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Abstract: NASA’s Earth Surface Mineral Dust Source Investigation (EMIT) mission seeks to use
spaceborne imaging spectroscopy (hyperspectral imaging) to map the mineralogy of arid dust source
regions. Here we apply recent developments in Joint Characterization (JC) and the spectral Mixture
Residual (MR) to explore the information content of data from this novel mission. Specifically, for
a mosaic of 20 spectrally diverse scenes, we find: (1) a generalized three-endmember (Substrate,
Vegetation, Dark; SVD) spectral mixture model is capable of capturing the preponderance (99% in
three dimensions) of spectral variance with low misfit (99% pixels with <3.7% RMSE); (2) manifold
learning (UMAP) is capable of identifying spatially coherent, physically interpretable clustering
relationships in the spectral feature space; (3) UMAP yields results that are at least as informative
when applied to the MR as when applied to raw reflectance; (4) SVD fraction information usefully
contextualizes UMAP clustering relationships, and vice-versa (JC); and (5) when EMIT data are
convolved to spectral response functions of multispectral instruments (Sentinel-2, Landsat 8/9, Planet
SuperDove), SVD fractions correlate strongly across sensors, but UMAP clustering relationships
for the EMIT hyperspectral feature space are far more informative than for simulated multispectral
sensors. Implications are discussed for both the utility of EMIT data in the near-term and for the
potential of high signal-to-noise (SNR) spaceborne imaging spectroscopy more generally, to transform
the future of optical remote sensing in the years and decades to come.

Keywords: EMIT; joint characterization; spectral mixture residual; hyperspectral; dimensionality;
SVD model

1. Introduction

NASA’s Earth Mineral Dust Source Investigation (EMIT) mission is designed to study
the mineralogy of Earth’s dust-forming regions using spaceborne imaging spectroscopy [1].
The EMIT instrument is a Dyson imaging spectrometer with an 11◦ cross-track field of view,
with a fast (F/1.8) and wide-swath (1240 samples) optical system achieving roughly 7.4 nm
spectral sampling across the 380–2500 nm spectral range at high signal-to-noise (SNR) [2].
EMIT was launched on 14 July 2022 via SpaceX Dragon and successfully autonomously
docked to the forward-facing port of the International Space Station (ISS) [3]. EMIT data
and algorithms are freely available for public use.

While the stated purpose of the EMIT mission is to measure surface mineralogy and
mineral dust in the Earth’s dust-forming regions, these data also provide an unprecedented
opportunity to advance our fundamental understanding of the spectral properties of the
Earth’s surface more generally. Sensors like Landsat have collected multispectral satellite im-
agery for decades [4], but spaceborne hyperspectral (imaging spectroscopy) observations have
been much more limited. Early missions like Hyperion [5] and HICO [6] were characterized
by nontrivial noise limitations. High-quality airborne data from sensors like AVIRIS [7] are
available, but with spatial and temporal coverage limitations inherent to airborne platforms.
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A new generation of spaceborne imaging spectrometers is now starting to come online, with
significant involvement from multiple space agencies. Such missions include the Italian
Space Agency’s PRISMA [8], DLR’s DESIS [9] and EnMAP [10], JAXA’s HISUI [11], as well
as planned missions like the European Space Agency’s CHIME [12], NASA’s SBG [13] and
more. EMIT is an exciting new contribution to this international constellation and marks an
important step towards a comprehensive global hyperspectral monitoring system.

EMIT began collecting high-quality data shortly after launch, and a rapidly-growing
library of scenes is already available for download. While geographic coverage of the EMIT
mission is inherently limited by the orbital parameters of the ISS, the scenes that have been
acquired to date sample broad spectral diversity spanning a wide range of biogeophysical
settings. These novel data offer an unprecedented opportunity to test the utility of recent
developments in spectral image analysis, including both characterization and modeling. In
this analysis, we use the standard Level 2A EMIT surface reflectance data product. Notably,
this product relies on a Bayesian optimal estimation approach [14] that differs in important
ways from traditional direct radiative transfer model inversions [15].

