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Abstract: In order to compare and analyze the positioning efficiency of the magnetic tensor location
method, this paper studies the blind spots of the magnetic tensor location method. By constructing
two magnetic tensor localization models, the localization principles of the single-point magnetic
tensor localization method (STLM) and the two-point magnetic tensor linear localization method
(TTLM) are analyzed. Furthermore, the eigenvalue analysis method is studied to analyze the blind
spots of STLM, and the spherical analysis method is proposed to analyze the blind spots of TTLM.
The results show that when the direction of any measuring point is perpendicular to the direction of
the target magnetic moment, blind spots of STLM appear. However, TTLM still has good positioning
performance in the blind spot.

Keywords: single-point location; two-point location; magnetic tensor location; location blind spot

1. Introduction

After several years of research, magnetic anomaly detection technology has gradually
developed from magnetic scalar detection to magnetic vector detection, from total magnetic
field detection, magnetic field component detection, and magnetic field gradient detection
to magnetic tensor detection [1]. The magnetic tensor detection method can overcome the
interference of the geomagnetic field and has the advantages of less influence by the magne-
tization direction of the target, strong anti-interference ability, and less data demand [2–4].
It is considered to be an important development direction of magnetic detection technology
in the future [5,6]. With the development of magnetic sensor technology, data processing
technology, and computer technology, magnetic anomaly detection technology has broken
through the limitations of detecting large targets to detecting small targets and has grad-
ually developed from rough azimuth detection to precise position calculation. Magnetic
tensor positioning technology has been used in many aspects, such as unexploded bomb
positioning [7–9], underwater magnetic target detection [10], medical and health [11], and
geophysical environment detection [12]. The magnetic tensor localization theory mainly
focuses on the STLM (single-point magnetic tensor localization method) and the TTLM
(two-point magnetic tensor linear localization method). Among them, the single-point
magnetic tensor positioning method uses the magnetic field vector of a single point and the
inverse matrix of the magnetic tensor to locate the target [13], and the two-point magnetic
tensor linear positioning method determines the target position by solving the inverse
matrix of the difference between the magnetic tensors of two points. In the process of
positioning, both methods involve the inverse of the matrix. If the matrix is irreversible,
the positioning method will become invalid and blind spots will appear, which greatly
affects the positioning efficiency of the magnetic tensor positioning method. Therefore, the
analysis and determination of the blind spots are helpful in optimizing the design of the
location scheme, which is of great significance for expanding the application scope of the
magnetic tensor location method.

In this paper, the blind spots of the magnetic tensor positioning method are studied.
The positioning models of the STLM and the TTLM are constructed. By analyzing the eigen-
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value of STLM, the blind spots of this positioning method are determined. Furthermore,
the spherical analysis method is proposed to study the TTLM.

1.1. Model of Magnetic Tensor Localization
Model of STLM

The magnetic field B at any point in the magnetic dipole space can be expressed as the
following [14,15]:

B =
µ0

4πr3 [3(M · r0)r0 −M] (1)

In Equation (1), µ0 is the magnetic permeability of vacuum, µ0 ≈ 4π × 10−7 H/m is
in air, M is the magnetic moment vector of the magnetic target, r =|r| is the value of the
distance vector modulus r between the magnetic target and the detection point, and r0 = r

r
is the unit vector of r.

The space change rate of the three mutually orthogonal directions of the magnetic
vector field is the magnetic tensor [16], which is the vector magnetic gradient, including
nine elements in total. The magnetic tensor G of magnetic vector field B can be expressed
as the following:

G =


∂Bx
∂x

∂Bx
∂y

∂Bx
∂z

∂By
∂x

∂By
∂y

∂By
∂z

∂Bz
∂x

∂Bz
∂y

∂Bz
∂z

 =

Gxx Gxy Gxz
Gyx Gyy Gyz
Gzx Gzy Gzz

 (2)

In Equation (2), Bx, By, and Bz are the three components of the magnetic field at any
point (x, y, z) in space, and Gij(i, j = x, y, z) are the components of the magnetic tensor.

It can be seen from Maxwell’s equations that, in the passive environmental static
magnetic field, the divergence and curl of the magnetic field are both zero. Only five
elements, Gxx, Gxy, Gxz, Gyy, and Gyz, can be calculated to obtain the magnetic tensor of
the magnetic field, namely:

G =

Gxx Gxy Gxz
Gyx Gyy Gyz
Gzx Gzy Gzz

 =

Gxx Gxy Gxz
Gxy Gyy Gyz
Gxz Gyz −Gxx − Gyy

 (3)

The positioning formula of STLM [17]:

r = −3G−1B (4)

According to Equation (4), the location of the magnetic target can be calculated when
the magnetic tensor and magnetic field vector value of a point is known. The algorithm
of STLM is simple in calculation and has high efficiency during positioning. However,
it is greatly affected by the geomagnetic field, which greatly limits the application of the
method [18–20].

