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Abstract: For the remote sensing of turbid waters, the atmospheric correction (AC) is a key issue.
The “black pixel” assumption helps to solve the AC for turbid waters. It has proved to be inaccurate
to regard all water pixels in the SWIR (Short Wave Infrared) band as black pixels. It is necessary to
perform atmospheric correction in the visible bands after removing the radiation contributions of
water in the SWIR band. Here, the modified ACZI (m-ACZI) algorithm was developed. The m-ACZI
assumes the spatial homogeneity of aerosol types and employs the BPI (Black Pixel Index) and PIFs
(Pseudo-Invariant Features) to identify the “black pixel”. Then, the radiation contributions of waters
in the SWIR band are removed to complete the atmospheric correction for turbid waters. The results
showed that the m-ACZI had better performance than the SeaDAS (SeaWiFS Data Analysis System)
-SWIR and the EXP (exponential extrapolation) algorithm in the visible band (sMAPE < 30.71%,
RMSE < 0.0111 sr~1) and is similar to the DSF (Dark Spectrum Fitting) algorithm in floating algae
waters. The m-ACZI algorithm is suitable for turbid inland waters.

Keywords: atmospheric correction; turbid water; ocean color; black pixel

1. Introduction

Atmospheric correction (AC) is a key step of ocean color data processing. The “black
pixel” assumption is commonly applied to AC for waters (including open ocean, coastal,
and inland waters) [1-7]. The radiance of the “black pixel” is assumed to be dominated by
atmospheric radiance, and the contribution from water can be neglected; hence, the AC of
satellite images can be completed using the “black pixel” assumption [6,8]. This assumption
depends on the fact that the water radiation is dominated by the strong absorption of pure
water. Early on, waters in near-infrared (NIR) bands were determined to fit this assumption,
and the water-leaving reflectance (py) (or the remote sensing reflectance (Rys)) in the visible
bands was derived by removing the aerosol scattering through extrapolation from the NIR
bands [6,8,9].

However, follow-up studies showed that the contribution of turbid water in NIR
bands could not be neglected [10,11]. The short-wave infrared (SWIR) bands with a longer
wavelength and stronger absorption were considered to fit the “black pixel” assumption for
turbid waters [9,12-14]. Wang et al. (2019) found that the p;, of algae waters was strong in
SWIR bands, meaning these bloom waters no longer met the “black pixel” assumption [15].
In Lake Taihu, significant water signals in SWIR bands were detected when algal blooms
occurred (Figure 1). Therefore, the contribution of waters in SWIR bands should be removed
before the estimation of aerosol scattering in visible bands. Wang et al. (2019) developed
the BPI (black pixel index) to obtain the “black pixel” from turbid waters and proposed
the ACZI algorithm (atmospheric correction algorithm based on a zero assumption for the
short-wave infrared band) for inland turbid waters. The water pixels in the 2201 nm band
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were considered black pixels by the ACZI algorithm for Landsat 8 images, and aerosol
scattering in the visible bands was derived from the assumption of the zero contribution of
waters in the 2201 nm band [12]. Figure 1 shows that the Rayleigh-corrected reflectance
(prc) in SWIR bands is very different in water areas without algal blooms; it is incorrect that
all water pixels in the SWIR band are treated as black pixels. It is necessary to obtain the
“black pixel” with a more accurate identification method.

Here, we modified the identification method of the “black pixel” in the ACZI algo-
rithm [12], and the m-ACZI algorithm was developed. In the m-ACZI algorithm, the water
contribution in SWIR bands was removed using the combination of BPI [12] and PIFs
(pseudo-invariant features) [16,17], and accurate aerosol scattering in SWIR bands was
derived. This scheme was evaluated in turbid inland waters, with its performance also
compared with other AC algorithms.
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Figure 1. (a) False color image (R: SWIR band, G: NIR band, B: Blue band), (b) Algal bloom map
derived by FAI (floating algae index) [18,19], and the Rayleigh-corrected reflectance (po;c) in SWIR
bands (c,d) and its histograms from Lake Taihu with algal bloom on 30 January 2021. (e) Average p;c
from three boxes (21, Z2, and Z3) without algal blooms.

