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Abstract: Current mangrove mapping efforts, such as the Global Mangrove Watch (GMW), have
focused on providing one-off or annual maps of mangrove forests, while such maps may be most
useful for reporting regional, national and sub-national extent of mangrove forests, they may be
of more limited use for the day-to-day management of mangroves and for supporting the Global
Mangrove Alliance (GMA) goal of halting global mangrove loss. To this end, a prototype change
mangrove loss alert system has been developed to identify mangrove losses on a monthly basis.
Implemented on the Microsoft Planetary Computer, the Global Mangrove Watch v3.0 mangrove
baseline extent map for 2018 was refined and used to define the mangrove extent mask under which
potential losses would be identified. The study period was from 2018 to 2022 due to the availability
of Sentinel-2 imagery used for the study. The mangrove loss alert system is based on optimised
normalised difference vegetation index (NDVI) thresholds used to identify mangrove losses and
a temporal scoring system to filter false positives. The mangrove loss alert system was found to
have an estimated overall accuracy of 92.1%, with the alert commission and omission estimated to
be 10.4% and 20.6%, respectively. Africa was selected for the mangrove loss alert system prototype,
where significant losses were identified in the study period, with 90% of the mangrove loss alerts
identified in Nigeria, Guinea-Bissau, Madagascar, Mozambique and Guinea. The primary drivers of
these losses ranged from economic activities that dominated West Africa and Northern East Africa
(mainly agricultural conversion and infrastructure development) to climatic in Southern East Africa
(primarily storm frequency and intensity). The production of the monthly mangrove loss alerts for
Africa will be continued as part of the wider Global Mangrove Watch project, and the spatial coverage
is expected to be expanded to other regions over the coming months and years. The mangrove loss
alerts will be published on the Global Mangrove Watch online portal and updated monthly.

Keywords: mangroves; deforestation; mangrove loss; global mangrove watch; change detection; near
real time; mangrove loss alerts; early warning; Sentinel-2; Africa

1. Introduction

Mangroves are a globally important [1] and dynamic [2] ecosystem providing a range
of ecosystem services, including blue carbon [3,4], biodiversity [5], fisheries [6], coastal
protection [7,8], and tourism [9]. Mangroves are an ecosystem under pressure [10,11]
with significant losses occurring since the 1980s [12,13]. The Global Mangrove Alliance
(GMA [14]) has set the goals of halting mangrove loss, increasing the amount of mangrove
restoration and increasing mangrove protection through building awareness.

The Global Mangrove Watch (GMW) mangrove extent layers [15–18] cover eleven
annual epochs between 1996 and 2020, and provide the most up to date historical extents
of mangroves globally. They are available through the Global Mangrove Watch online
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Portal [19]. However, given their annual update cycle, these layers may be of limited
use for users looking to manage regions and protected areas containing mangrove forests.
For efficient protection from human activities and informing on natural events disrupting
mangroves, losses need to be identified as close to the loss event as possible and provided
to users in a form they can easily use.

The GMW Portal [19] is subject to ongoing development, with additional functionality
and improvements to hosted datasets being added at regular intervals. For example, an
early version of the mangrove loss alerts was provided when the portal launched in July
2021 and has subsequently been updated with the results of this study in February 2023.
This enables users without technical GIS or remote sensing skills to access and analyse
mangrove loss alerts in near-real time. Users of the GMW datasets and the GMW Portal
fall into several categories, including those who (a) seek a national or regional view of
mangrove changes, with these tending to be academic or policy users, and (b) are tasked
with managing and protecting small regions of mangroves (e.g., a national park, a single
delta or section of coastline). Practitioners focused on small regions of mangroves would
commonly have significant knowledge of the area in which they work. Therefore, global
maps of annual mangrove changes may be of limited use. However, regularly visiting all
parts of their area of interest is often not feasible. Therefore, being alerted to mangrove
losses that have recently occurred can be useful, even if identifying illegal or unintended
losses that could be stopped if caught in time.

For the reasons outlined above, the GMW Mangrove Loss Alerts were developed to
provide a system for mapping mangrove losses in a timely manner, such that information
can be provided to users allowing them to act accordingly [20]. To achieve this aim, the
following objectives were identified for the system proposed within this article:

1. Provide updates at least monthly, thereby allowing end users to respond to ongoing
activities or be informed of natural events that compromise the integrity or existence
of mangroves.

2. Provide a low number of false positives; alerts might be ignored if false alerts are
generated regularly.

3. Provide a basis for an operational system; implemented in a suitable computing
platform with a maintainable code base.

4. To be computationally viable to scale to mangrove regions globally.

Africa was selected for prototype development and validation of the GMW Mangrove
Loss Alerts system as it is a geographically discrete continent and sufficiently large in area
to test scalability. It also comprises a range of mangrove types and conditions with areas,
such as the Niger Delta known to have significant ongoing changes. There is significant
variability between western and eastern Africa in terms of cloud cover and climate, with
East Africa typically drier [21] and the South East witnessing a number of cyclones each
year. Areas of West Africa are often characterised by significant cloud cover, allowing any
limitations in the use of optical satellite data due to cloud cover to be identified. Finally,
through GMA partners, such as Wetlands International, local knowledge of many regions
could be collected and fed into optimising and validating the system. The monthly GMW
Mangrove Loss Alerts dataset is available to users through the Global Mangrove Watch
online Portal [19]. The version available on the GMW Portal was updated with the results
of this study in February 2023 and will be updated on a monthly basis going forward.

2. Background

Many studies (e.g., [2,15,22–24]) have considered mapping land cover change, includ-
ing forest loss, through remote sensing imagery using various sensors, modalities and
methods. There are a number of approaches to mapping land cover change, but these fit
within four broad categories, (1) map-to-map, (2) image-to-image, (3) map-to-image and
(4) time series approaches. Map-to-map approaches (e.g., [25]) detect change by producing
two or more classifications and comparing the resulting categorical maps. The advantages
of such approaches are that they are independent of the datasets used to derive the maps,
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and therefore, different modalities can be used and compared. However, they can also
find false positives due to errors within the classifications. Image-to-image approaches
(e.g., [26]) require no supplementary data, such as a map and/or training data, but the
imagery does need to be comparable. However, it is common for changes in image pixel
values to not necessarily relate to a change in land cover but to changes in the season
and/or condition of the land cover. Map-to-image approaches (e.g., [15]) require that each
class has a defined response (e.g., reflectance or backscatter) within the remotely sensed
imagery and that a change in land cover will cause that response to change such that it is
identifiably different from the original class. These approaches often merge the advantages
of the map-to-map and image-to-image approaches while mitigating many of the negatives.
Time series approaches (e.g., [27–30]) model each pixel within a scene, either mapping the
trend of each pixel or allowing the future pixel responses to be predicted and therefore
compared to the observed response. A significant difference between the observed and
predicted or the slope for the trend crossing a predetermined threshold allows for a change
to be identified. These methodologies allow for seasonality and natural variations in re-
sponse to be taken into account, thereby reducing the number of false positives for changes.
Additionally, these methodologies can also assess long-term trends in response, providing
the possibility for condition-based changes to be mapped (e.g., [31]). However, time series
approaches are computationally expensive, requiring significant computational resources
to fit the models and predict further observations. Computational costs can be reduced
by reducing the frequency in which the models are re-fitted, such as re-fitting monthly or
quarterly rather than after each observation. However, this can reduce the accuracy of the
modelling approach.

