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Abstract: Learned image compression has achieved a series of breakthroughs for nature images, but
there is little literature focusing on high-resolution remote sensing image (HRRSI) datasets. This
paper focuses on designing a learned lossy image compression framework for compressing HRRSIs.
Considering the local and non-local redundancy contained in HRRSI, a mixed hyperprior network
is designed to explore both the local and non-local redundancy in order to improve the accuracy
of entropy estimation. In detail, a transformer-based hyperprior and a CNN-based hyperprior are
fused for entropy estimation. Furthermore, to reduce the mismatch between training and testing, a
three-stage training strategy is introduced to refine the network. In this training strategy, the entire
network is first trained, and then some sub-networks are fixed while the others are trained. To
evaluate the effectiveness of the proposed compression algorithm, the experiments are conducted
on an HRRSI dataset. The results show that the proposed algorithm achieves comparable or better
compression performance than some traditional and learned image compression algorithms, such as
Joint Photographic Experts Group (JPEG) and JPEG2000. At a similar or lower bitrate, the proposed
algorithm is about 2 dB higher than the PSNR value of JPEG2000.

Keywords: lossy compression; HRRSI; learned image compression; fused hyperprior; rate-distortion
performance

1. Introduction

Remote sensing optical cameras are one of the most important satellite platforms in
many applications of Earth observation and related works [1–3]. With the development
of imaging technology, the spatial and spectral resolution of these cameras has become
higher and higher. Many satellite cameras now aim to obtain a high spatial resolution,
high temporal resolution, and large area-wide coverage in remote sensing images. These
platforms generate a significant amount of image data every second, resulting in a burden
in terms of transmission and storage [4]. Therefore, designing an efficient remote sensing
image compression algorithm is crucial in remote sensing image processing.

Remote sensing image compression is an important topic, as most remote sensing
images need to be compressed for storage and transmission purposes. Remote sensing
image compression can be classified into two categories: lossy remote sensing image com-
pression and lossless remote sensing image compression. Lossless compression algorithms
can reconstruct all the information from the original remote sensing images. However, due
to information theory, the compression ratio of lossless image compression is limited for
each remote sensing image. Generally, the compression ratio of lossless image compression
can only reach 3:1 to 4:1 for most remote sensing images [5,6]. Thus, only a few applications
prefer to adopt lossless image compression, such as small target detection and fine classifi-
cation of hyperspectral images [7–9]. To achieve higher compression ratios and alleviate the
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challenges of storage and transmission, many image data are stored in a lossy manner, and
a series of lossy image compression algorithms have been proposed. Unlike lossless remote
image compression algorithms, lossy remote sensing image compression algorithms aim
to neglect or drop some unimportant information to achieve higher compression ratios.
Typically, lossy remote image compression can easily achieve compression ratios of 15:1 or
even 100:1 when more information is dropped [10,11]. Rate distortion is commonly used to
measure the compression performance of lossy image compression algorithms. The rate
refers to the storage space or transmission bandwidth occupied by a remote sensing image,
while distortion refers to the deviation or distortion between the original remote sensing
image and the reconstructed remote sensing image. With a similar bit rate, lower distortion
indicates better compression algorithm performance.

In the early years, many researchers attempted to design some lossy remote sensing
image compression algorithms based on standard image compression techniques, such as
JPEG [12] and JPEG2000 [13]. In [14], the authors proposed a more efficient variant of the
JPEG coding scheme for compressing remote sensing images obtained by optical satellite
sensors. This compression scheme involves broadening cloud features to include their
cloud–land transitions, which simplify coding and subsequent compression. The authors
of [15] developed a compression ratio prediction algorithm for Discrete Cosine Transform
(DCT)-based coders using remote sensing images. This algorithm can also be used in other
DCT- or JPEG-based image compression algorithms for remote sensing applications.