Here, we use a compilation of 20 spectrally diverse EMIT scenes to investigate the
differences between high SNR spaceborne hyperspectral data and simulated multispectral data
from common sensors like Sentinel-2, Landsat, and SuperDove. Specifically, we apply two
novel approaches to hyperspectral image analysis: joint characterization [16] and the spectral
mixture residual [17]. Joint characterization assumes that important spectral signals may be
distributed across multiple scales of variance and provides a way to characterize these signals
in a physically interpretable way. The mixture residual uses spectral mixture analysis to isolate
low-variance spectral signals (e.g., narrow mineral absorptions) from high-variance signals
(e.g., land cover modulated variability in continuum shape and amplitude). Synthesizing these
two novel approaches using a novel dataset, we address the following questions:

1. To what extent are EMIT reflectance spectra well characterized by a generalized
three-endmember Substrate, Vegetation, Dark (SVD) model, such as has been shown
effective for analysis of multispectral satellite imagery?

2. What quantitative and qualitative differences in spectral dimensionality and feature
space topology are observed between EMIT reflectance and simulated multispec-
tral data?

3. Does the spectral mixture model residual from EMIT data contain substantially more
information than the mixture residual computed from multispectral data? If so, is
this effectively captured by traditional dimensionality metrics like variance partition?
And is this information also manifest topologically in the spectral feature space as a
substantially different manifold structure?

4. To what extent can joint characterization be used to reveal subtle but physically
meaningful spectral signals in EMIT data? Are these signals spatially coherent?

2. Materials and Methods
2.1. Data

Twenty EMIT scenes were selected on the basis of geographic and spectral diversity
(Figure 1). Scenes span four continents, sampling important global deserts (Sahara, Arabia,
Atacama, Taklamakan, Gobi, Great Basin, and Caspian), geologic structures (Zagros, Ja-
bal Tuwaiq, Bushveld, Atacama, and the Hindu Kush), agricultural basins (San Joaquin,
South African Cape, and the Hindu Kush), natural floristic diversity (Mata Atlântica, South
African Cape, Okavango, and Sierra Nevada), as well as some cryospheric targets (Patag-
onia and Tian Shan) and human settlements (Los Angeles). While this compilation does
not achieve comprehensive global sampling, at least some representation is included from
most major biomes.

Data were downloaded in netCDF format from the USGS Land Processes Distributed
Active Archive Center (LPDAAC) through the web portal: https://search.earthdata.nasa.
gov/, accessed on 3 February 2023. Both reflectance and mask files were acquired. All
20 scenes were compiled into a single-image mosaic (Figure 2). For subsequent analysis,

https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
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reflectance data were masked using the “Aggregate Flag” included in Band 7. SceneIDs are
provided in Appendix A, Table A1.

Figure 1. Index Map. Each of the 20 scenes used for this analysis is shown as a red dot. While
the sample is not global, it does include a wide range of land cover, including globally significant
hotspots for agriculture (San Joaquin), cryosphere (Patagonia and Tian Shan), desert (Taklamakan,
Arabian, Saharan, and Gobi) and floristic diversity (South African Cape and Mata Atlântica).

2.2. Joint Characterization

Joint characterization (JC) combines complementary projections of the topology of the
spectral feature space by combining global structure from the broad wavelength spectral
continuum with a local structure related to narrow band absorption features. In this
analysis, we applied JC to the EMIT mosaic described above. As detailed in [16] and refined
in [18–22], the JC workflow was as follows:

1. Characterize spectral feature space on the basis of (statistically) global variance.

a. Evaluate spectral mixture model and compute mixture residual.

2. Characterize spectral feature space on the basis of (statistically) local connectivity.
3. Evaluate the topology of global and local feature spaces separately.
4. Characterize joint feature space formed by both global and local basis vectors.

We provide further detail on each step in the following subsections.

2.2.1. Global Variance Characterization with PCA

The first step in joint characterization is to compute a set of basis vectors for the
spectral feature space which capture the global variance structure of the data. For over
a century, Principal Component Analysis (PCA) has been used to empirically estimate
these basis vectors [23]. PCA is a generalizable, linear, invertible approach. PCA can be
computed using the singular value decomposition described by the equation:

X = U Σ V

where X is the data matrix, U is the matrix of left singular vectors, Σ is the (diagonal)
matrix of singular values, and V is the matrix of right singular vectors [24]. Here, we
visualize the low-order global variance structure of the spectral feature space using bivariate
distributions of values of the U matrix. Analysis of cumulative distributions of normalized
singular values can also estimate data dimensionality [25,26]. We use this approach to
compare the relative dimensionality of EMIT vs. simulated Landsat, Sentinel, and Planet
spectra. We also note that other important and interesting approaches to dimensionality
estimation exist [27,28].
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Figure 2. Mosaic of 20 spectrally diverse EMIT scenes.
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Evaluation of Linear Spectral Mixture Model, Including Residual