There are two systems which provide publicly available forest loss alerts. The Global
Forest Watch (GFW) alerts are provided from a combination of Global Land Analysis and
Discovery lab (GLAD; [32]) and radar for detecting deforestation (RADD; [33]) systems.
The Japan International Cooperation Agency (JICA) and Japan Aerospace Exploration
Agency (JAXA) provide the JICA-JAXA Forest Early Warning System (JJ-FAST; [34]) alerts.
While other systems have been proposed (e.g., [35,36]), many are based on lower spatial
resolution datasets, such as MODIS, and/or have provided alerts for a specific country and
therefore are not directly relevant to this study.

The GLAD alerts [32] are derived from USGS Landsat imagery with a pixel resolution
of 30 m. A bagged tree machine learning classification algorithm is used and applied to
each scene to identify possible areas of change. The system confirms a change if at least
two from four consecutive scenes identify a pixel as a change. For a case study in Peru,
the users accuracy was estimated at 86.5% ± 2.0 (13.5% commission) and producers as
67.0% ± 7.4 (33.0% omission).

The RADD [33] system uses Copernicus Sentinel-1 C-band SAR imagery with a spatial
pixel resolution of 10 m and an updated period of 6–12 days. Although, with the failure of
Sentinel-1B in December 2021, the RADD system is limited until the launch of Sentinel-1C,
expected in 2023. The Sentinel-1 VH and VV backscatter are converted into per-pixel
forest and non-forest probabilities using historical Gaussian mixture models. A non-forest
threshold is then used to identify forest loss alerts, and Bayesian updating is applied to
confirm alerts using subsequent observations. Using a case study from the Congo Basin,
the users and producers accuracies were estimated as 97.6% (2.4% commission) and 95.0%
(5% omission), respectively.

The JJ-FAST system [34] uses JAXA ALOS-2/PALSAR-2 ScanSAR L-band SAR data to
provide deforestation alerts for 77 countries every 42 days with a spatial pixel resolution of
50 m. The approach has evolved with a number of versions of the algorithm released, all
based on a system of thresholds. A number of global reference sites were used to define the
thresholds. The users and producers accuracies for Version-3 of the alerts were estimated
at 85.0% (15% commission) and 63.8% (36.2% omission), respectively.

The system proposed by this study used a map-to-image approach to identify man-
grove loss alerts. A refined version of the GMW 2018 mangrove extent was used to define
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the mangrove extent, and a computationally simple normalised difference vegetation index
(NDVI)-based threshold methodology was developed to identify the mangrove loss alerts
on a monthly basis. Our system has similarities to the JJ-FAST approach in that a set of
optimised thresholds are used to define change, rather than a machine learning-based
classification or modelling approach. However, it is also similar to the GLAD alerts system
as the proposed system uses multiple observations to confirm a change.

3. Methods

The analysis for the GMW Mangrove Loss Alerts was undertaken via the Microsoft
Planetary Computer [37,38], which provides access to the many spatial datasets, including
the full Sentinel-2 archive, hosted within an Azure storage bucket and searchable via a
STAC API [39]. Using the freely provided jupyter-lab [40] Kubernetes [41] deployment, the
Microsoft Planetary Computer allows access to a Dask [42] cluster to scale data analysis. For
this study, the items identified through the STAC search API were loaded as a Xarray [43]
into the Dask [42] cluster using the Open Data Cube (ODC) STAC API [44]. In the future,
when computer requirements go beyond those provided in the free Kubernetes deployment,
scaling can be achieved through the deployment of a custom Kubernetes deployment within
the Microsoft Azure Cloud.

Analysis was undertaken on a 1 × 1 degree grid (Figure 1) with all data resampled into
the WGS84 (EPSG:4326) coordinate system. A pixel size of 0.0002 degrees (∼22 m) was used,
resulting in output images for each 1 × 1 degree tile of 5000 × 5000 pixels. Therefore, each
mangrove loss alert point represents a 0.0002× 0.0002 degree pixel (i.e., 0.0484 ha) in the final
results. In total, there were 199 tiles intersecting with mangrove regions in Africa (Figure 1).

Figure 1. The regions of interest for Africa are defined by the 1 × 1 degree tiles intersecting with the
mangrove regions across Africa, as defined by the GMW v3.0 2018 mangrove extent map. The figure
also shows the locations of the sites used to optimise the parameters for the baseline refinement (Red)
and change detection threshold (Yellow).

To generate the mangrove loss alerts, two main steps were required (Figure 2). Firstly,
the refinement of the GMW v3.0 2018 mangrove extent mask to remove pixels affected by
misregistration [15] within that dataset, when compared to the Sentinel-2 dataset. Secondly,
a change analysis based on NDVI thresholding on a monthly basis producing monthly
mangrove loss alerts. These two steps form the mangrove loss alerting system that is in use
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in support of the GMW, where the monthly change analysis executed each month allows
the GMW portal to be updated with mangrove loss alerts for the previous month. For this
study, a further analysis was undertaken to annotate the mangrove loss alerts with the
drivers and pressures causing those losses and an accuracy assessment was carried out,
with this also allowing comparison to the JICA-JAXA JJ-FAST and GFW forest loss alerts.

GMW v3 
2018 Extent

Refine 2018 
Extent

Generate 
Change 
Alerts

(2019–2022)

Annotate 
Change 
Drivers

Sentinel-2 
(NDVI, NDWI, 
MNDWI, MVI)

Sentinel-1

Sentinel-2 
(NDVI)

Accuracy 
Assessment

Planet NICFI 
Mosaics

Planet NICFI 
Mosaics

Monthly

Classify Non-
Mangrove 

Pixels
Morphological 

Erosion

Figure 2. Flowchart illustrating the steps involved in the analysis. Acronym definitions: Global Man-
grove Watch (GMW), Norway’s International Climate and Forests Initiative Satellite Data Program
(NICFI), normalised difference vegetation index (NDVI), normalised difference water index (NDWI),
modified normalised difference water index (MNDWI), mangrove vegetation index (MVI).