Discrete Wavelet Transform (DWT), being a transform-based technique, has been
shown to achieve higher rate-distortion performance compared to DCT-based compression
algorithms. As a result, many researchers have focused on creating remote sensing image
compression algorithms based on DWT or JPEG2000. For instance, the authors of [16]
developed a remote sensing image compression algorithm using the JPEG2000 compression
standard. In their approach, they considered the insignificance of unimportant areas such
as non-data areas during the compression process to improve the compression performance
of multi-spectral remote sensing images.

In [17], researchers present the criterion satisfied by an optimal transform of a JPEG2000-
compatible compression scheme under the high-resolution quantization hypothesis and
without the Gaussianity assumption. They also introduced two compression scheme vari-
ants and the associated criteria minimized by optimal transforms. Then, they presented
two algorithms: one derived from the Independent Component Analysis algorithm ICA-inf,
which computes the optimal transform, and another with the orthogonality constraint, as
well as one without any constraints other than invertibility. Considering the high dimension
of hyperspectral remote sensing images, Ref. [18] combines JPEG2000 and Principal Com-
ponents Analysis (PCA) to compress these images. PCA is used in JPEG2000 for spectral
decorrelation as well as spectral dimensionality reduction. In addition, considering that
the vector quantization algorithm is also efficient in some situations, Ref. [19] introduces a
novel compression algorithm using vector quantization, PCA, and JPEG2000. This scheme
first spectrally decorrelates by vector quantization and PCA and then applies JPEG2000
to the principal components for compression. This algorithm achieves better compression
performance than the famous PCA + JPEG2000 compression algorithm in rate-distortion
performance. Based on DWT, the Consultative Committee for Space Data Systems (CCSDS)
also designed a series of international remote sensing image compression standards [20–22].
Furthermore, other researchers have also designed efficient compression algorithms based
on HEVC and other compression theories, including dictionary learning, compress sensing,
and more [4,23–27].

In recent years, deep learning has achieved significant successes in various image
processing [3,28–36] and remote sensing applications [2,3,37–39]. Consequently, many
researchers have attempted to design learning-based remote sensing image compression
algorithms. Compared to handcrafted transforms used in traditional image compression
algorithms, learning-based algorithms can adapt to different characteristics of images [10].
In [40], researchers proposed a low-dimensional visual representation convolutional neural
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network for efficient remote sensing image compression. The network is used to transform
coefficients in the wavelet domain from a large-scale representation to a smaller scale,
obtaining an optimized wavelet representation by minimizing the distortion between
the original and reconstructed wavelet representations. This algorithm applies a multi-
basis dictionary post-transform to the optimized wavelet representation to achieve high
compression performance and computational efficiency. In [41], inspired by the symmetric
structure of some traditional image compression methods, the researchers propose a new
symmetrical lattice-generating adversarial network (SLGAN) for remote sensing image
compression. This paper designs several pairs of symmetrical encoder–decoders to build
the generator for generating deep latent representation codes and then decoding them for
reconstruction. For each pair of encoded and decoded lattices, they adopt a discriminator for
adversarial learning with the generator. Additionally, an enhanced Laplacian of Gaussian
loss is designed as a regularizer to train the SLGAN, aiming to enhance remote sensing
image edges, contours, and textures in the decoder sides. Experimental results on GF-2
data demonstrate that this algorithm achieves good compression performance. In [42],
the researchers design a novel learned hyperspectral remote sensing image compression
algorithm that incorporates a spectral attention mechanism and a novel entropy model
based on Student’s t-distribution. This algorithm achieves better compression performance
on several hyperspectral image datasets. Considering the importance of edge information
in many remote sensing applications and its potential as prior information for compression
schemes, Ref. [11] introduces an edge-guided hyperspectral compression network that
enables high-quality reconstruction. To extract useful edge features from learned edge
features, the authors propose an interactive dual attention module, which avoids additional
redundancy in edge information. In this compression scheme, the edge-guided loss and
interactive dual attention module are combined to enhance the comprehensive structure of
the latent representation. Moreover, the interactive dual attention makes the edge extraction
network focus only on relevant boundaries, rather than all edges, resulting in savings in
bit rate cost and obtaining a strong structural representation. In [43], the authors design a
high-order Markov Random Field as an attention network to achieve good compression
performance for high-resolution remote sensing image compression. Additionally, some
researchers have also designed learned image compression methods based on attention
strategies [44,45].