2. Dataset and Methods
2.1. Satellite Data

The cloudless Landsat8-OLI (Operational Land Imager) Level-1 data were from the
USGS (United State Geological Survey) and were processed to the R;s data via the AC
algorithms (details in Section 2.3.2). In this work, three OLI images of Lake Taihu (dates:
11 May 2017, 27 May 2017, and 21 December 2017) were matched with the in situ data to
evaluate the performance of the AC algorithms. The time window of data matching was
set as £3 h of the Landsat8 overpass. The AC-driven R;s data were obtained by averaging
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a 3 x 3 pixel (the coefficient of variation for these valid pixels was < 10%) area surrounding
the sample point location [20-23]. A total of 71 sampling points were matched (11 match-up
points from 11 May 2017; 22 match-up points from 27 May 2017; and 38 match-up points
from 21 December 2017) (Figure 2).
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Figure 2. In situ sampling points in Lake Taihu.

2.2. Field Spectral Data

The R;s was measured using the spectrometer (ASD FieldSpec 4) following NASA
(National Aeronautics and Space Administration) Ocean optics protocols [24] (Figure 3):

(Lt = O'-Lsky) ‘Op
7Ly

Lo

E;

Rys = (1)

where L is the total water-leaving radiance; p, is the reflectance; L is the radiance of the
reference panel; Lsky is the sky radiance; Ly, is the water-leaving radiance; and E; is the
downwelling plane irradiance. Additionally, the water surface reflectance factor o was
assumed to be 0.028 [25].



Remote Sens. 2023, 15, 2091

40f19

Rr S (Sr_l)

0.16 —r

T T T T T T T —
0.12 i
05/11/2017
— 05/27/2017
12/21/2017
0.08 - .
— \ N 8 ; / \ \ - — ~ \
0.04F /;4"“ = ':’;»\ N
57 L N %\:/ S
— 5% SN e
: _/('/f/f' :"f' — ““'}\':‘: j}{ N T\»\ — - \
{ A~:,-'.." - '/ —— \\ :;‘;_./f;" \ —~ = SN
e i NS\ S
0 : ﬁ 1 1 1 1 1 1 . ! 1 :_j
400 450 500 550 600 650 700 750 800 850 900

Wrvelength (nm)

Figure 3. Measured remote sensing reflectance (R;s) from Lake Taihu (dates: 11 May 2017,
27 May 2017, and 21 December 2017). The line color represents different sampling dates. The
color column represents the wavelength range of each band of OLI (Deep blue: 443 nm band, Light
blue: 483 nm band, Green: 561 nm band, Red: 655 nm band, Yellow: 865 nm band).

2.3. Methods
2.3.1. The m-ACZI Algorithm

The black pixel of the ACZI algorithm was identified using the combination of BPI
(Equation (2)) [12] and FAI (the floating algae index) [18,19], and this algorithm assumed
that all water pixels in the 2201 nm band accord with the “black pixel” hypothesis. However,
the p, in SWIR bands was significant and non-negligible when algal blooms occurred
(Figure 1). In this study, the m-ACZI algorithm changed ACZI’s black pixel identification
method of the black pixels of ACZI to the BPI-PIF combination, and these black pixels are
applied to remove the water contribution in SWIR bands. After this stage, the following
process is the same as the ACZI algorithm [12]. The BPI was developed by Wang et al.
(2019a) [12] to identify the black pixel from turbid waters (Equation (2)). Schott et al.
(1988) [17] considered that urban construction land has pseudo-invariant features (PIFs)
and proposed the PIF mask method. The BPI and PIF mask followed the methods described
by Wang et al. (2019a) [12] and Schott et al. (1988) [17], respectively.

_ |0rc(655) — pre(561)]
prc(655) — prc(865)

BPI 2

The PIFs are with features that do not change their reflectivity properties drastically
over time in a scene [17]. The surface reflectance of PIFs is similar for the two dates. Hence,
the difference between the Rayleigh-corrected reflectance (p;c) of PIFs from two dates can
be considered as the difference between two values of aerosol reflectance (p,) of PIE. The
black pixels are pixels consisting only of atmospheric radiance (Rayleigh scattering and
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aerosol scattering). If a pixel is a true “black pixel”, the difference between its p,. for two
dates is the same as the difference between its p, for the same two dates (Equations (5)—(7)).
Furthermore, theoretically, if the difference in the p;. of a water pixel between two dates
in the SWIR band is equal or approximate to the difference in the p,. of PIFs between two
dates, this water pixel can be taken as a “black pixel”. Therefore, the characteristics of PIFs
can be used to more accurately obtain the BPIs for atmospheric correction. The flowchart of
the m-ACZI algorithm is shown in Figure 4.
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Figure 4. Processing procedure of the m-ACZI algorithm. Note: These thresholds are for Lake Taihu
and may need to be adjusted for other waters [12,17].