3.1. Datasets

This analysis was undertaken using Copernicus Sentinel-2 optical and Sentinel-1 C-
band radar data, where pre-processed versions (e.g., level-2 atmospheric corrected Sentinel-
2 product) of these data were provided through the Microsoft Planetary Computer. The
Sentinel-2A and -2B satellites were launched in 2015 and 2017, respectively, and 2018 was
thus the first year for which full coverage using both Sentinel-2 satellites was available. The
Sentinel-2 imagery spanning from January 2018 to October 2022 were provided corrected to
surface reflectance and cloud masked using the Sen2Cor [45] tool. All scenes with a cloud
cover of less than 50% were used. Additionally, all Sentinel-1 C-band SAR data acquired
over the regions of interest in 2018 were used to refine the mangrove baseline, helping to
remove non-mangrove pixels from the GMW 2018 mangrove mask. The Sentinel-1 data
were provided radiometrically terrain corrected (RTC) with a correction algorithm based
on Small [46], using the PlanetDEM digital elevation model (DEM).

3.2. Mangrove Baseline

To define the extent of mangroves across Africa, the GMW v3.0 mangrove layer for
2018 was used [15]. As outlined by Bunting et al. [15], the spatial baseline of these data were
derived from L-band SAR global mosaics from the Japanese Earth Resources Satellite (JERS-
1) synthetic aperture radar (SAR), the Advanced Land Observing Satellite (ALOS)-Phased
Arrayed L-band SAR (PALSAR) and ALOS-2 PALSAR-2 missions from the Japan Aerospace
Exploration Agency (JAXA) [47]. Due to inherent geolocation uncertainty in the version of
the L-band SAR mosaics used for the generation of the GMW v3.0 layers, amounting up to
100 m in certain locations, some additional post-processing of the 2018 mangrove extent
baseline was required to avoid false mangrove loss alerts in the mangrove/non-mangrove
boundary regions occurring due to misregistration with the Sentinel-2 data. JAXA are
subsequently (in 2022 and 2023) replacing all mosaic products with geolocation errors with
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re-processed products [48], which will be used for the next version (v4.0) of the GMW
extent products. The GMW v4.0 products are scheduled for release in 2023.

The post-processing of the 2018 mangrove baseline was undertaken in two steps.
Firstly, a classification of non-mangrove pixels was undertaken within the 2018 man-
grove mask, and secondly, a morphological erosion was conducted to remove the re-
maining boundary non-mangrove pixels. The classification of non-mangrove pixels was
undertaken using four optical indices: the normalised difference vegetation index (NDVI;
Equation (1)), mangrove vegetation index (MVI; Equation (2) [49]), normalised differ-
ence water index (NDWI; Equation (3)), and the modified normalized difference water
index (MNDWI; Equation (4)), as well as the minimum Sentinel-1 cross-polarisation (VH)
backscatter for 2018.

NDVI =
NIR − Red
NIR + Red

(1)

MVI =
NIR − Green

SWIR1 − Green
(2)

NDWI =
Green − NIR
Green + NIR

(3)

MNDWI =
Green − SWIR1
Green + SWIR1

(4)

The four optical indices were calculated for each Sentinel-2 scene independently,
and a count of the number of times a specified non-mangrove threshold (Table 1) was
crossed (i.e., above or below a predefined threshold depending on the index) was made
for each pixel and each index. These counts were subsequently thresholded (Table 1) to
provide four masks of non-mangrove pixels, each of which was removed from the GMW
v3 2018 mangrove extent mask. For the Sentinel-1 data, where low VH backscatter typically
indicates open water, the minimum VH backscatter across all the scenes from 2018 was
calculated for each pixel, and a threshold was applied to mask out non-mangrove pixels
(e.g., water and mudflats) from the GMW v3 2018 mangrove baseline.

Table 1. Optimal thresholds identified for refining the mangrove extent for 2018. The index thresholds
were applied to each scene to identify non-mangrove pixels. The count threshold was used to
threshold the number of times a pixel has crossed the threshold combining the results from the
individual scenes to create a single mask for each index. Acronym definitions: normalised difference
vegetation index (NDVI), normalised difference water index (NDWI), mangrove vegetation index
(MVI), Sentinel-1 vertical–horizontal (VH) polarisation.

Index Index Threshold Count Threshold

NDVI <0.1 4
MVI <0.1 4

NDWI >−0.1 4
MNDWI >0.15 4

Min. Sentinel-1 VH <−19 [dB] -

The optical index thresholds were derived through a sensitivity analysis using a set of
reference masks (e.g., Figure 3c), where thresholds from −0.3 to 0.5, in steps of 0.05, were
tested for each index. The count thresholds were also optimised with values tested from 1 to
10. For the Sentinel-1 data, VH backscatter values were extracted and intersected with the
reference mangrove masks, and the optimal threshold differentiating mangroves and non-
mangroves was selected. The reference mangrove masks (e.g., Figure 3c) were generated
from 21 1 × 1 degree tiles randomly selected across the African coastline (Figure 1), within
which 44 regions of approximately 5 × 5 km were identified. Within the 44 regions, pixels
incorrectly identified as mangroves (i.e., false positives, primarily due to misregistration)
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within the GMW v3 2018 mask were digitised with a visual inspection of the Planet imagery
for 2018, providing the reference dataset. The thresholds (Table 1) with the best agreement
for removing the non-mangrove pixels within the 44 regions were then applied to the whole
study area. Finally, a morphological erosion, using a 5 × 5 circular operator, was applied
to the revised 2018 mangrove extent mask to remove any remaining edge effects due to
misregistration. This operation removed approximately two pixels (∼40 m) from all the
mangrove boundaries.

Figure 3. Examples of the reference images defined for the sensitivity analysis for identifying the
baseline thresholds ((c); Table 1) and the change thresholds ((d); Table 2). (a,b) illustrate the 2018
Planet imagery for the area while (c) mangroves that should be within the 2018 baseline (orange) and
pixels which should be removed from the mangrove mask by the thresholding (blue). (d) Mangroves
that have not been lost (orange) or lost (blue) between 2018 and 2022. (Image courtesy: Planet
Labs/NICFI).

These post-processing steps result in a refined mangrove baseline mask that minimises
the errors associated with misregistration and avoids the associated false positives for
change that might otherwise be found. However, it also means that true mangrove pixels
are missing from the refined baseline mask and particularly those on the boundaries
between mangrove and non-mangrove regions susceptible to erosion and other pressures
leading to change.
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Table 2. The upper part of the table provides the range of values tested during the sensitivity analysis
to identify the optimal thresholds for the change analysis. The index threshold is the threshold to
find a potential mangrove loss within an individual scene. The absolute difference threshold is the
difference in the index between the current scene and the median pixel value for the month from the
previous year. The score threshold is related to the number of times a change needs to have occurred
for the mangrove loss alert to be confirmed. The bottom part of the table provides the resulting
optimal thresholds identified through the sensitivity analysis. Acronym definitions: normalised
difference vegetation index (NDVI), normalised difference water index (NDWI).