Many learned image compression algorithms have achieved better compression perfor-
mance compared to classical image compression methods, such as JPEG and JPEG2000 [10,46,47].
However, there is limited literature that has considered both global and local redundancy
in a compression scheme. For most high-resolution remote sensing images (HRRSIs), both
global and local redundancies exist, which can be seen in Figure 1. Exploring both redun-
dancies simultaneously can lead to a more accurate entropy model, resulting in improved
rate-distortion compression performance. This paper proposes a new entropy model that
captures redundancy in both global and local contexts simultaneously. Additionally, to
reduce the gap between the training and testing processes, a refinement stage is introduced
to help to improve the compression performance. The main contributions of this paper are
listed as follows:

1. To capture the local redundancy as well as global redundancy, a new entropy model
based on transformer-based prior and CNN-based prior is designed. The transformer-
based prior is the main focus for capturing the global redundancy and the CNN-based
prior is the main focus on the local redundancy. When fused, these two pieces of
information priors can achieve a better compression performance than a single prior.

2. Based on the transformer and the CNN-based transformer, a new compression algo-
rithm for HRRSIs is designed. To reduce the gap between the training and testing, the
proposed algorithm adopts a three-stage refined processing. The refined stage can
help refine the entropy network as well as the decoder network, which can help us
obtain a more accurate entropy model and better reconstructed images.
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3. The experiment is conducted on an HRRSI dataset, and the results show that the
proposed algorithm obtains a better compression than JPEG and JPEG2000 and other
leaned image compression algorithms.

The rest of the paper is organized as follows: In Section 2, the formulation of lossy
image compression is introduced. The proposed algorithm is presented in Section 3.
Section 4 is the experiment and analysis. Finally, a conclusion and a discussion of this
algorithm are presented in Section 5.

Figure 1. The redundancy contains remote sensing images. In each image, the same color means
similar patches.

2. Formulation of Lossy Image Compression

In this section, the formulation of learned lossy image compression is introduced.
Most learned lossy image compression algorithms consist of several blocks, including an
encoder transform, decoder transform, a quantizer, and an entropy model [10,46–50]. The
encoder transforms the original image into a latent representation and then a quantization
function is applied to the float latent representation. After obtaining the integer latent
representation, an entropy model is used to encode these coefficients into the binary bit
stream. On the decoder side, after entropy decoding and dequantization, the decoder
transform dequantized the coefficient into the reconstructed image. Image compression
processing can be simply written as follows:

y = ga(x)

ŷ = Q|U(y)

x̂ = gs(ŷ)

H = En(ŷ)

(1)

where ga and gs represent the encoder and decoder transforms, respectively. Q|U refers
to the quantizer, while En refers to the entropy model, which estimates the entropy of
the image (computed based on the probability density model) during training. x and
x̂ represent the original and reconstructed images, respectively, whiley and ŷ represent
the latent and quantized latent variables, respectively. Since uniform quantization can
interrupt the gradient back-propagation during training, some researchers have introduced
strategies to avoid this problem, such as adding uniform noise [46,48]. Other researchers
have designed more efficient compression encoders and decoders to improve compression
performance [49,50]. Entropy models are one of the most crucial parts of learned lossy im-
age compression algorithms. More accurate entropy estimation can help reduce the bit cost
in entropy coding. Thus, a series of strategies have been proposed to improve the entropy
model’s compression performance [10,46,47,50]. In [46], the author designed an additional
network (hyperprior network) to transmit some extra information abstracted from the latent
representation. This extra information only occupies a small bit rate but can help construct
a more accurate entropy model. This structure has significantly improved compression
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performance, and many later studies have adopted similar structures [10,42,44,47,50]. With
the hyperprior information, the whole compression scheme can be written as

y = ga(x)