(1) The pyc and transmittance (t) are obtained from a LUT (lookup table) generated
for all OLI bands using 6SV (the vector version of the Second Simulation of the Satellite
Signal in the Solar Spectrum) according to sun and sensor geometry [26,27]. The p;. can
be derived from the reflectance of the atmosphere (p;). The sea surface reflectance from
whitecaps and sunglint were ignored [1,2,28,29].

Pre = Pt — Pr 3)
For land pixels:

Orc = Pa + tps 4

where p; is the surface reflectance.
For a water pixel:
Orc = Pa + tpw ®)
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(2) Two masks are made by the BPI for two date images (11 and T2) [4,12], and the
overlapped pixels in two masks (BPI mask) are retained. The difference in p,. (SWIR) for
two date images (DP") is calculated and masked by the BPI mask.

DB = pBPI(SWIR) — pBPl (SWIR) o
= (pBPI(SWIR) + tripBP! (SWIR) ) — (pBEI(SWIR) + trapBPI (SWIR) )

(3) The PIF mask is extracted according to Schott et al. (2016) [16]. The construction
land features are considered as PIFs, and this extraction is applied over the construction
area within the image (Figure 5). For PIFs, the p; is invariable, and the difference in p,.
(SWIR) for two date images (DPTF) is masked by the PIF mask.

DPIE = pPIT (SWIR) — pi!F (SWIR)
= (Papy, (SWIR) + tr1pf ! (SWIR)) = (pgp; (SWIR) + tropl[F (SWIR)) )

ST1 pan 5T2

= pLIF(SWIR) — plIF (SWIR) 4 AtplTF (SWIR)

Figure 5. Example of the PIF mask determination. (a) False color image (R: SWIR band, G: NIR
band, B: Blue band) with vegetation in green; (b) Construction land and water; and (c) PIF mask over
airports near Lake Taihu, China.

At will make psp IF residual in DPF and affect the matching of DPIF and DBPL for this,
we analyze and discuss the impact of At on DPIF (1609) (details in Section 4.4). The results
showed that when At was less than 0.0107, the D'f change caused by At was about 2.70%,
which is within the allowable error range.

(4) The p,B"" and p,"F are similar in one OLI image based on the assumption of the
spatial uniformity distribution of aerosol types. The D! matches the mode number of D"'F
(with £10% variation) to obtain the final BPI-PIF mask. The black pixels were identified
using the BPI-PIF mask (Example: Figure 6). The aerosol scattering from black pixels is
used to remove the water contribution for nonblack pixels.

DBPI ~ DPIP (8)

(5) The atmospheric correction for all water pixels is completed using the same steps
as the ACZI algorithm [12], and Rys (or py) data are obtained.
Described below is the process of developing the m-ACZI algorithm.
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Figure 6. Histogram of DB! (blue bar) and D' (yellow bar) derived by two date images (Dates:
11 May 2017 and 27 May 2017) in Lake Taihu, China.
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We extracted the PIF mask according to Schott et al., 1988 [17] and Concha and Schott
2016 [16]. For Lake Taihu, the 2201 nm band with a threshold of 0.05 was used to
obtain the water mask, and the threshold of the NIR/RED band ratio was set to 1.3
for obtaining the vegetation mask. The previous two masks were combined using
logic. AND. gate, creating a “PIF mask” that rejects the vegetation and water and only
accepts the construction land features.

In this step, we calculated the p;. and t using the 65V-LUT from ACOLITE (atmo-
spheric correction for OLI lite).

Based on step 2, we adopted the BPI [12] to obtain the BPI mask, and the threshold of
the BPI was set to 0~0.1.

Following steps 1, 2, and 3, concerning t values, two images with similar f values were
selected to obtain their PIF mask and BPI mask, respectively. Then, these masks were
applied to the p,. (SWIR) images, respectively, to obtain the PIF and BPI images. We
subtracted two of each image type to obtain the D"'F and DB"! images.