Index Index Threshold Abs. Diff Threshold Score Threshold

Sensitivity Analysis Test Values

NDVI 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 0.1, 0.15, 0.2, 0.25, 0.3 3, 5, 7, 9

NDWI −0.2, −0.15, −0.1, −0.05, 0.0,
0.05 0.1, 0.15, 0.2, 0.25, 0.3 3, 5, 7, 9

Optimal Thresholds

NDVI <0.25 0.15 5
NDWI >0.05 0.25 7

3.3. Identification of Mangrove Loss

Only pixels within the refined 2018 mangrove mask were considered to identify man-
grove loss alerts, and the analysis was executed for each month, providing monthly alerts
of mangrove losses. Using fewer indices for the change analysis reduces the computational
effort of the analysis. Therefore, the 44 reference regions used to identify non-mangrove
thresholds were further analysed to identify the indices to be used for the change detection.
Using each index as the base, Figure 4 illustrates the number of additional non-mangrove
pixels identified by the other indices for the 44 reference regions. The NDVI and NDWI indi-
vidually identified the most non-mangrove pixels within these reference regions (Figure 4),
and these were therefore taken forward for the change analysis. Subsequently, a parameter
optimisation for the change analysis (see below) found that only the NDVI was required
for the identification of the mangrove loss alerts.

ND
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W
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Figure 4. Importance of the indices used for the baseline refinement, represented as a count of the
number of pixels identified as non-mangroves using the 44 reference sites using each index as a
base. Using each index as the base (x-axis), the number of additional non-mangrove pixels identified
using each of the other indices is shown. This illustrates that the NDVI and NDWI individually
identified more non-mangrove pixels than the MNDWI and MVI pixels, but the MNDWI was more
complementary to the other indices. Acronym definitions: normalised difference vegetation index
(NDVI), normalised difference water index (NDWI), modified normalised difference water index
(MNDWI), mangrove vegetation index (MVI).
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The NDVI was thresholded to identify mangrove change from each Sentinel-2 scene.
An absolute difference threshold was also applied to confirm changes, comparing the me-
dian NDVI of the same month from the previous year to each of the Sentinel-2 observations
on a per-pixel basis. Additionally, a scoring system was used to help mitigate noise, such as
from misclassified clouds or cloud shadows. The scoring system was applied (Figure 5) on
a per-pixel basis and updated with each observation, where 1 was added to the score when
a change was found, and 1 was subtracted if no change was found. The score cannot go
below 0 or higher than the change score threshold (i.e., 5, identified through the threshold
optimisation below). Therefore, to be confirmed as a change, a pixel needed multiple
observations to reach the score threshold (i.e., 5) where the NDVI value was consistent with
non-mangroves, and the pixel value had changed compared to 12 months earlier.

0

2

4

6 (a)
Change occurred

Change confirmed

0

2

4

6 (b) False positives False positives

2019-01
2019-04

2019-07
2019-10

2020-01
2020-04

2020-07
2020-10

0

2

4

6 (c) False positive
Change occurred

No change identified

Change confirmed

Examples of Alert Scoring

Sc
or

e

Figure 5. Examples for individual pixels illustrating the scoring system. Examples: (a) a change
occurring, (b) false positives (e.g., misclassified clouds) ignored by the scoring system, and (c) a more
complex example of a change occurring with a false positive and some observations which have
missed identified the change.

The thresholds for identifying a change were defined through a sensitivity analysis,
where 26 5 × 5 km regions were defined (Figure 1) and the pixels where changes had
occurred from the 2018 baseline to October 2022 were digitised (e.g., Figure 3d). A set of
values for each threshold (Table 2) were then applied, and those most accurately identifying
the reference changes while minimising the identification of false positives were selected
and applied for the analysis.

From the sensitivity analysis, it was found that the NDVI captured change more
reliably than the NDWI. The NDVI also captured the majority of the changes identified
by the NDWI. Therefore, to increase the computational efficiency of the processing, it was
decided only to use the NDVI for the analysis.

It was observed that alerts for true losses of mangroves were generally clustered, while
false positives tended to be isolated. Therefore, a process to remove isolated mangrove loss
alerts was applied. The individual mangrove loss alert pixels were vectorised to points,
creating the data product provided to end users from this analysis. Each mangrove loss
alert point represents a single 0.0002 × 0.0002 degree (i.e., 22 × 22 m) pixel, for the month
the alert was confirmed. The vectorised mangrove loss alert points were populated with
the number of mangrove loss alerts within 222 m (10 pixels) and 444 m (20 pixels) radii,
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from either the month of confirmation or the months since the start of the analysis. For
example, for the mangrove loss alerts confirmed in October 2022, the alerts from January
2019 to October 2022 will be used to find the isolated alerts in October 2022. Mangrove loss
alert points were removed using the following criteria: (a) less than five alerts within the
444 m radius and less than four alerts within the 222 m radius, or (b) less than three alerts
within the 222 m radius. The thresholds used to identify the isolated mangrove loss alerts
were defined through a visual sensitivity analysis across various sites.

Finally, manual quality assurance (QA) was undertaken across the study area. How-
ever, it was found that edits were only required in Nigeria and Cameroon, where high cloud
cover had resulted in a number of false positives from December 2020 to April 2021. This
was attributed to a sequence of images where the cloud masking had failed to fully capture
the cloud and shadows within the imagery. The QA process digitised polygons intersecting
with alerts identified as false positives, which were removed from the dataset. The manual
QA process took approximately 3 h and was therefore not considered a significant overhead.
The QA process was simple to perform and is recommended to be routinely undertaken
before every public release of new GMW Mangrove Loss Alerts on the Global Mangrove
Watch Portal.

It should be emphasised that the mangrove loss alerts are designed to indicate the
spatial density and temporal frequency of mangrove losses within a region and should
not be used for area calculations. This is, in part, due to the filtering applied to the 2018
mangrove baseline, particularly the erosion required due to the inherent geolocation errors
in the GMW v3.0 baseline due to the use of the old version of the JAXA L-band SAR
mosaic dataset.

3.4. Accuracy Assessment

To assess the accuracy of the mangrove loss alerts, a 1 km hexagonal grid was con-
structed from which a random set of hexagons were selected. A hexagonal grid can have
advantages over a square grid [50]. Specifically, the former helps to minimise sampling
bias due to edge effects related to the grid shape due to the low perimeter-to-area ratio.
Additionally, hexagonal grids can represent curved patterns within the data more naturally
than square grids. The selected grid cells were visually annotated as to whether a mangrove
loss had occurred, using the very-high-resolution Planet satellite mosaics provided through
Norway’s International Climate and Forests Initiative Satellite Data Program (NICFI) as
a reference [51]. The annotation was a binary decision based on the presence or absence
of a mangrove loss within the period of interest intersecting the 1 km hexagon. The 1 km
grid was considered the scale at which users can be expected to use the mangrove loss
alerts within their areas of interest. A 10% sample was taken (270) for the accuracy as-
sessment of the hexagons intersecting with the mangrove loss alerts. An additional 1000
hexagons were randomly sampled from the whole mangrove area (107,146 hexagons) to
assess false negatives.