ŷ = Q|U(y)

z = ha(y)

ẑ = Q|U(y)

prior = hg(ẑ)

x̂ = gs(ŷ)

Pz = En1(ẑ)

Py = En2(ŷ|prior)

(2)

In Equation (2), En1 and En2 are two different models. Usually, En1 refers to the
factorized parameter model [48], while En2 can be seen as a density model conditioned
on some prior information, such as a single Gaussian model [46,47] or a Gaussian mixture
model [50]. The parameter of these entropy models is estimated based on some prior
information, such as the hyperprior information [46], local context information [47], or
global reference information [51].

After obtaining the prior information, the entropy model’s parameter can be learned
using parameter estimation networks. If the entropy model is a Gaussian mixture model,
the pixel density can be written as follows:

p(x) = p(x|h1, h2, ....hx)

=
K

∑
i=1

wiN(µi, δi)
(3)

In Equation (3), N(. . . ) means the single Gaussian model and µi and δ represent the
mean and variance of the ith Gaussian model. wi is the weight parameter, and ∑ wi = 1.
The estimated density can be used to compute the entropy when training.

3. Proposed Algorithm
3.1. Motivation

Compared to normal natural images, remote sensing images typically cover a larger
spatial region, which often includes similar land covers resulting in complex textures and
structures. As shown in Figure 1, the left figure shows white roofs and a road with similar
structures and textures, while the right figure shows similar structures and textures in
the grassland, in addition to the road and edge information. These similarities contain a
significant amount of non-local redundancy, which can be leveraged to construct a more
accurate entropy model and achieve better rate-distortion performance.

In recent years, transformers have achieved numerous breakthroughs in various
computer vision tasks due to their powerful non-local representation ability [52–55]. To
capture the global redundancy contained in remote sensing images, transformer-based
networks have been adopted. However, remote sensing images also contain local redun-
dancy, and the hyperprior network introduced in [46] has been shown to be effective in
capturing local redundancy. To improve entropy model estimation, new prior informa-
tion is designed by fusing the hyperprior and the prior information abstracted from a
transformer-based network.

The most relevant compression algorithm is [46]. The main differences between the
proposed algorithm and [46] are shown in Figure 2. In the left figure, ga, gs, ha, and hs
represent the CNN-based analysis transform, synthetic transform, hyperprior analysis
transform, and hyperprior synthetic transform, respectively. Q|U means the quantizer,
where U adds uniform noise and Q means round quantization. Gaussian Single Model
(GSM) refers to the Gaussian Single Model used in [46]. x, x̂, y, ŷ, z, and ẑ represent the
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original image, reconstructed image, latent, quantized latent, hyper-latent, and quantized
hyper-latent, respectively.
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Figure 2. (a) Hyperprior [56]. (b) Proposed.

The main differences between the proposed algorithm and [46] are listed below:

1. Ref. [46] only adopts a CNN network to explore the hyperprior information, but the
proposed compression scheme adopts two branches to explore local and global context
information. The two branches include a transformer-based and a CNN-based network.

2. In the entropy model construction, Ref. [46] uses the GSM, while the proposed
algorithm uses the Gaussian mixture model (GMM) instead.

3. Additionally, the GDN layers are replaced by a layer of a transformer-based layer,
poolformer, in the proposed algorithm.

In addition to [46], several other related works are also relevant to the proposed
algorithm, including [47,48,57]. Ref. [57] introduced a novel normalization layer, GDN, to
improve the compression performance. In the proposed algorithm, the GDN layers are
replaced with transformer-based blocks. Ref. [48] is an early end-to-end image compression
method that introduced the factorized entropy model, which has been used in many
subsequent works. The coding of hyper-latents in our algorithm is also based on this model.
Ref. [47] is a variation of [46] that introduces local context to improve the compression
performance, but it requires an autoregressive model which can be time-consuming. In
contrast, our proposed algorithm does not use any autoregressive models. Instead, a
transformer-based prior is adopted to explore the non-local context information. Our
experimental results demonstrate that the proposed algorithm achieves better compression
performance than these related models.