1.2. Model of TTLM

The model of TTLM is shown in Figure 1. A random point in space is set as the origin,
the position of the target point is set as rs, the relative position of the observation point
1 and the target point is r1, the relative position of the observation point 2 and the target
point is r2, and the relative position vector relationship between the two observation points
is as follows [21]:

r2 = r1 + dr (5)
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The formula of TTLM is

r1 = −(G2 −G1)
−1(3G1 + G2)dr (6)

G1 and G2 represent the magnetic tensors of observation point 1 and observation point
2, respectively. Combining the positioning model of Equation (6) and Figure 1, we can
obtain the positioning formula of the target point as follows:

rs = S1 − r1 (7)

According to Equations (6) and (7), we can use the two-point magnetic tensor and the
relative position of the two points to locate the target point. During this period, we do not
need to measure the value of the geomagnetic field, which reduces the positioning error of
the geomagnetic field noise. In addition, we use a linear method to complete the solution.
The solution process is simple, and we can directly obtain an analytical solution.

2. Blind Spots Analysis of Location

On the one hand, the basis of realizing the STIM, according to Equation (4), is that
the magnetic tensor value G at the detection point is reversible; on the other hand, the
basis of realizing the TTLM, according to Equations (6) and (7), is that the magnetic tensor
difference (G2 −G1) between two detection points is reversible. When the magnetic tensor
matrix or magnetic tensor difference matrix is irreversible, the positioning formula is not
valid. The positioning method will be invalid, and location cannot be achieved. Such points
that cannot be located by using the magnetic tensor positioning method are called magnetic
tensor positioning blind spots.

2.1. Blind Spots Analysis of STLM

Taking the coordinates of each point into Equation (2), the component expression of
the magnetic tensor G1 of a single point can be obtained as the following:

G1xx
G1xy
G1xz
G1yy
G1yz

 =
µ0

4πr7
1


9x1r2

1 − 15x3
1 3y1r2

1 − 15x2
1y1 3z1r2

1 − 15x2
1z1

3y1r2
1 − 15x2

1y1 3x1r2
1 − 15x1y2

1 −15x1y1z1
3z1r2

1 − 15x2
1z1 −15x1y1z1 3x1r2

1 − 15x1z2
1

3x1r2
1 − 15x1y2

1 9y1r2
1 − 15y3

1 3z1r2
1 − 15y2

1z1
−15x1y1z1 3z1r2

1 − 15y2
1z1 3y1r2

1 − 15y1z2
1


 mx

my
mz

 (8)
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r1 = (x1, y1, z1) is the position of the target and m = (mx, my, mz) is the moment of
the target. According to Equations (3) and (8), the eigenvalue of G1 can be calculated
as follows:

λ11 =
−3

2
(

x2
1 + y2

1 + z2
1
)5/2

((
x1mx + y1my + z1mz

)
+
(

9x2
1m2

x + 4y2
1m2

x + 4z2
1m2

x

+10x1y1mxmy + 4x2
1m2

y + 9y2
1m2

y + 4z2
1m2

y + 10x1z1mxmz + 10y1z1mymz+

4x2
1m2

z + 4y2
1m2

z + 9z2
1m2

z

)1/2
)

λ12 =
3
(

x1mx + y1my + z1mz
)(

x2
1 + y2

1 + z2
1
)5/2

λ13 =
−3

2
(

x2
1 + y2

1 + z2
1
)5/2

((
x1mx + y1my + z1mz

)
−
(

9x2
1m2

x + 4y2
1m2

x + 4z2
1m2

x

+10x1y1mxmy + 4x2
1m2

y + 9y2
1m2

y + 4z2
1m2

y + 10x1z1mxmz + 10y1z1mymz+

4x2
1m2

z + 4y2
1m2

z + 9z2
1m2

z

)1/2
)

(9)

λ11, λ12, and λ13 represent the three eigenvalues of the outgoing magnetic tensor
matrix at a single measuring point. According to the expression of eigenvalues, when the
direction of any measuring point is perpendicular to the direction of the target magnetic
moment, there is (xmx + ymy + zmz) = 0, and the value λ12 is zero. This shows that there
must be an irreversible magnetic tensor matrix G1, which produces a singular matrix. At
this time, Equation (4) becomes an ill-conditioned equation, and the single-point magnetic
tensor positioning method is invalid, so the target cannot be located, and blind spots
are generated.

Because the magnetic target moment is a vector with a fixed size, the points perpendic-
ular to it can form a plane. The location blind surface is formed by the location blind spots.
A location blind surface is a plane passing through the coordinate origin and perpendicular
to the target magnetic moment, as shown in Figure 2.
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Figure 2. Relationship between positioning blind surface and magnetic moment.