The assessment was carried out without reference to the mangrove extent baseline with
the mangrove extent interpreted from the Planet imagery. Using a mangrove extent baseline
to constrain the accuracy assessment would bias the results, ignoring true mangrove loss
alerts that may occur outside the GMW 2018 baseline. This is particularly important due to
the refinement applied to the GMW 2018 baseline to mitigate the geolocation errors within
that layer. This refinement is likely to result in some omission of mangrove regions and,
therefore, errors of omission within the resulting mangrove loss alerts. To quantify the
errors of omission directly resulting from the 2018 baseline, rather than the change detection
approach, a further assessment of the reference hexagons was made only considering the
losses within the refined 2018 baseline.

The methodology described in Bunting et al. [15] was used to validate that a sufficient
number of reference samples were used to estimate the accuracy metrics accurately. The
1270 reference samples were split into five random subsets, each with 254 reference samples
and cumulatively combined to assess whether the accuracy metrics significantly changed



Remote Sens. 2023, 15, 2050 11 of 26

by adding further reference sets. Bootstrapping was used to estimate accuracy metrics and
the 95% confidence interval [2], using a 30% sample with replacement and 1000 iterations.

To assess the temporal accuracy of the mangrove loss alerts, a sample of 100 alerts
was randomly selected from the whole dataset. A reference date was derived for each
mangrove loss alert using the NICFI Planet monthly mosaic imagery and compared to the
date at which a change was first observed.

3.5. Causes of Change

During the analysis, it was noted that different pressures dominated the causes of
mangrove loss within particular regions. To assess this, the NICFI Planet mosaics were used
to visually assess and manually annotate the 2678 1 km hexagons to a dominant change
pressure. The pressures considered were related to: agriculture (Figure 6a), infrastructure
(Figure 6b), clearing (Figure 6c), erosion (Figure 6d) and ‘other’ (Figure 6e). While agricul-
ture and infrastructure are sub-classes of clearing, they were labelled separately as they can
be readily identified where field systems or roads have been built and are visible within the
NICFI Planet mosaics. Erosion is a sub-class of natural processes, but identifiable through
the context within the imagery. The ‘other’ class was used for situations where the cause of
the change was unclear and where no clear anthropogenic signatures (e.g., straight lines)
were present. It should also be noted that many processes occurring within the mangroves
might naturally occur but have anthropogenic causes (e.g., changes in sediment supply
due to deforestation or dam building or pollution events such as oil spills). Identifying
these secondary pressures was not possible using satellite imagery alone, and therefore
changes associated with these are likely to be within the ‘other’ class.

Figure 6. Examples from within the NICFI Planet mosaics of mangrove losses associated with
(a) agriculture, (b) infrastructure, (c) clearing, (d) erosion and (e) ‘other’. The green transparent
areas within the first row illustrate the filtered GMW 2018 mangrove extent. (Image courtesy: Planet
Labs/NICFI).

4. Results

From January 2019 to October 2022, 72,389 individual mangrove loss alerts were
identified. As shown in Figure 7 and Table 3, Guinea-Bissau, Guinea and Nigeria represent
the most significant hot spots of mangrove losses in West Africa, whilst, in East Africa, the
most significant losses were found to occur in Madagascar and Mozambique.

However, the assessment indicates that the pressures causing the losses vary between
the countries. For example, in Guinea and Guinea-Bissau, most alerts appear to be associ-
ated with agricultural expansion and development (Figure 8a). In contrast, in Nigeria, the
development of infrastructure, particularly for oil and gas development [52], dominated
(Table 3). Nigeria was also found to have significant losses in the ‘other’ class, with areas of
mangroves appearing degraded and dying. These areas in Nigeria, allocated to the ‘other’
class, often coincide with areas of intense oil extraction. Therefore, these changes can likely
be attributed to the significant pollution events reported to have occurred in the area [52]



Remote Sens. 2023, 15, 2050 12 of 26

and be considered an effect of anthropogenic activities. Within northern Nigeria, there
is also a substantive area of coastal erosion, as seen within Figure 8b, and this has had a
significant impact on those who live within the area, resulting in a large number of homes
being washed away over just the four year period of this study.

In Eastern Africa, particularly in Madagascar and Mozambique, the alerts identified
are primarily associated with the ‘other’ class (Table 3), with some smaller areas of infras-
tructure development, such as in Kenya, where the alert system identified a new ferry
port development (Figure 8c). These extensive areas of mangrove loss in Madagascar and
Mozambique include areas of canopy dieback (e.g., Figure 8d), which are thought to be
due to storm damage. However, there are many pressures and associated events and pro-
cesses that can result in mangrove loss, including disturbed hydrology (e.g., through dam
building and coastal engineering [53,54]), extreme weather events such as cyclones [55,56],
pollution [52,57], sea-level changes [58] and seasonal (including lunar) cycles [59]. From
the imagery alone, it is not possible to identify the cause.

0 20 50 150 500 2000 7500
Number of Alerts

Figure 7. The mangrove loss alert hot spots throughout Africa. The hexagon sizes indicate the
number of alerts, as does the colour.

Considering the number of alerts per mangrove area (Table 3), there appears to be no
obvious relationship between the extent of mangroves within a country and the number
of alerts. However, this does highlight some countries of interest, such as the Democratic
Republic of the Congo, where just 12 alerts were identified with the 23,659 hectares of
mangroves. In the Seychelles, 42 alerts were identified within only 382 ha of mangroves,
with the majority thought to be due to storm damage.
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Table 3. Summarising the mangrove loss alerts results on a per-country basis. Including the number of mangrove loss alerts identified within each country, the
GMW 2018 mangrove extent for the country, the spatial density of mangrove loss alerts for the country, provided as the number of hectares per mangrove loss alert
(Num. ha per Alert; mangrove extent/number of alerts) and the number of mangrove loss alerts assigned to each change pressure for each country.