We counted the average value of D'F and used the average D"'f with 10% variation
as the judgment value for DB/, i.e., DB pixels greater than the average D"F with
10% variation were discarded.

Following the ACZI process [12], we counted the median value from the final retained
DBPI pixels, and this median value was taken as p, on two SWIR bands. The aerosol
scattering ratio (&), consisting of these two p,(SWIR) values, was applied to all water
pixels, and aerosol scattering in the visible and near-infrared bands was obtained
using an exponential extrapolation method, thus completing the final atmospheric
correction process to obtain Rys.
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2.3.2. Other Atmospheric Correction Algorithms
The SeaDAS-SWIR Algorithm

For turbid waters, the “black pixel” assumption in NIR bands is invalid because of the
contribution of phytoplankton, detritus, and suspended sediment to water backscatter [2,10].
Research from Hale et al. (1973) indicated that the water in SWIR bands has stronger
absorption than that in NIR bands [30], and the turbid water in the former meets the
requirement of the “black pixel” assumption [13]. Therefore, Wang and Shi (2005) [10]
developed an AC algorithm for turbid water based on extrapolation from SWIR bands and
integrated this AC algorithm into SeaDAS (SeaWiFS Data Analysis System, referred to as
SeaDAS-SWIR in this paper; more details can be found in Wang and Shi (2005) [10]).

The ACOLITE (atmospheric correction for OLI lite; this study worked with version
20211112) tool was developed for coastal and inland waters by the Remote Sensing and
Ecosystem Modelling (REMSEM) team. It performs this process using dark spectrum fitting
(DSF) and exponential extrapolation (EXP) [14,26,31-33].

The EXP Algorithm

The idea of the EXP algorithm is consistent with the SeaDAS-SWIR algorithm, both of
which are based on exponential extrapolations of the ratio of multiple aerosol scattering in
SWIR bands, but the EXP algorithm does not deal with aerosol LUTs (lookup tables) [14].
The EXP algorithm only uses an exponential extrapolation method to estimate aerosol
scattering in visible bands and NIR bands [28].

The DSF Algorithm

The DSF algorithm is presented for meter-scale-resolution optical satellite imagery [26,31].
Similar to other AC algorithms, this algorithm was also developed based on the “black
pixel” concept [26]. However, the difference is that it defines black pixels as pixels with zero
surface reflection in one scene image, including land pixels and water pixels. These black
pixels are employed to estimate the atmospheric radiance for other pixels. It can be seen
that the DSF depends on two assumptions: (1) the spatial distribution of the atmosphere is
uniform in an image; (2) at least one pixel whose surface reflection is about zero exists in
one scene image [26,31].

2.3.3. Algorithm Accuracy Analysis

The root-mean-square error (RMSE), symmetric mean absolute percentage error
(SMAPE), and Bias were used to determine the differences between the in situ data and the
AC-driven data:

n_(Rm _ Rf 2
RMSE = \/1—1<n) )
n ) |Rm_Ri|
1= RmM 4RI
SMAPE = —— R R 5 100% (10)

" |: ( R™M— Ri) :|

i=1 Ri
Bias = x 100% (11
where R! is the in situ R,; data, R" is the OLI-R,s data via atmospheric correction, and # is
the number of match-up pairs.

3. Results
3.1. Assessment of the m-ACZI Algorithm

As Figures 7 and 8 show, the m-ACZI raised the Rs estimation compared to the
ACZI algorithm, so the histograms of R,s generally moved and concentrated to high
value areas (Figure 8). Notably, the m-ACZI algorithm did not increase the R,s values
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for all water pixels, but mainly for algal bloom pixels (green pixels in the RGB true-color
images) (Figures 2 and 7). It can also be observed that the m-ACZI algorithm reduced the
Rys estimation of the non-algal bloom pixels in the 865 nm band (Figure 7), which were
consistent with the characteristics of the in situ R, (Figure 3).

R, (443) R, (483) R,(561) R, (655) R, (865)

.’.r«’g&
4

ACZI

m-ACZI

5“5'/1 12017

ACZI

m-ACZI

ACZI

m-ACZI

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Figure 7. Comparison of the ACZI and the m-ACZI algorithms for OLI R,s over Lake Taihu (dates:
11 May 2017, 27 May 2017, and 21 December 2017).
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Figure 8. Frequency of R;s retrieved using the ACZI (blue) and the m-ACZI (orange) algorithm in
Lake Taihu (Dates: 11 May 2017, 27 May 2017, and 21 December 2017).