Global variance characterization also provides a way to determine bounding spectral
endmembers (EMs) and empirically evaluate linearity of spectral mixing [29]. Once iden-
tified, these EMs can then be used to estimate subpixel material abundances [30–32]. In
addition, generalized EM fractions can provide a globally consistent parameter space for
land cover mapping [33]. We take this approach here, using S, V, D fractions as one of our
global variance metrics in the joint characterization step below. Interesting and potentially
important information can also be captured in wavelength-dependent model misfit (i.e.,
mixture residual) [17,20]. The linear spectral mixture model can be represented as:

x = Mf + ε

where x is the vector of observed reflectance, M is the matrix of linear mixing equations, f
is the subpixel fractional abundance of each EM, and ε is the vector of wavelength-explicit
misfit [34]. Frequently, ε is summarized as a single statistic (e.g., root-mean-square error;
RMSE). In addition to this summary statistic, we also retain the full ε-vector for each pixel.
We treat this mixture residual as a source of potential information, evaluating its (global
and local) feature space topology and spectral dimensionality.

2.2.2. Local Variance Characterization with UMAP

The second step in joint characterization is to evaluate (statistically) local variance
in the data. Here, we do so using recent advances in the field of manifold learning. One
conceptual framing of this approach can be considered as follows:

Each pixel reflectance vector occupies a position in high-dimensional feature space. Posi-
tion in this feature space is a function of the generative physical processes underlying the
spectral signature, plus measurement noise. Generative physical processes may be linear
(single-scatter geometric optics) or nonlinear (intimate mixing); and span a broad range
of amplitudes. The full set of generative physical processes of a large number of spectra
describes a curvilinear manifold in high-dimensional feature space. Manifold learning
algorithms seek to estimate this underlying manifold and use its structure to uncover
useful information about the data.

Manifold learning has existed for decades. A wide range of algorithms exist, each
with strengths and limitations. One of the earliest approaches was introduced as the Iso-
metric Mapping (ISOMAP) algorithm [35]. Other approaches were rapidly developed,
including Locally Linear Embedding (LLE) [36], Hessian Eigenmaps [37], spectral embed-
ding/Laplacian eigenmaps [38], and Stochastic Neighbor Embedding [39,40]. For a review,
see [41].

These approaches have been applied to hyperspectral imagery with varying success.
Early recognition of the potential was noted by [42], with additional context provided
by [43]. The application of locally linear embedding was rapidly adopted [44]. Impor-
tant advances were then made by [45–52], including multi-algorithm comparisons and
significant improvements in generalizability, computational optimization, and scalability.

The manifold learning algorithm we use in this analysis is Uniform Manifold Approx-
imation and Projection (UMAP) [53]. UMAP was developed using a theoretical framework
in Riemannian geometry and algebraic topology. The algorithm is designed to be scal-
able and computationally efficient, and additionally does not restrict the dimension of
embedding. For a full exposition of the UMAP algorithm, the reader is referred to [53], but
briefly, the steps are as follows. First, the data are modeled as a low-dimensional simplicial
complex. Nonuniform data distribution is handled using a locally varying distance met-
ric. Local connectivity is evaluated using fuzzy open sets. Fuzzy simplicial sets are then
unioned together to form a single fuzzy simplicial complex, which can also be considered a
weighted graph. Once this complex is determined, an embedding is found with optimal
similarity to the fuzzy topological structure by minimizing cross-entropy:
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Σ wh(e) log(wh(e)/wl(e)) + (1 − wh(e)) log ((1 − wh(e))/(1 − wl(e)))

where wh(e) is the weight of the 1-simplex e in the high-dimensional case and wl(e) is
the weight of the 1-simplex e in the low-dimensional case. Here, we implement UMAP
using the Python-based ‘umap-learn’ package. Both 2D and 3D UMAP embeddings were
computed for the mosaic and individual EMIT scenes.

2.2.3. Evaluate the Topology of Global and Local Feature Spaces Separately

Once both global and local metrics are computed, connectivity structure and dimen-
sionality are evaluated independently. Dimensionality is estimated from the singular value
distribution as described above. The topology of global and local feature spaces is visual-
ized. Endmember spectra, mixing relations, and clusters are evaluated, following [29].