Country Number of Alerts 2018 Mangrove
Extent (Hectares)

Num. ha per
Alert Agriculture Infrastructure Clearing Erosion Other

Nigeria 16,380 845,359 52 0 3266 3996 3611 5507
Guinea-Bissau 13,012 269,778 21 12,021 18 32 19 922

Madagascar 12,964 277,221 21 0 0 0 533 12,431
Mozambique 12,140 309,560 25 0 10 0 770 11,360

Guinea 10,722 222,774 21 6917 362 1759 616 1068
Sierra Leone 2659 157,629 59 59 99 2419 0 82

Senegal 1421 127,031 89 0 0 0 31 1390
Tanzania 845 111,542 132 818 11 0 5 11

Cameroon 500 196,877 394 0 14 0 433 53
Ghana 482 17,950 37 0 24 0 0 458
Kenya 327 54,328 166 0 76 0 0 251

Gambia 240 61,122 255 0 171 0 0 69
Angola 218 28,358 130 0 147 0 0 71
Benin 170 2941 17 0 0 6 0 164

Liberia 161 18,691 116 0 6 137 0 18
Côte d’Ivoire 65 5411 83 0 65 0 0 0

Seychelles 42 382 9 0 0 0 0 42
Democratic

Republic of the
Congo

12 23,659 1972 0 0 0 0 12

South Africa 11 2648 241 11 0 0 0 0
Djibouti 10 738 74 0 0 0 0 10
Somalia 8 3554 444 0 0 0 0 8

Total 72,389 2,737,553 38 19,826 4269 8349 6018 33,927
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Figure 8. Examples of the mangrove loss alerts (red dots) for (a) agriculture conversion in Guinea-
Bissau, (b) coastal erosion in Nigeria, (c) infrastructure development in Kenya, and (d) storm damage
in Mozambique. Note, the occurrence of geolocation errors between the Planet imagery and the
resulting mangrove loss alerts from the Sentinel-2 data, which are most evident in (d)).

Using the five countries with the most mangrove loss alerts, Figure 9a illustrates the
frequency of alerts over the study period. For Nigeria, it can be seen that there is a pattern,
with alerts mainly occurring from November to March. However, this was attributed to the
low availability of cloud-free Sentinel-2 imagery rather than the timings of mangrove losses.

In some cases, individual events can result in a significant number of mangrove
loss alerts. For example, in Mozambique, a significant number of alerts (8220; 68%) were
identified in 2019, seeming to correspond to Cyclone Idai (Figure 10d [60]), which struck the
region in March 2019. A similar but smaller peak was also noted in Madagascar, with 2703
(21%) alerts found in areas where Cyclone Idai might have impacted. The Mozambique
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Channel witnessed 16 cyclones over the study period (Figure 10c), the most significant
of which was Idai. It is also interesting to note that before the study period, four years of
reduced cyclone activity occurred (Figure 10a,b), with fewer cyclones and low wind speeds.
This might explain the high number of alerts identified within this region during the study
period compared to the other countries in East and West Africa.
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Figure 9. Analysis testing the timing of the alerts versus a reference dataset. (a) The number of alerts
for the dominant change countries in Africa throughout the period of observation, (b) the observed
date of change versus the number of days from the reference, and (c) a box plot for the number of
days difference between the observed and reference date of the change (median = 92 days).
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(c) Storm Tracks in Mozambique Channel (2019-2022)
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Figure 10. Cyclone activity in the Mozambique Channel: (a) the number of storms grouped by 4-year
periods, (b) wind speed statistics for the 4-year clustered storms, (c) storm tracks for the storms that
occurred during the 2019–2022 study period, and (d) storm track and wind speed of the Idai cyclone
(March 2019), the most significant storm within the study period.
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4.1. Accuracy Assessment

Based on the 1 km hexagon grid used for the assessment, the overall accuracy of the
mangrove loss alerts was estimated to be 92.1% with a 95th confidence ranging from 89.0%
to 95.7% (Table 4). The omission and commission of mangrove loss alerts were estimated
to be 20.6% and 10.4%, respectively. This assessment was independent of the mangrove
extent mask used for the analysis. However, if only pixels within the refined mangrove
extent are considered for the accuracy assessment, the overall accuracy increased to 97.2%
(94.8–98.8%), with the omission decreasing to 9.7%. This demonstrates that the refined
mangrove extent baseline is the cause for approximately half the omission of mangrove
losses, particularly those close to the mangrove edges (e.g., coastal erosion). The baseline
can be expected to be improved in 2023 with the new GMW v4.0 mangrove extent dataset
based on the reprocessed L-Band SAR global mosaic datasets from JAXA. For omissions
primarily associated with the change detection, there are no clear patterns or systematic
errors which have been observed.

Table 4. The accuracy assessment metrics using the 1 km hexagons to assess the accuracy of the
mangrove loss alerts without reference to a mangrove baseline.

Metric Median Estimate 95th Confidence

Overall Accuracy 92.1% 89.0–95.7%
Cohen Kappa 0.789 0.704–0.865

Balanced Overall Accuracy 88.0% 83.1–93.3%
Macro F1-Score 0.894 0.851–0.937

Weighted Avg. F1-Score 0.920 0.887–0.956
Matthews Correlation

Coefficient 0.792 0.709–0.876

Mangrove Loss Alerts

F1-Score 0.842 0.769–0.907
Precision/Users 0.900 0.813–0.967

Recall/Producers 0.794 0.696–0.892
Omission 20.6% 10.8–30.4%

Commission 10.4% 3.3–18.6%

No Mangrove Loss Class

F1-Score 0.948 0.926–0.970
Precision/Producers 0.930 0.896–0.963

Recall/Users 0.968 0.940–0.989
Omission 3.2% 1.1–6.0%

Commission 7.0% 3.7–10.4%

Errors of commission were primarily found in narrow river channels included within
the mangrove extent mask (e.g., Figure 11). While the baseline refinement removed many
of these channels, some narrower channels with many mixed pixels remained. The change
threshold to the previous year also reduced the number of these false positives (commis-
sions) that were identified as mangrove loss alerts, but given the tidal nature of these
systems, some change in reflectance can occur within these river channels without a loss
of mangroves.
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Figure 11. Illustrating a common cause of commission errors within the results from the mangrove
loss alerts system, where the 2018 refined baseline (green regions) has not captured small river
channels and, therefore, false positives (red points) for mangrove loss alerts are identified (Image
courtesy: Planet Labs/NICFI).

To ensure that a sufficient number of samples were taken for the accuracy assessment,
the accuracy metrics were calculated cumulatively using five subsets, each with 254 samples.
Figure 12 illustrates that increasing the number of samples does not significantly alter the
resulting accuracy metrics, with the mangrove loss alert class having the greatest variability.
This is to be expected as change is rare. The variation in the mangrove loss alerts F1-
score was from 0.952 (254 samples) to 0.943 with 1270 samples. The 95% confidence
range decreased from 0.135 with 254 samples to 0.065 with 1270 samples. Therefore, it
can be considered that adding further samples will not significantly alter the estimates
of the individual class accuracies or overall accuracy but might reduce the range of the
95% confidence.
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Figure 12. To illustrate that a sufficient number of accuracy samples has been used for the accuracy
assessment, the reference data were subsampled and cumulatively combined to calculate the (a) the
F1-score for the mangrove loss alerts, (b) the F1-score for pixels with no mangrove loss and (c) the
overall accuracy. The grey areas illustrate the 95th confidence interval of the accuracy metric, where
values closer to 1.0 indicate better accuracy. For all three metrics, including additional reference data
does not significantly alter the accuracy estimated, and therefore, it can be concluded that sufficient
reference data has been sampled.