Most of the scatterplots of the ACZI were below the 1:1 line, and part of the scatterplots
derived in the 865 nm band were above the 1:1 line (Figure 9a). The scatterplots of the
m-ACZI were distributed around the 1:1 line, with several significant off-group points in
the 865 nm band (Figure 9b). In general, compared with the scatterplots of the ACZI, the
scatterplots of the m-ACZI were more concentrated near the 1:1 line. The ACZI-driven
Rys was underestimated in all visible bands. The R;s derived by the m-ACZI was also
underestimated in the 561 nm and 655 nm bands, but overestimated in two BLUE bands
(Figure 9 and Table 1). The minimum sMAPE was obtained by the m-ACZI in the 655 nm
band, followed by the m-ACZI in the 561 nm band. Similarly, the minimum RMSE was
provided by the m-ACZI in the 483 nm band, followed by the m-ACZI in the 443 nm band.
However, the minimum bias was obtained from the data derived by the ACZI in the 443 nm
band (Table 1). Overall, from RMSE and sMAPE, the m-ACZI was superior to the ACZI
in all visible bands, especially in the 561 nm and 655 nm bands; the performance of the
m-ACZI algorithm was greatly improved. However, these 2 algorithms still failed in the
NIR band (RMSE > 0.0203 sr~1: SMAPE > 48.31%; bias > 88.83%). From the scatterplots of
the 865 nm band in Figure 9, these 2 AC algorithms have overestimations. The assessment
results indicate that the m-ACZI algorithm is generally better than the ACZI algorithm.

Table 1. Statistics of the accuracy measures for the ACZI and the m-ACZI algorithms using in situ
Rys measurements. The BLUE number represents the minimal statistical value.

Method 443 483 561 655 865
RMSE(sr—!)  0.0063 0.0062 0.0111 0.0082 0.0228
m-ACZL - \MAPE(%) 30.71 23.01 21.41 21.27 4831
Bias(%) 52.07 7.59 —16.48 ~11.65 88.83
ACZI RMSE(sr 1) 0.0070 0.0076 0.0146 0.0102 0.0203
SMAPE(%) 35.88 34.07 29.16 29.10 57.48
Bias(%) —891 —12.32 —22.70 —16.18 94.16
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Figure 9. Scatterplots of R,s derived by the ACZI (a) and the m-ACZI (b) algorithms versus in situ Rys.

3.2. Comparison with other AC Algorithms

Only 54 match-up sample points were used to evaluate the SeaDAS-SWIR algorithm
because some water pixels were masked by this algorithm (the “proc_ocean” option of
SeaDAS was set to “2-force all pixels to be processed as ocean”). In Figure 10, the scatterplots
of the m-ACZI algorithm were more concentrated, while those of other algorithms were
discrete, especially in the 443 nm and 483 nm bands. The scatterplot distributions of the
m-ACZI and the DSF were very similar in the 561 nm and 655 nm bands and were closer to
the 1:1 line than others (Figure 10). The statistical results of the accuracy also supported
these findings (Table 2). The assessment results from the m-ACZI and the DSF were very
similar: the RMSE difference between them was less than 0.0008 in visible bands, and
both were more accurate than the SeaDAS and the EXP algorithms. It should be noted
that all the AC algorithms failed in the NIR band (RMSE > 0.0134 sr—1: SMAPE > 49.31%;
Bias > 88.83%), and the m-ACZI algorithm showed the best comprehensive performance.

Table 2. Statistics of the accuracy measures for the m-ACZI, SeaDAS, DSF, and EXP algorithms using
in situ R;s measurements. The BLUE number represents the minimal statistical value.