In Figure 2, O is the position of the coordinate origin, M is the magnetic target moment,
and BS (blind surface) is the blind surface that cannot be located using the STLM. When the
measurement system moves to the blind surface, the position of the target point obtained
by using STLM will greatly differ from the actual target point position, and the positioning
result will be unreliable.
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2.2. Blind Spots Analysis of TTLM

For the TTLM, the component expression of G2 is the following:
G2xx
G2xy
G2xz
G2yy
G2yz

 =
µ0

4πr7
2


9x2r2

2 − 15x3
2 3y2r2

2 − 15x2
2y2 3z2r2

2 − 15x2
2z2

3y2r2
2 − 15x2

2y2 3x2r2
2 − 15x2y2

2 −15x2y2z2
3z2r2

2 − 15x2
2z2 −15x2y2z2 3x2r2

2 − 15x2z2
2

3x2r2
2 − 15x2y2

2 9y2r2
2 − 15y2

3 3z2r2
2 − 15y2

2z2
−15x2y2z2 3z2r2

2 − 15y2
2z2 3y2r2

2 − 15y2z2
2


 mx

my
mz

 (10)

The subscript number in Equations (8) and (10) represents the position of the detection
point. The relationship between the coordinates is as follows:

r1 =
√

x1
2 + y1

2 + z1
2

x2 = x1 + ∆x
y2 = y1 + ∆y
z2 = z1 + ∆z
r2 =

√
x22 + y22 + z22

(11)

∆x, ∆y, ∆z are the distances of one point and another. It can be obtained using
Equations (8) and (10) that the difference between the two magnetic tensor components is
the following:

∆Gc = G2 −G1 =

G2xx − G1xx G2xy − G1xy G2xz − G1xz
G2xy − G1xy G2yy − G1yy G2yz − G1yz
G2xz − G1xz G2yz − G1yz −G2yy + G1yy − G2xx + G1xx


=

∆Gxx ∆Gxy ∆Gxz
∆Gxy ∆Gyy ∆Gyz
∆Gxz ∆Gyz −∆Gxx − ∆Gyy

 (12)

By analyzing Equations (8), (10) and (12), it is found that it is very difficult to analyze
the blind spot of TTLM theoretically, and it is difficult to obtain a fixed parameter relation-
ship using the blind spot analysis process of STLM. Therefore, a spherical analysis method
is proposed to analyze the blind spot of STLM.

Because the blind spot position of the TTLM cannot be determined, the blind spot
existence condition of the STLM is referred to during the analysis. The condition is that
the magnetic moment is perpendicular to the vector formed by the measuring points. At
the same time, in order to not be limited to the condition of perpendicularity and take full
account of other included angles, we used a spherical model around the first point for
ensuring the existence of any included angle, as shown in Figure 3. We took any point
on the spherical equation as the second measuring point, then any vector composed of
these two points must form any angles with the magnetic moment so that the positioning
analysis of any angles can be completed. Then, we used this principle to analyze the blind
spot of TTLM, which is called the spherical analysis method.
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3. Blind Spots Simulation of Location
3.1. Simulation of STLM

In order to visually see the existence of blind spots and blind surfaces, the magnetic
dipole model and STLM model are used for simulation analysis. In the simulation, as-
suming that the magnetic target is a magnetic dipole and is at the origin of the coordinate
system, use Equation (4) to calculate the position coordinates of the measurement system
relative to the magnetic target. According to the principle of two-point relativity, the
position coordinates of the magnetic target relative to the measurement system can be
determined.

As shown in Figure 4, the coordinate system is established with the magnetic dipole as
the coordinate origin. The magnetic moment of the magnetic target is M, the detection plane
TS is parallel to M, the distance is h, and BS is the theoretical positioning blind surface. The
red double arrow line BT is the intersection line between the positioning blind surface and
the detection plane. The detection plane TS is discretized into multiple detection points,
and the magnetic tensor at each detection point is obtained. The magnetic target position is
calculated using the STLM. When the detection point is on BT, the positioning error will
increase sharply, and the positioning cannot be realized.
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Figure 4. Simulation model of positioning blind point.