The overall compression framework is shown in Figure 3. In the framework, “Conv2d,
K3s2N” refers to a 2D down-sampling convolution with N filters with a kernel size of 3.
Transformer-based layers are implemented using poolformer blocks [54]. The entropy
model is composed of two distinct models, a CNN-based hyperprior and a transformer-
based hyperprior. The context model fuses these two pieces of prior information and uses
it to estimate the parameters of the GMM.
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3.2. Entropy Model

The CNN and transformer-based entropy model are shown in Figure 4. The left
subfigure shows the details of the CNN-based hyperprior network, and the right subfigure
shows the transformer-based hyperprior network. In the coding process, after obtaining
the latent representation, it is sent into both the CNN-based hyperprior network and
transformer-based network, and the hyper-latent is coded using the factorized model
based on [48]. This hyper-latent representation is then decoded into hyperprior and fused
to estimate the entropy model parameter. In this paper, a Gaussian mixture model is
adopted, and the value of K is set to 3. From the fixed Gaussian mixture model, the same
density model in the coding and coding processing can be constructed, and this process
will construct a single GMM for each pixel. These density models are used to compute the
probability of the latent for entropy encoding and decoding.
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Figure 4. This is the entropy model used in the proposed algorithm.
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As shown in the figure, this entropy model consists of several blocks, including the
CNN-based hyperprior network, transformer-based hyperprior network, two factorized
entropy models, and a Gaussian mixture model. The two hyperprior networks abstract the
hyperprior information, fuse it, and send the fused information to estimate the parameter
of GMM. The factorized entropy model can be referenced in [48]. The use of GMM has
been shown to achieve better compression performance in much of the literature [10,50].
The proposed algorithm focuses more on the fusion of the transformer- and CNN-based
hyperprior networks.

The details of the transformer block used in the transformer-based hyperprior network
are shown in Figure 5. As the figure shows, this block contains poolformer [54] blocks and
CBAM [58] blocks. In the proposed algorithm, the CBAM blocks are removed in the first
transformer block, and two layers of CNN blocks with LeakReLU are added instead.

patch embeding

Norm

pooling

Norm

Channel MLP

poolformer

CBAM

Figure 5. The main transform block of the proposed algorithm. The poolformer removed the token
mixture model and used pool layers instead. To enhance the channel and spatial attention, a CBAM
block was adopted after the poolformer blocks.

After obtaining the CNN-based hyperprior and transformer-based hyperprior, they
will be fused and sent to the parameter estimator network to estimate the parameters of
GMM. The parameter estimator network is shown in Figure 6. In the figure, w is the weight
of a single Gaussian model with parameters of mean µ and variance δ. For the proposed
algorithm, K is fixed to 3 for the GMM, thus there are three sets of w, µ, and δ.

prior 1prior 2 

Figure 6. The parameter estimator network, which is used for estimating the parameter of GMM.
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3.3. Training Strategy

Entropy estimation is a crucial component of learned lossy image compression al-
gorithms. During the compression process, an entropy model is constructed to generate
a density model for each latent representation. During the training process, this density
model is utilized to estimate the information entropy for the latent representation. As per
Shannon’s information theory, the lower bound of the bit rate is equivalent to the infor-
mation theory; hence, lower entropy indicates a lower bit rate. After the training process,
an entropy model is obtained, which generates a set of density models for encoding and
decoding. During the encoding and decoding process, these density models generate
various probabilities for each latent representation. These probabilities help the entropy
coding algorithms transform the latent representation into binary streams.

