHA1000
SHA720
SHA400

NGDC720
NGDC400

LCS-1

16.48
40.11
17.98
31.95
48.63
45.81
42.78
41.98
39.35
38.19

Figure 6 and Table 2 show that the more data there is to create a 3DSS model, the
better the result is. However, the first four points from the ground and aero data show
more fluctuation compared to the other satellite and CHAOS data, so the intensity of RMSE
looks more unstable.

5. Geological Interpretation

The Xinjiang–Tibet area is mainly comprised of plateaus, mountains, and basins. This
is the highest area of China, particularly in the Qinghai Tibet Plateau, which is at an
elevation greater than 4 km. The study area has a kidney shape. We analyzed the Xinjiang
and Tibet geological structures and lithospheric fields separately. Xinjiang is located in the
hinterland of Eurasia, and the geographical range is 73◦40′E–96◦18′E, 34◦25′N–48◦10′N. The
mountains and basins are arranged alternately. The basins and mountains are surrounded
by each other, known as three mountains with two basins. The Altai Mountains are in
the north, and the Kunlun Mountains are in the south; the Tianshan Mountains stretch
across the central part of Xinjiang, dividing Xinjiang into two halves: the Tarim Basin
in the south and the Junggar Basin in the north. This geomorphic feature also roughly
reflects the paleo-tectonic pattern of the lithosphere. The mountains are mainly composed
of paleo-continental margins and collision zones, and the basin is a subsided ancient land
block. Here, we chose 3DSS and SHA1000 as an example (Figure 8) to analyze.
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There are four obvious magnetic anomalies inside Xinjiang: The South Tarim mag-
netic anomaly, the Turpan–Hami magnetic anomaly, the Altai magnetic anomaly, and the
Yili magnetic anomaly. They have good correspondence with the local structures. The
consistency between the positive magnetic anomaly stripe in southwest Xinjiang and its
neighboring Tashkurgan–Hotan–Cele–Minfeng–Qiemo–Ruoqiang belt (the pink stars in
Figure 8a) and the middle edge of the Kunlun Mountains is the most apparent difference
between 3DSS and the other models, especially the highest degree model, SHA1000. The
stripe can be separated into the Western Kunlun folded belt and the Eastern Kunlun oro-
genic belt, forming a big lower convex arc belt anomaly. The western part of the stripe was
formed in the late Early Permian, accompanied by a large number of acid magma intrusions,
a Devonian sandy conglomerate, and medium and acid volcanic rocks covering the eastern
part [21,23]. The sedimentary characteristics of the upper Paleozoic are consistent with
those in the Qaidam block to the north, and they all belong to platform-type shallow marine
facies. The desert covers the surface in the fourth quarter, so the magnetic field source is
shallow, generally around 2–3 m. It is speculated that the anomaly distributed along the
NE belt is related to magnetic intrusions. It is further implied that there may be a large
deep fault zone beneath the middle edge of the Kunlun Mountains, and these magnetic
intrusions are distributed along the fault zone.

Tibet is dominated by the plateau, composed of huge mountains and plateaus in-
laid with wide valleys and basins. The geographical range is 78◦25′E–99◦06′E, 26◦50′N–
36◦53′N. Repeated tectonic movements formed the plateau landform during the geological
period [42]. The geological structures in Tibet are mainly Yanshan and Himalayan folds,
while the rocks are mainly Himalayan basalt. Compared with Xinjiang, the lithosphere
distribution in Tibet is much weaker, and the strong magnetic field is mainly distributed in
southern Tibet. Compared with SHA1000, the 3DSS model can reflect more details of the
lithospheric magnetic field (Figure 8).

Compared to the SHA model, the 3DSS model depicts a typical positive magnetic
anomaly belt in southern Tibet that runs from northwest to southeast, starting in Gar
County and continuing along Zhada, Zhongba, Saga, Lazi, Renbu, and near Nyingchi (the
pink stars in Figure 8). Additionally, there is a positive and negative interlaced magnetic
anomaly area near Lhasa City. Positive and negative magnetic anomaly points (29◦24′N,
90◦16′E) with absolute value intensity exceeding 400 nT have appeared near Renbu. In
addition, some positive and negative magnetic anomalies have also appeared in central
Ali and southeast Naqu, where the extreme value intensity exceeds 300 nT. The positive
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magnetic anomaly stripe distribution is considered highly consistent with the Gangdise
Mountains, by comparing the geological structures.

The positive anomaly from the Lhasa massif and the negative anomaly from the
Himalayan massif are surrounded by large orogenic belts such as the Himalayas, Longmen
Mountains, Daba Mountains, etc., consistent with the results of Kang et al. [31]. The
magnetic anomaly is less strong than in Tarim, Xinjiang. This shows that the orogenic
terrain and the magnetic minerals in the shallow lithospheric field mainly cause it. The
source of the lithospheric magnetic field is shallow, which also shows that the magnetic
field strength has little relationship with the thickness of the crust.

6. Comparison between the Lithospheric Field and the Surface Heat Flow

We inspected and extracted the measuring points of the heat flow over the study area
to find out the relationship between the surface heat flow and the regional lithospheric
field over the study area and first list the classification of the heat flow (Figure 9).
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Figure 9. The level of heat flow points over China (a) and over Xinjiang and Tibet area (b).