4.2. Accuracy of Alert Timing

Using a sample of 100 reference points, an assessment was made of the alert timings,
as identified by the system. Of the 100 reference points, five were found to be either
incorrectly identified as changes or there was insufficient NICFI Planet imagery (e.g., due
to cloud cover) to identify the timing of the loss. From the remaining 95 points, 75% of the
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alerts were identified within three months of the change identified within the NICFI Planet
imagery (Figure 9c). As shown in Figure 9b, the offset from the alert date to the actual date
the change occurred was largely consistent throughout the study period.

4.3. Comparison to JJ-FAST and GLAD Alerts

To compare the GMW Mangrove Loss Alerts (this study) with other early warning
systems, such as the JICA-JAXA Forest Early Warning System in the Tropics (JJ-FAST) [34]
and the Global Forest Watch (GFW) alerts (combined GLAD [32] and RADD [33] alerts), a
further accuracy assessment was undertaken. The JJ-FAST and GFW alerts were intersected
with the 1 km hexagonal grid used to assess the GMW Mangrove Loss Alert accuracy. The
intersection identified 1665 hexagons for the GFW alerts and 1047 for the JJ-FAST alerts,
compared to 2678 for the GMW Mangrove Loss Alerts. As shown in Table 5, the number
of intersections between the different alert products is low, with 14% of the GFW alert
hexagons intersecting with GMW Mangrove Loss Alerts and 5% for JJ-FAST.

Table 5. The 1 km hexagon intersections between the GMW Mangrove Loss Alerts (this study), the
JJ-Fast alerts [34] and GFW alerts [32,33]. This revealed a low correspondence between the three
datasets, with only 14% of the GMW Mangrove Loss Alerts intersecting with the GFW and only 5%
of the JJ-FAST and GMW alerts intersecting.

GMW GFW JJ-Fast

GMW 2678 397 121
GFW 14% 1665 90
JJ-Fast 5% 7% 1047

To assess the accuracy of the different alert systems for mangroves, the reference
hexagons defined to assess the GMW Mangrove Loss Alerts were used. An additional
10% sample of hexagons was taken for the GFW and JJ-FAST alerts. These samples were
assigned to mangrove change and no-change classes with reference to the NICFI Planet
imagery. The outputs from the analysis are shown in Table 6, where the GMW Mangrove
Loss Alerts are demonstrated to be more accurate for alerting to mangrove losses. It should
be noted that the GMW Mangrove Loss Alerts are specifically focused on mangrove forests,
while the GFW alerts and JJ-FAST alerts are generically applied to all forests. Given the
larger area of terrestrial forests, these systems have naturally been developed and tested in
these areas rather than mangroves. The low accuracy for JJ-FAST alerts over mangroves
is primarily because there are few alerts within the mangrove extent. However, there
are many terrestrial forest losses that the JJ-FAST system has correctly identified on the
mangrove–terrestrial forest boundary. However, as a consequence of the lower 50 m pixel
resolution and geolocation error in the older ALOS-2 PALSAR-2 ScanSAR products used to
produce these alerts, there are cases of overlap with the mangrove mask. There are many
false positives in the mangrove regions for the GFW alerts, which are often small in size and
similar to the alerts that the distance-based filtering removed from the GMW Mangrove
Loss Alerts dataset. The GFW alerts system also fails to detect a significant number of
losses within the mangrove area, with an omission of 67.9%. However, it also identified
some mangrove losses that the GMW Mangrove Loss Alerts system failed to identify.

The comparisons of accuracy indicate that the GMW Mangrove Loss Alerts system
is better suited to detect mangrove losses; however, the JJ-FAST and GFW alert systems
also work well within terrestrial forest areas. Therefore, while not appropriate for mapping
mangrove loss per se, the JJ-FAST and GFW systems can provide important complementary
information on the catchment area influencing the mangrove, with deforestation and
degradation of terrestrial forests potentially impacting the mangroves.
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Table 6. Comparison of the accuracy of mapping mangrove loss between the GMW Mangrove Loss
Alerts (this study), the JJ-FAST alerts [34] and GFW alerts [32,33].

Metric Median Estimate 95th Confidence

GMW Mangrove Loss Accuracy

F1-Score 0.842 0.769–0.907
Precision/Users 0.900 0.813–0.967

Recall/Producers 0.794 0.696–0.892
Omission 20.6% 10.8–30.4%

Commission 10.4% 3.3–18.6%

GFW Mangrove Loss Accuracy

F1-Score 0.40 0.298–0.504
Precision/Producers 0.534 0.400–0.673

Recall/Users 0.321 0.229–0.425
Omission 67.9% 57.5–77.1%

Commission 46.6% 32.7–60.0%

JJ-Fast Mangrove Loss Accuracy

F1-Score 0.148 0.063–0.244
Precision/Producers 0.269 0.117–0.448

Recall/Users 0.200 0.042–0.177
Omission 89.7% 82.3–95.8%

Commission 73.1% 55.2–88.3%

5. Discussion

This study has demonstrated that mangroves are under pressure in many areas of
Africa. A significant number of losses have occurred between 2019 and 2022 in Nigeria,
Guinea-Bissau and Guinea in West Africa and Madagascar and Mozambique in the East.
However, the drivers of these mangrove losses vary between regions and therefore, man-
agement responses should also differ. For example, in West Africa, the drivers are largely
economic, with mangroves being primarily removed for agricultural development and
infrastructure. These economic activities can also produce significant secondary pressures,
such as pollution events (e.g., [52]), which may cause the dieback of mangroves. To achieve
the Global Mangrove Alliance (GMA) goals for mangrove conservation and restoration,
these areas need increased protection and conservation to halt further losses, and where
possible, regions of loss should be restored.

In East Africa, there are anthropogenic losses caused by agricultural development
(e.g., Rufiji Delta in Tanzania), illegal logging (e.g., Mtwapa and Kilifi in Kenya) and
infrastructure development (e.g., Mombasa in Kenya). However, the majority of mangrove
loss alerts were focused around the Mozambique Channel, where it is likely that significant
storm (e.g., Cyclone Idai) damage occurred within the mangrove regions. For these regions,
further study is required to understand whether the changes witnessed between 2019 and
2022 are within the realms of normality, where recovery will naturally occur or whether
these are part of a longer decline in mangroves.