During the simulation, some detection points of the measurement system in the process
of movement are on the blind surface. The relative errors in three directions are used to
evaluate the positioning effect of this simulation. (x, y, z) is the real position coordinates
of the magnetic target, and (xm, ym, zm) is the calculated position coordinates. The error
formulas are as follows: 

Errx = x− xm
Erry = y− ym
Errz = z− zm

(13)



Remote Sens. 2023, 15, 2199 7 of 10

Set the target magnetic moments to mx = 0, my = 0, mz = 500 A·m2, and h = 40 m,
and the blind surface to z = 0. Suppose that the measurement system is located in
the detection plane to measure the magnetic tensor, and it moves up and down on the
intersection line BT. At this time, the coordinates of x are −40 m, the coordinates of axis y
are −20~20 m, and the coordinates of axis z are −20~20 m. The data of axis y and axis z are
scattered to form an array of measuring points so that the points in the array whose axis z
coordinate is zero appear in a circle. The positioning error obtained by simulation is shown
in Figure 5.
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In Figure 5, axis y and axis z of the horizontal plane represent the coordinates of
the detection point, and the vertical axes Errx, Erry, and Errz of (a), (b), and (c) are the
positioning errors of axis x, y, and z, respectively. It can be seen from the figure that, in the
detection area of z 6= 0, the location errors in three directions fluctuate around zero, and
the fluctuation value is very small. However, the location error in the three directions of a
point on the area of z = 0 becomes a blank area, which cannot be located. It shows that
when the magnetic measurement system passes through the point on the intersection line
between the detection plane and the blind surface, the location error of STLM is large, and
the positioning result is unreliable.

The simulation results show that blind spots do exist when using the STLM to de-
termine the magnetic target position. Therefore, when using this positioning method to
locate the magnetic target, the points on the blind surface should be reasonably avoided to
prevent positioning failure.

3.2. Simulation of TTLM

Firstly, the spherical analysis method is used to verify the existence of blind spots in
the STLM. Set the magnetic moment of the magnetic dipole as M = (167, 448, 100) A ·m2.
The magnetic target is located at the coordinate origin, and the measuring point is located
on a sphere with a radius of 40 m. The spherical equation is as follows:

x = 40 sin(ψs) cos(θs)
y = 40 sin(ψs) sin(θs)

z = 40 sin(θs)
(14)
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In Equation (14), ψs and θs are the parameters that constitute the sphere, and the range
of setting them is 0~π and 0~2π, respectively. The simulation results are shown in Figure 6.
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In Figure 6, the vertical axes of (a), (b), and (c) are the positioning relative error in the
x, y, and z directions, respectively, and the horizontal axis is the simulation times. It can
be seen from the figure that although the relative error of the y-axis is kept at a low level
during the positioning process by using the points on the sphere, the relative error of the
x-axis positioning reaches 3× 104%, and the relative error of the z-axis positioning reaches
2.5× 1019%. There are large errors in coordinate positioning, and there are blind spots, so it
is impossible to complete the positioning.

The spherical analysis method shows that the STLM does have blind spots, which is
consistent with the simulation results in Section 2.1, indicating that the analysis method can
effectively analyze the blind spot characteristics of the positioning method. Therefore, the
spherical analysis method is used to analyze the blind spots of the TTLM. Set the magnetic
moment of the magnetic dipole as M = (167, 448, 100) A ·m2; the magnetic target is located
at (18, 26, and 30) m, the position of measuring point 1 is (1, 2, and 3) m, and the measuring
point 2 is located on the spherical surface with a radius of 0.1 m centered on measuring
point 1. The spherical equation is as follows:

x = 1 + 0.1 sin(ψs) cos(θs)
y = 2 + 0.1 sin(ψs) sin(θs)
z = 3 + 0.1 sin(θs)

(15)

The parameter ranges of ψs and θs are 0~π and 0~2π, respectively. The simulation
results are shown in Figure 7. The vertical axis of (a), (b), and (c) in the figure are the
relative positioning errors in the x, y, and z directions, respectively, and the horizontal axis
is the simulation times.
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It can be seen from Figure 7 that the relative positioning errors in the x-axis, y-axis,
and z-axis directions are kept at a low level. The maximum relative positioning error exists
in the x-axis direction but is only 5%, which is far less than the relative error caused by the
measurement error. The probability that this point is a blind spot is very small; therefore, it
is reasonable to think that the magnetic target location can still be accurately determined
by using the TTLM if there is a blind spot in a fixed area by STLM.

Of course, in the process of using the magnetic tensor measurement system to actually
detect the target (because the carrier can hardly strictly keep moving in a fixed plane
perpendicular to the magnetic moment even if a single point exists in the blind surface to
cause a positioning failure problem), several adjacent points can be used to calculate the
magnetic target position to achieve the positioning purpose.

4. Conclusions

In this paper, by studying the STLM and the TTLM, the blind spots of the two lo-
calization methods are analyzed. The eigenvalue analysis method is used to analyze the
blind spot of STLM. The results show that when the direction of any measuring point is
perpendicular to the direction of the target magnetic moment, the magnetic tensor matrix
is irreversible, the STLM is invalid, and blind spots appear. At the same time, the spherical
analysis method is proposed to analyze the blind spot of the TTLM. The simulation results
show that the STLM has an obvious blind spot while TTLM still has good positioning
performance in the blind spot.
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