There are 1230 heat flow points in China. After carefully inspecting the data and finally
obtaining the 252 points in the Xinjiang and Tibet area, the data quality is divided into A, B,
C, and D levels, which denote very good, good, normal, and less good, respectively. Thus,
the good data account for 88.5%, which shows that the modeling is reliable.

We illustrate the distribution of the heat flow based on measuring points and the
distribution by the 2D Surface Spline (2DSS) model (the altitudes of all points are very
close), which shows more details with a higher resolution (0.1◦); the whole mainland’s
distribution by Hu is also listed (Figure 10) for verification.
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to the same sign part of the lithospheric field. However, the correlation in Xinjiang needs 
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(a) the distribution of the lithospheric field based on 3DSS34039; (b) the heat flow based on the
origin measuring points; (c) the heat flow based on the 2DSS model; (d), the heat flow over the
Chinese mainland. Mapping department: Institute of Geology and Geophysics, Chinese Academy
of Sciences [35].

All parameters are consistent with Equations (1) and (2).
The figures above show the distributions of heat flow based only on points (Figure 10b),

and the model (Figure 10c) is highly consistent, which implies that the 2DSS model is
reliable and consistent with the same areas of Figure 10d derived by Hu [35]. The intensity
in Tibet is higher than that in Xinjiang, the intensity in Qinghai–Tibet Plateau is greater
than 80 mW/ m2, and there is a big positive anomaly around 125 mW/m2 nearby Zada
and a negative anomaly around 50 mW/m2 at 33.7◦N, 87.9◦E.

After comparing with Figure 10a, the positive heat flow stripe coincides with the
lithospheric field’s positive stripe in southern Tibet. A northward negative part corresponds
to the same sign part of the lithospheric field. However, the correlation in Xinjiang needs to
be clarified, and there is no obvious heat flow variation.
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The corners in Figure 10c show a strong boundary effect. The main reason is the need
for measuring points outside the research area, or serious distortions of forward modeling
are generated.

7. Conclusions

We chose ground, airborne, and CHMAP satellite data to create the lithospheric
magnetic field models using 3DSS and RSHA models. The external and core parts were
removed from the measuring data. The results were compared with the original measuring
data and the LCS-1, NGDC-720, and SHA1000 models. In addition, we checked the
variation of the field along the altitude, the possible relationship between the magnetic
field and geological structure, and the surface heat flow. Finally, several conclusions were
reached as follows:

1. The 3DSS model can excellently model the spatially lithospheric field and illustrate
more details than other regional and global models. The main reason is that the 3DSS
model is good at modeling complicated magnetic fields, and the relatively good spatial
distribution of the modeling points can provide coverage in the horizontal and vertical
directions. The model is robust due to no obvious artificial anomalies being yielded, even
with the fewest modeling points compared to the original data.

2. Some new characteristics can be seen in the new model, such as the consistency
between the positive anomaly stripe in southwest Xinjiang and its neighboring Tashkurgan–
Hotan–Cele–Minfeng–Qiemo–Ruoqiang belt and the middle edge of the Kunlun Mountains.
The stripe has a shallow magnetic field source and is related to magnetic intrusions; the
lithospheric field in Tibet is weaker.

These findings imply that the orogenic terrain of mountains and the magnetic minerals
in the shallow crust mainly cause the lithospheric field’s formation. The source of the
lithospheric magnetic field is relatively shallow, implying that the magnetic field strength
has little relationship with the thickness of the crust.

3. Compared with the surface heat flow, there is a good consistency between a positive
stripe of heat flow and a positive stripe of the lithospheric field in southern Tibet. The high
heat flow areas correspond to the low intensity of the lithospheric field, and vice versa,
in Xinjiang, particularly in the south Tarim Basin and Junggar Basin magnetic anomalies.
The big heat flow values might be linked with the shallow Curie surface. Gao et al. [26]
suggested that the topography of the Curie surface corresponds to the heat flow values
well. The high heat flow occurs in the basement where the surface is shallow, and vice
versa. Due to the rock composition, the shallow Curie surface denotes the demagnetization
process close to the surface. However, more ferromagnetic minerals, Titanium magnetite,
are increased there, such as the Kursk magnetic anomaly in Russia. The strong heat flows
in the Tibetan Plateau are still unclear and might be caused by over-modeling or the fewer
measuring points.

The new 3DSS model shows its advantages for modeling the regional lithospheric
magnetic field, particularly in small-scale regions, and then provides an idea reference
to study the possible formation and variation of such a field. However, a few things
from the modeling still deserve to be seriously considered: the precise extraction of the
lithospheric field from the raw data, the denser modeling data along the radial direction,
and the better supplementary data outside the boundary, such as the marine measuring
data. The correspondence mechanism between the lithospheric field and heat flow may
draw more attention.

Soon, the coming geomagnetic satellite, Macau Science Satellite-1 (MSS-1), will pro-
vide higher quality and revolutionary low inclination (±41◦ near the west–east direction)
measuring data, which must be helpful to derive a better regional lithospheric magnetic
field model.
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