2.2.4. Characterize Joint Feature Space

Global and local bases are then used to analyze the joint space. Patterns of global and
local variance are investigated together to identify additional endmembers and clusters
which are not evident or clearly interpretable using one approach alone.

3. Results
3.1. Variance-Based Spectral Feature Space—PCA

Figure 3 shows the low-order variance-based spectral feature space of the reflectance
mosaic. The first three dimensions of these data are bounded by snow/ice (I); sand, soil, and
rock substrates (S); illuminated photosynthetic vegetation (V); and dark targets like shadow
and water (D). This low-order topology is consistent with previous regional compilations of
AVIRIS imaging spectroscopy [17,54], as well as global compilations of Landsat [33,55,56],
MODIS [57], and Sentinel-2 [18,19]. Significant spectral diversity in the S endmember is
observed, associated with geologic variability in sediment, bedrock, and soil of the sparsely
vegetated scenes in the mosaic. Reflectance spectra for generalized endmembers are shown
in the lower right.

The image mosaic was then unmixed using the S, V, and D endmembers (EMs) and
wavelength-specific mixture residual was retained, following [17]. Each endmember rep-
resents the mean of several pixel spectra near the respective apexes of the feature space
shown in Figure 3. However, the S endmember is the mean of multiple sand spectra chosen
to average out specific SWIR2 absorptions like that shown in Figure 4. It is projected
onto a high amplitude specular reflection so as to have a maximum reflectance near 1.0,
thereby bounding the space near the sand apex. The 3 EM SVD linear mixture model
was found to yield a good fit for the preponderance of pixel reflectance spectra, with an
average root-mean-square error (RMSE) of approximately 3.1%, and with 99% of pixels
showing RMSE < 3.7%. The low-order feature space of the mixture residual mosaic is
shown in Figure 4. The mixture residual effectively accentuates substrate EM variability
by removing the high-variance component of spectral variability which is modeled by a
simple linear mixing model. Multiple additional substrate EMs are clearly identifiable in
the variance-based mixture residual feature space. Importantly, this endmember variability
demonstrates correspondence to VNIR spectral curvature and narrow SWIR absorptions
rather than simple differences in albedo.
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Figure 3. Three-dimensional spectral feature space and spectral endmembers. Scatterplots of orthog-
onal principal components reveal the straight edges and well-defined apexes of the spectral feature
space. Density clustering along the substrate limb between dark and sand results from the geologic
diversity of arid environments. However, no clusters are geographically specific. All are represented
in multiple sample locations.

In order to investigate EMIT’s information content relative to multispectral imagery,
the reflectance mosaic was convolved using the spectral response functions of the Sentinel-
2A, Landsat 8/9 OLI, and Planet SuperDove sensors. Variance-based characterization was
then repeated, including computation of the mixture residual (i.e., wavelength-explicit
misfit of the 3-EM linear spectral mixture model). The difference in information content was
then quantified using the partition of variance captured by eigenvalues of the low-order PC
dimensions of the reflectance and residual spectra from each sensor (Figure 5). Cumulative
variance for the reflectance data (left) shows surprisingly little difference for EMIT data
relative to Landsat and Sentinel-2, with minor differences persisting at Dimension 2 but
near convergence by Dimension 3. SuperDove shows considerably lower dimensionality,
presumably due to the absence of SWIR bands. In contrast, the partition of variance
from mixture residual spectra (right) shows EMIT dimensionality to consistently exceed
all multispectral sensors and Landsat/Sentinel to consistently exceed SuperDove. The
multispectral feature spaces are effectively 2D and 3D, while EMIT’s hyperspectral feature
space is at least 14D to 99.9% of the variance.
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Figure 4. Three-dimensional mixture residual feature space and example spectra. Scatterplots
of orthogonal principal components show some geographically distinct clusters (labeled) on the
periphery, but the body of the distribution comingles residuals from almost all sample locations.
Tuwaiq 1 and 2 correspond to bedrock and sand, respectively. The Zagros spectrum corresponds
to shallow water in evaporite pans. The composite sand endmember used to compute the mixture
residual is shown in red for comparison.