However, learned lossy image compression algorithms can only approximate the true
density model and true possibility. Therefore, the gap between the estimated density model
and the true density model can hurt the compression performance. Additionally, there
is a significant gap between training and testing due to the difference in quantization. In
the training process, hard quantization, such as the round function, can impede the back-
propagation of gradients. To ensure gradient back-propagation, some soft quantization
methods, such as adding uniform noise or using stochastic rounding, are often used. In the
proposed compression scheme, uniform noise is added to approximate round quantization
during the training process, which enhances the compression performance. However,
in the true coding process (testing), the compression scheme must ensure that the latent
representation coefficients are integers, making adding uniform noise unsuitable for this
situation. Therefore, the difference in quantization can cause a gap in the entropy model,
leading to sub-optimal compression performance. Furthermore, this difference can also
cause a mismatch between the analysis transform and synthetic transform, resulting in
much more distortion in reconstructed images.

To address this issue, various strategies have been proposed by researchers, such as
those introduced in [56,59,60]. In [56], the author presented a forward vector quantization
approach, and a soft histogram was used for entropy estimation instead of a simple
Gaussian model [46] or Gaussian mixture model [50]. This method has been shown to
improve rate-distortion compression performance by reducing the gap between training
and testing. Similarly, the proposed algorithm employs a similar strategy as in [59].

This strategy involves a three-stage training process to reduce the gap between train-
ing and testing. First, all compression networks are trained to obtain a relatively good
compression performance network. In the second training stage, the analysis transform net-
work is fixed and the other compression network will be trained. Finally, in the third round
of training processing, the analysis transform, synthetic transform, and hyper-analysis
transform networks are fixed, and the hyper-synthetic transform and parameter estimation
network will be trained. During the first stage, all quantization functions are approximated
by adding uniform noise. In the second stage, the latent representation coefficients are
quantified using a round function. Finally, in the last stage, the hyper-latent and latent
representation will be quantified by rounding operation. By following this process, the
proposed image compression scheme can improve the compression performance.

4. Experiments and Results
4.1. Dataset and Training Setting

To evaluate the effectiveness of the proposed algorithm, experiments were conducted
on the HRRSI dataset Aerial Imagery for Roof Segmentation (AIRS). The dataset comprises
857 images for training, 94 images for validation, and 96 images for testing, with a pixel
resolution of 0.072 m and each image having a size of 10,000 × 10,000 × 3. During training,
the training dataset was first cropped into 1024 × 1024 non-overlapping patches, resulting
in approximately 65,000 images. These were then randomly cropped into 256 × 256 image
patches during the training process. The validation dataset was split into non-overlapping
patches of 2048 × 2048 in size, resulting in 1438 images for testing. The adaptive moment
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estimation (Adam) optimizer [61] was used with a learning rate of 2× 10−4 and a batch
size of 20. The network was trained for 100 epochs with a stage decay of 0.75 for every
20 epochs. In the last two refinement stages, the analysis transform was fixed, and the
other networks were trained with a learning rate of 10−5 and 8 images per batch for
each stage of 20 epochs. The rate-distortion performance was controlled by the formula
rate + λ × distortion, where the rate was estimated using the entropy model and MSE
was used to evaluate distortion. The values of λ in this compression scheme were set to
[0.0018, 0.0035, 0.0067, 0.013, 0.025, 0.0483, 0.0932], respectively. The channel of all models
was set according to [46].

4.2. Evaluation Metrics

As mentioned above, the rate-distortion performance is commonly used to evaluate
the compression performance of lossy image compression algorithms. In this paper, due
to the large number of test images (1438), the estimated information entropy is used to
estimate the bitrate of compressed images for all learned image compression algorithms.
For distortion, the Peak Signal-to-Noise Ratio (PSNR) [62] and Multi-Scale Structural
Similarity (MSSSIM) [63] indexes are adopted as metrics to estimate the distortion. PSNR
values represent the ratio of the signal-to-noise energy, which affects the image quality. It
can be used to measure how close the decompressed (reconstructed) image and the original
image are. The PSNR is formulated as follows:

The parameter xmax represents the maximum pixel value of the image bands, while
MSE refers to the Mean Square Error between the original and reconstructed images. For
HRRSI with an 8-bit depth, the value of xmax is 255.