Method 443 483 561 655 865
m-ACZI RMSE(sr—1)  0.0063 0.0062 0.0111 0.0082 0.0228
SMAPE(%)  30.71 23.01 2141 21.27 48.31
Bias(%) 52.07 7.59 ~1648  —11.65 88.83
SeaDAS-SWIR RMSE(sr—1)  0.0113 0.0100 0.0108 0.0104 0.0134
(n = 54) SMAPE(%)  45.11 32.70 20.65 27.33 76.35
Bias(%) 33.32 13.36 ~1.38 437 126.68
EXP RMSE(sr~1)  0.0060 0.0070 0.0150 0.0105 0.0217
SMAPE(%)  34.12 27.76 32.79 28.29 55.56
Bias(%) 2.50 ~1031  —27.00  —19.72 90.38
DSF RMSE(sr—1)  0.0058 0.0061 0.0098 0.0080 0.0244
SMAPE(%) 3227 24.34 17.68 21.80 63.00

Bias(%) 34.22 494 —4.46 0.01 113.55
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Figure 10. Scatterplots of AC-driven Rys versus in situ Rys.

3.3. Assessment of AC Algorithms for Different Water Types

According to the water classification method of Sun et al. (2012), waters were classified
into two types: floating bloom (FB) and un-floating bloom (uFB) [15,34]. Figure 11 shows
the scatterplots of R;s between in situ data and the AC algorithm in different water types,
with detailed statistics presented in Tables 3 and 4. All AC algorithms had more discrete
scatterplots in FB than in uFB, especially in the two blue bands, where the bias of the
algorithm increased significantly (Tables 3 and 4). Table 3 shows that the assessment results
of the m-ACZI and the DSF algorithms were superior to other algorithms in the uFB. In
particular, the m-ACZI and the DSF algorithms showed satisfactory performance in the 561
nm and 655 nm bands (RMSE < 0.0087 sr—!; sMAPE < 19.31%), which was sufficient to sup-
port the quantitative remote sensing research for turbid waters [5]. Compared with those
in the uFB, the accuracy results of the AC algorithms in FB were reduced (Tables 3 and 4).
The DSF algorithm had the best performance in the FB waters, followed by the m-ACZI
algorithm. The SeaDAS-SWIR algorithm masked most of the FB pixels, with only 6 in
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situ points (18 in situ points in total) participating in the evaluation. The performance of
these AC algorithms was not satisfactory, especially in the two blue bands, as was that of
the m-ACZI algorithm. These AC algorithms (except the ACZI algorithm) overestimated
the water-leaving reflection in the 443 nm and 483 nm bands (Table 4). A possible reason
was that the m-ACZI algorithm for the FB underestimated the aerosol scattering in the
SWIR band, which was further exacerbated by exponential extrapolation. This finally
resulted in a serious underestimation of the aerosol scattering and an overestimation of the
water-leaving reflection in the 443 nm and 483 nm bands.
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Figure 11. Scatterplots of AC-driven R,s of different water types versus in situ R;s. The red points

represent water with floating blooms, and the gray points represent un-floating blooms.

Table 3. Statistics of the accuracy measures for atmospheric correction algorithms for un-floating

blooms using in situ R;s measurements. The BLUE number represents the minimal statistical value.

Method 443 483 561 655 865
m-ACZI RMSE(sr—1)  0.0058 0.0058 0.0087 0.0072 0.0127
(n =53) SMAPE(%)  25.63 20.49 18.97 17.86 48.62
Bias(%) 21.32 3.93 ~1476  —1045 91.30
ACZI RMSE(sr!)  0.0071 0.0073 0.0109 0.0085 0.0112
(n = 53) SMAPE(%)  31.77 25.94 23.13 22.59 59.54
Bias(%) —6.01 —6.81 ~1820  —10.54 102.18
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Table 3. Cont.

Method 443 483 561 655 865

SeaDAS-SWIR RMSE(srfl) 0.0113 0.0101 0.0107 0.0103 0.0123

(n =48) sMAPE(%) 44.17 31.74 20.02 26.57 74.39

Bias(%) 30.91 11.20 —2.26 2.61 119.49

EXP RMSE(srfl) 0.0058 0.0068 0.0126 0.0093 0.0123

(n=53) SMAPE(%) 26.63 24.18 30.28 24.10 55.98

Bias(%) —3.30 —10.77 —25.36 —17.42 93.74

DSF RMSE(srfl) 0.0055 0.0058 0.0075 0.0068 0.0144

(n=53) SMAPE(%) 26.92 21.81 15.16 19.31 65.51

Bias(%) 8.72 3.16 —1.85 1.95 117.79

Table 4. Statistics of the accuracy measures for atmospheric correction algorithms for floating bloom
using in situ R,s measurements. The BLUE number represents the minimal statistical value.