Mangroves are naturally dynamic, and when in equilibrium, it would be expected that
while some regions experience losses (e.g., erosion), others are expanding, or where regions
experience dieback due to storm damage, others might be recovering. Future studies could
use data, such as the historical GMW global extent layers, to assess whether regions are in
equilibrium, at what spatial scale equilibrium occurs, and whether further protection or
restoration efforts are required. Mangroves are complex systems, and future protections
might also consider the wider ecosystem, such as the development of upstream infrastruc-
tures, including dams that can reduce sediment supply [53] or terrestrial deforestation or
mining that can increase sediment supply [61].
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5.1. Case Study from Guinea-Bissau

During the development of the mangrove loss alert system, an early version of the
system found a dense patch of alerts in Guinea-Bissau (Figure 13) and a Wetlands Interna-
tional team from Guinea-Bissau were able to visit the site on 7 April 2021. The team found
that a dam (Figure 14a) had been built to reclaim land for rice paddies, locally known as
“bolanha’s”, and behind the dam, the mangroves were already being removed (Figure 14b).
These bolanha’s belonged to the villages of Ntus and Blom, within the Safim region and
were previous rice paddies before 1993. However, they were forced to be abandoned in
1993 due to saltwater intrusion. An unsuccessful attempt was made to restore these fields
in 1998, and the current intervention was started in 2017. In this case, the Guinea-Bissau
government funded the project as part of a framework of food self-sufficiency for rural
communities. Therefore, while the loss was identified and enabled a conversation, it could
not prevent mangrove loss or allow restoration.

This case study highlights the complex nature of mangrove conservation, where many
competing needs exist. Identification and notification of a mangrove loss, such as provided
through this system and the GMW Portal [19], is an important first step but requires further
‘on the ground’ work to understand the causes and background.

Figure 13. A case study from Guinea-Bissau where a new dam was built, resulting in the mangroves
behind the dam being removed for rice cultivation. (a) illustrates the Planet imagery before the dam
was built, (b–e) the dam was built and mangroves lost over the period and (f) the GMW Mangrove
Loss Alerts identified over the period. (Image courtesy: Planet Labs/NICFI, 2018).
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Figure 14. Example field photos taken during the field visits to the area shown in Figure 13. (a) The
dam was built to hold back the tidal waters allowing for rice cultivation. (b) An area behind the dam
where mangroves have started to be removed to be converted into rice paddies. Credit: Wetlands
International; Taken: 7 April 2021.

5.2. Case Study from Kenya

Within Kenya, a number of mangrove loss alerts were identified within the county
of Kilifi (Figure 15). Wetlands International staff were able to visit this area in November
and December 2022 with support from the Kenya Forest Service. They verified the alerts as
true losses of mangroves (Figure 16) and, through discussion with local authorities and
community members, found that the cause of the mangrove losses was clearing for charcoal
production. These were not areas that had witnessed extensive harvesting before, but with
the COVID-19 pandemic, access to charcoal (the primary residential fuel source in the area)
was reduced. During the pandemic lockdowns, local people were without work, and the
cheap charcoal imported from other areas was unavailable. Additionally, others moved
back home to the area from other regions where they had been working as jobs were no
longer available. Therefore, local charcoal production was unofficially undertaken, and
these areas of mangroves were identified as suitable harvestable wood sources. In addition,
local authorities were unable to patrol due to the lockdowns, and consequently, these illegal
harvesting activities went unchecked. At the time of the visit, local authorities had already
started mangrove rehabilitation activities in the area (Figure 16).

This case study highlights the vulnerability of mangroves to changes in social and
economic conditions. While the alerts provided through this study alone cannot stop such
mangrove losses, they can help to identify that such losses are occurring. However, it also
highlights the need for the time between a loss occurring and being identified to be as
small as possible, with the potential for cumulative losses within as little as three months
becoming significant.
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Figure 15. A case study from Kenya where the alerts identified mangroves being lost due to charcoal
production. (a) Illustrates the planet imagery before the mangrove loss, (b–e) mangroves lost over the
period and (f) the GMW Mangrove Loss Alerts identified over the period. (Image courtesy: Planet
Labs/NICFI).

Figure 16. An area of mangroves which has been cut for charcoal production within the region shown
in Figure 15. Rehabilitation activities have already started, with the mangrove seeding seen in this
photo having been planted as part of that activity. Credit: Wetlands International; Taken: 1 December
2022.
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5.3. Computational Scalability

Implemented using the Microsoft Planetary Computer [37,38], the system took ap-
proximately 18 h to run for all 199 tiles across the whole (2018–2022) time period. This
was executed as five jobs, running simultaneously, each requesting a Dask cluster with
up to 24 cores. The study area represents 13% of the 1521 1 × 1 degree tiles covering the
mangrove regions globally. Therefore, using the same environment, the system could be
executed globally in approximately one week. However, on a monthly basis, the execution
will be faster, with only one month rather than 46 months to be processed. It would be
expected that globally the monthly updates would take a few days of computing time.

5.4. Future Developments

Future developments might consider using Sentinel-1 imagery following the launch of
Sentinel-1C, expected in 2023, particularly in areas such as the Niger Delta where persistent
cloud cover limits the use of optical satellite data. Approaches might also consider whether
Sentinel-1 and -2 could be used in combination. However, noting that L-band SAR from
the ALOS PALSAR and ALOS-2 PALSAR-2 missions have been demonstrated to be well
suited for mapping mangrove loss [62], looking to future missions, the forthcoming NASA-
ISRO SAR (NISAR) mission is anticipated to provide global L-band SAR coverage every
12 days [63] and might be well suited for near real-time mangrove monitoring.

More complex change detection algorithms might be considered, such as the con-
tinuous monitoring of land disturbance (COLD) algorithm [30], which has already been
demonstrated for mangrove applications [24,31]. These approaches make better use of the
full time series with model fitting allowing regions with more variability in response (e.g.,
inter-tidal areas with open canopies) to be taken into account and reducing the number
of false positives. Additionally, the long-term change trend in response might also be a
useful metric, where changes can occur gradually over a longer period of time. The GMW
Mangrove Loss Alerts system demonstrated here requires a significant mangrove change to
occur within the 12-month period for a change to be identified. Considering the long-term
trend after a change has been identified might also allow recovery (e.g., after a storm) to
be identified and, therefore, cases where change occurs multiple times to be identified
following a period(s) of recovery. Within the current system, once a change is identified,
that pixel is removed from the mangrove mask, and a change cannot be flagged again.

6. Conclusions

This study is the first to have demonstrated a system for identifying mangrove losses
on a monthly basis, with previous studies having focused on annual changes in mangrove
extent. The study estimated an overall accuracy of 92.1%, the mangrove loss alert com-
mission was estimated at 10.4% and an omission of 20.6%. The mangrove loss alerts have
identified significant losses throughout Africa from 2019 to 2022, with Nigeria, Guinea-
Bissau, Madagascar, Mozambique, and Guinea containing 90% of those alerts. The drivers
of these changes ranged from those driven largely by economic (e.g., West Africa and
northern East Africa) or climate (primarily changes in storm frequency and intensity in
East Africa) factors, although both were evident across the continent. Future improvements
in the quality of the mangrove loss alerts will be achieved through an updated GMW
mangrove extent baseline, to be released in 2023. The results of this study are available
through the Global Mangrove Watch (GMW) Portal [19] and will be expanding to further
areas of interest over the coming months and years.
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