MSSSIM is based on Structural Similarity (SSIM) but is formulated in a multi-scale
manner as follows:

MSSSIM = [lm(x, y)]αm
M

∏
i=1

[cj(x, y)]β j [sj(x, y)]ηj (4)

where cj(x, y) and sj(x, y) denote the contrast comparison and the structure comparison
for the jth scale image. The luminance comparison [lm(x, y)]αM is computed only at the
final scale M. The parameters αj, β j, and ηj define the relative importance of the three
components, and, for simplicity, we set αj = β j = ηj and ∑m

j=1 ηj = 1. These three
comparison values are calculated as follows:

lm(x, y) =
2µxµy + c1

µx2 + µy2 + c1

cm(x, y) =
2δxδy + c2

δc2 + δy2 + c2

sm(x, y) =
δxy + c3

δxδy + c3

(5)

where µx, δx and δ2
x are the mean, variance, and covariance of the original image x, respec-

tively. c1, c2, and c3 are three small constants, and the details can be found in [63].

4.3. Comparison Algorithms

The proposed algorithm, along with several traditional lossy image compression
algorithms and learned image compression algorithms, is evaluated using rate-distortion
performance. The traditional lossy image compression algorithms considered in this study
include JPEG [12] and JPEG2000 [13]. JPEG and JPEG2000 are two widely used international
compression standard algorithms based on DCT and DWT, respectively.

The learned lossy image compression includes three closely related learned image
compression techniques: factorized [48], hyperprior [46], and joint [47]. The factorized
technique [48] was the first learned lossy image compression algorithm that achieved a
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comparable compression performance to JPEG. The hyperprior technique [46] was the first
literature to adopt hyperprior, which has since been adopted by many learned lossy image
compression schemes, including the proposed framework, which uses a similar framework
to hyperprior [46]. The joint technique [47] adopts local context to significantly improve
the compression performance, but the drawback is that the decoding processing must
be performed pixel by pixel. For JPEG and JPEG2000, the "imwrite" function of Matlab
is used with default settings, except for the different quality factors used to control the
rate-distortion performance.

The three learning-based compression algorithms, namely, factorized [48], hyper-
prior [46], and joint [47], were implemented using the official software of CompressAI [64]
(https://interdigitalinc.github.io/CompressAI, accessed on 18 April 2023).All the learned
lossy image compression algorithms were trained using the same settings as the proposed
algorithm on the AIRS image dataset.

PSNR = 10× log10(
xmax2

MSE
) (6)

4.4. Experimental Result and Analysis

The compression performance of the proposed algorithm and several compared al-
gorithms is shown in Figures 7 and 8. Figure 7 presents the rate-distortion performance
based on bpp (bit per pixel) and PSNR. As shown in the figure, JPEG [12] achieves worse
compression results, while JPEG2000 [14] achieves better PSNR values than factorized [48]
in most bitrates, especially for larger bitrates. Factorized [48] is one of the earliest learned
compression algorithms that achieved better compression performance than JPEG [12].
Compared with factorized, the hyperprior algorithm [46] adopts prior information to help
construct a more accurate entropy model, resulting in better PSNR values. The performance
of hyperprior [46] is greatly improved compared to the factorized and JPEG2000 algorithms.
Joint [47] is based on hyperprior, and it introduces autoregressive-based local context for en-
tropy estimation. As shown in the figures, in lower bitrates, the compression performance
of joint [47] is much better than hyperprior [46]; however, the compression performance
of hyperprior [46] is slightly better than joint [47]. Compared with the other algorithms,
the proposed algorithm achieves better PSNR values, which means better compression
performance.