Method 443 483 561 655 865
m-ACZI RMSE(sr—!)  0.0078 0.0072 0.0162 0.0107 0.0396
(n=18) SMAPE(%)  45.68 30.42 28.61 31.29 47.40
Bias(%) 142.60 18.39 —2153  —15.18 81.53
ACZI RMSE(sr—1)  0.0067 0.0086 0.0222 0.0140 0.0355
(n=18) SMAPE(%) 5147 58.00 46.92 48.25 51.41
Bias(%) ~1990  —2852  —-3593  —3281 70.54
SeaDAS-SWIR RMSE(sr—!)  0.0111 0.0097 0.0115 0.0110 0.0204
(n=6) SMAPE(%)  52.71 40.43 25.69 33.33 92.05
Bias(%) 52.55 30.56 5.67 18.46 184.26
EXP RMSE(sr—!)  0.0067 0.0075 0.0205 0.0134 0.0376
(n=18) SMAPE(%)  56.19 38.30 40.20 40.63 54.32
Bias(%) 19.58 -893 —31.81 —26.47 80.47
DSF RMSE(sr—!)  0.0067 0.0070 0.0147 0.0107 0.0416
(n=18) SMAPE(%)  48.00 31.78 25.10 29.13 55.60
Bias(%) 109.31 10.17 ~12.16 —571 101.07

4. Discussion

The m-ACZI algorithm depends on two prerequisite assumptions: (1) the spatial
distribution of aerosol types is uniform; (2) the black pixels from two date images overlap.
These are the determining conditions for the success of the m-ACZI algorithm.

4.1. The Assumption of the Spatially Uniformity Distribution of Aerosol Types

Solving the aerosol scattering of nonblack pixels relies on the assumption of the
spatially uniform distribution of aerosol types for the m-ACZI algorithm. This assumption
has been recognized by a great amount of research [1,4,14,26,28]. For example, the DSF
and EXP adopted this assumption for the atmospheric correction process. Taking the Lake
Taihu image without algal blooms (obtained on 2 February 2016) as an example (remove
cloud pixels) (Figure 12), the spatial distributions of p,. (1609) and p,. (2201) were uniform,
and the standard deviations of p. (1609) and p;. (2201) were 0.0026 (average: 0.0218) and
0.0016 (average: 0.0137), respectively. The standard deviation of p,. (1609)/p;c (2201) was
0.0546 (average: 1.5944) (Figure 12). This suggests that Lake Taihu is consistent with the
assumption of the spatially homogeneous distribution of aerosol types.
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Figure 12. Rayleigh-corrected reflectance (o) in SWIR bands and its ratio (o, (1609)/psc (2201)) from
Lake Taihu on 2 February 2016.

4.2. The Black Pixels from Two Date Images Overlap

The m-ACZI algorithm searches and obtains the “black pixel” based on the combina-
tion of BPI and PIF for two date images, which requires the BPI and PIF pixels of the two
periods to overlap. The PIF pixels are from urban construction land, which is invariable
in a year. Therefore, the PIF pixels of the two periods should overlap. The occurrence
probability of BPI pixels is calculated in Lake Taihu based on cloudless images from 2013 to
2018 (a total of 36 images) (Figure 13), showing more than 30% in a large area of central
Lake Taihu. This means that there is a very high probability of obtaining overlapping BPI
pixels from three images, which is sufficient to support the m-ACZI algorithm. Landsat
8-OLI has accumulated a large number of images to complete the m-ACZI algorithm.

40

30

20

10
~d

Figure 13. Occurrence probability of BPI pixels (a) and its histogram (b) in Lake Taihu (2013-2018).

4.3. The m-ACZI Algorithm Depends on Pure Pixels

The m-ACZI algorithm needs PIF pixels to identify the “black pixel” because they do
not drastically change their reflectivity properties over time. The reflectivity properties of
PIFs are derived from construction land, and mixing from other variable land types (such
as water, forest land, and agricultural land) weakens the invariant reflectivity properties of
PIFs. The theoretical basis of the m-ACZI algorithm requires minimizing the uncertainty
caused by a mixture of pixels, and the high spatial resolution can reduce the uncertainty
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of a mixture of pixels [35]. From this point of view, the m-ACZI algorithm depends on
pure pixels.