Figure 8 shows the compression performance based on bpp and MSSSIM. We can
obtain a similar result to Figure 7. In all bitrates, the proposed algorithm can obtain the
best compression performance. In addition, joint [47] achieves better MSSSIM values than
hyperprior [46]. It is an interesting phenomenon that the performance of JPEG2000 is better
than factorized [48] at a bitrate of about 0.42 bpp, but, in other fields, factorized is better
than JPEG2000. This also means that better PSNR does not necessarily mean better MSSSIM.
Moreover, the proposed algorithm does not adopt autoregressive-based local context, which
is meaningful in some fields that require fast compression and decompression.

To further demonstrate the effectiveness of our algorithm, we have compared the
visual quality of decompressed images with other popular image compression techniques,
such as JPEG [12] and JPEG2000 [14]. The results are presented in Figures 9 and 10.
In these figures, the upper right corner depicts the original image, and the lower left
corner shows the decompressed image obtained by our algorithm after compression. The
other two algorithms represent the results of JPEG and JPEG2000. As shown in Figure 9,
the JPEG algorithm produces a clear checkerboard effect on the edge of the roof. In
contrast, the JPEG2000 algorithm results in some texture distortion in the edge area. The
compression outcomes of our algorithm are visually similar to the original image and
almost indistinguishable. Objective evaluation indicators of the three algorithms also reveal
that our algorithm produces higher PSNR values and MSSSIM values at smaller bit rates.
The results presented in Figure 10 are similar to those shown in Figure 9. On the white roof,
the reconstructed image of JPEG has noticeable artifacts, and the JPEG2000 reconstruction
result shows visible noise differences. In contrast, the reconstructed image of our algorithm

https://interdigitalinc.github.io/CompressAI
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exhibits better quality after decompression. Objective evaluation indicators also confirm
that the performance of our algorithm surpasses that of other algorithms.

Figure 7. The rate-distortion compression performance of the proposed algorithm and comparison
algorithms. The rate is measured by bit per pixel (bpp) and distortion is measured by PSNR.

Figure 8. The rate-distortion compression performance of the proposed algorithm and comparison
algorithms. The rate is measured by bit per pixel (bpp) and distortion is measured by MSSSIM.
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(a) (b)

(c) (d)

Figure 9. The visual performance. JPEG: 0.7712 bpp, PSNR 31.07 dB, MSSSIM 0.9788. JPEG2000:
0.7373 bpp, PSNR 33.72 dB, MSSSIM 0.9814. Ours: 0.6818 bpp, PSNR 35.18 dB, MSSSIM 0.9897.
(a) Original; (b) JPEG; (c) JPEG2000; (d) ours.

(a) (b)

(c) (d)

Figure 10. The visual performance. JPEG: 0.8254 bpp, PSNR 30.68 dB, MSSSIM 0.9788. JPEG2000:
0.7375 bpp, PSNR 32.74 dB, MSSSIM 0.9830. Ours: 0.7165 bpp, PSNR 34.68 dB, MSSSIM 0.9912.
(a) Original; (b) JPEG; (c) JPEG2000; (d) ours.
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5. Conclusions

This paper presents a transformer-based learned lossy image compression algorithm
for HRRSI. The proposed algorithm adopts a transformer-based hyperprior to explore non-
local redundancy and a CNN-based hyperprior to explore local redundancy of HRRSI. By
fusing these two types of prior information, the algorithm obtains a more accurate entropy
model, resulting in lower information entropy and better compression performance. The
results show that the proposed algorithm outperforms other traditional algorithms and
some other learned lossy image compression methods. Moreover, the proposed algorithm
does not use any auto-regression networks to explore local context, making it suitable for
applications that require parallel codecs. Although the proposed algorithm has achieved
better compression performance, there is still room for improvement in the backbone
network design and the use of fusion prior information. In [10], the authors adopt a coarse-
to-fine network to obtain good compression performance and use prior information to refine
the quality of reconstructed images, achieving even better compression performance. In the
future, we may focus on designing a better analysis and synthesis transform as well as using
prior information to further improve the compression performance of HRRSI compression.
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