4.4. The Impact of At on DPIF

To analyze the influence of the At on DP'F, the t was calculated using 6SV-LUT (from
ACOLITE software (version 20211112)) based on cloudless images from 2013 to 2018 (a total
of 36 images). In the 1609 nm band, the variation range of t was 0.9981 to 0.9543, the average
t was 0.9632, the standard deviation (SD) of t was 0.0111 (Figure 14), the range of At was
0.04375 to 0.00002, the average At was 0.00971, and the SD of At was 0.01255. In the 2201
nm band, the variation range of t was 0.9663 to 0.8982, the average t was 0.9149, the SD of ¢
was 0.0165 (Figure 14), the range of At was 0.06810 to 0.00003, the average At was 0.01656,
and the SD At was 0.01699. The variation in f and At in the 1609 nm band was less than in
2201 nm; this band was selected as the judgment band for D' ~ DBL. Suzhou City (the red
box in Figure 15a) near Lake Taihu was taken as an example to illustrate the influence of the
At on DPF (1609). Furthermore, to ensure the independence of verification, ps was driven
by the ACOLITE. To reduce the error caused by the ACOLITE-AC algorithm, the average
ps"IF was considered as the real ps"'F (Figure 15¢). This ps"'F deviated from the true value,
but it can still be considered as a reference for analyzing the influence of At on DP'F. Since
there were no images that completely corresponded to the average At value, we selected
the corresponding two images of the approximate average At for analysis. The maximum
At (At = 0.04375) in the 1609 nm band was from 2 images from 12/29/2014 and 05/14 /2018,
and the At = 0.01065 (approximate average At) in the 1609 nm band was from 2 images
from 12/29/2014 and 06/15/2018. As shown in Figure 15, when At = 0.04375, the average
Atpsp IF was 0.0058, the median Atpsp IF was 0.0055, the average Atpsp IF/DPIF \as 14.85%,
and the median Atps"f/DPF was 10.84%. When At = 0.01065, the average Atps"F was
0.0014, the median Atpsp IF was 0.0013, the average Atpsp IF/DPIF \was 4.62%, and the median
AtpsPTF/DPIF was 2.68%. It can be seen that At can introduce an error into the algorithm, but
when At is less than 0.01065 (this was a common occurrence), the error it introduced was
small and within the allowable error range. We propose selecting two images with similar ¢
values for the m-ACZI algorithm, and this t value can be pre-estimated by the LUT.

I 5 .
0.98 |
096f = : |
0.94 | |
0.92 |
0.88 - -

1609nm 2201nm

Figure 14. Variations in the transmittance (¢) in SWIR bands (based on cloudless images from 2013 to
2018, a total of 36 images).
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Figure 15. Impact of At (means different between t from two date images) on DPIF (1609) (taking
Suzhou City (red box) near Lake Taihu as an example). (b) RGB image of Suzhou City (red box
in (a)). The average psP IF (1609) (c) was driven by ACOLITE based on cloudless images from 2013
to 2018 (total of 36 images). The DPIF js the difference in pre (SWIR) for two dates images; the
AtpsP'F represents the residual surface reflectance caused by At in DI, and Atps"'F /DPIF is the

PIF to DPIF, which represents the error of D' caused by At. These two At values

ratio of Atps
were the maximum At (0.0438) and At = 0.0107 (approximate average At) from 36 images (2013 to

2018), respectively.

5. Conclusions

The “black pixel” assumption plays a key role in providing atmospheric (especially
aerosol) scattering information to solve the atmospheric correction process for water. We
modified the identification method for the “black pixel” in the ACZI algorithm as a combi-
nation of BPI and PIF and provided the m-ACZI algorithm. The m-ACZI algorithm assumes
the spatial homogeneity of aerosol types and employs BPI and PIF to identify the “black
pixel”, which together make this algorithm suitable for inland water (such as lakes, rivers,
and reservoirs). Compared with the ACZI algorithm, m-ACZI had better performance in
the visible bands, especially in the 561 nm and 655 nm ones. The evaluation results showed
that the performance of the m-ACZI algorithm is superior to the SeaDAS-SWIR, ACZI, and
EXP algorithms in waters with algal blooms. This algorithm is a useful attempt to improve
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the accuracy of AC for turbid water and provides a new scheme for obtaining black pixels
from turbid inland waters.
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