Figure 5. Partition of variance. Left: Cumulative normalized singular values for reflectance mosaic.
Right: Cumulative normalized singular values for mixture residual mosaic. When computed from
surface reflectance, all four sensors show >99% of spectral variance contained in the first three
dimensions. After computing and removing the generalized (SVD) spectral mixture model, the partition
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of variance much more clearly reflects spectral differences among sensors. EMIT data show the
highest dimensionality, with six additional dimensions required to capture 99% of the remaining
variance. Sentinel-2 and Landsat 8 are comparable, each reaching 99% of the variance with two
additional dimensions. SuperDove dimensionality is demonstrably lower, presumably as a result of
the lack of SWIR bands. Note differences in both x and y-axis scaling between plots.

3.2. Manifold-Based Feature Space—UMAP

UMAP results for the EMIT mosaic, as well as convolved Sentinel, Landsat, and Su-
perDove mosaics, are shown in Figure 6. When UMAP is applied to reflectance spectra
(top row), the greater information content of the EMIT mosaic is manifest as a more com-
plex topology characterized by numerous tendrils with varying degrees of differentiation
from the main body of the manifold. In contrast, the multispectral sensors demonstrate
diminished complexity with fewer identifiable tendrils and a more continuous structure.

Figure 6. Effect of spectral resolution on manifold structure. Pixels from each EMIT scene are
visualized using distinct colors. Both reflectance and residual feature space embeddings clearly
segregate numerous individual EMIT scenes, while the multispectral embeddings depict them as
comingled within a single continuum for each sensor. All embeddings shown here were generated
with a n_neighbors value of 50.

The difference in manifold structure between EMIT and multispectral spectra is fur-
ther accentuated when UMAP is applied to the mixture residual mosaic (bottom row).
Here, spectral differences within and among EMIT tiles result in clearly separated, well-
defined clusters for EMIT. The multispectral sensors are not characterized by such spectral
separability. For these data, manifolds are visibly well-connected, without such clearly
separable gaps. The implications of this difference in manifold structure for both discrete
and continuous image analysis are discussed below.

3.3. Joint Characterization

It has been noted previously that important information may exist at multiple scales of
spectral variance in the same dataset and that such information may be usefully examined
using Joint Characterization (JC), in which bivariate distributions are used to simulta-
neously visualize both global and local spectral features [16]. Figure 7 illustrates JC as
implemented for the EMIT reflectance mosaic. Here, the S, V, and D endmember fractions
are used as the global variance metric (x-axis), and UMAP dimensions are used as the
local variance metric (y-axis). Tendrils at similar values of each mixture model fraction
(similar x values but distinct y values) correspond to statistically distinct clusters with
broadly similar overall spectral continua but distinct absorption features (e.g., endmember
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variability). These tendrils frequently correspond to spatially contiguous clusters of pixels
in individual EMIT scenes. This is examined in greater detail below for three example
EMIT scenes.

Figure 7. Joint characterization of the 20-scene mosaic spectral feature space. Two-dimensional UMAP
embedding (upper left) shows distinct 2D continua for vegetation and substrates with distinct tendril
continua for spectrally distinctive sands, bedrock lithology, and snow. Combining individual dimen-
sions of the 2D UMAP manifold with individual S (lower left), V (lower right), and D (upper right)
endmember fractions shows the physical properties of distinct spectra. Note geographically specific
lithologic endmembers in Substrate + UMAP1 space in contrast to geographically comingled vegetation
and non-photosynthetic vegetation (NPV) endmembers in Vegetation + UMAP2 space. Snow shows
implausible vegetation fractions (in the range [0, 2]) because there is no snow EM in the SVD model. The
UMAP embedding was generated using a n_neighbors value of 50.

3.4. Single-Scene Examples

Joint characterization of individual EMIT scenes illustrates additional spectral feature
space structure not apparent in the 20-scene mosaic. Figure 8 shows joint characterization
as applied to vegetation spectra from the single San Joaquin scene. Red, yellow, and cyan
regions of interest are identified and labeled (different colors) as clearly separable clusters
from the JC scatterplot (upper right), then projected onto the SVD fraction space (upper left)
for context. Average spectra from pixels in all three labeled regions of interest (bottom row)
clearly correspond to photosynthetic vegetation. Differences in red edge slope, mesophyll
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reflectance and liquid water absorptions are present, as well as subtle differences in pigment
absorption at visible wavelengths (lower right).

Figure 8. Joint characterization for discrimination of vegetation spectra in the San Joaquin Valley.
Red, cyan, and yellow regions of interest are clearly separable in the joint space (top row, center)
but not in the variance-based SVD fraction space (top row, left). Mean spectra from each region of
interest (bottom row, left) show differences in mesophyll reflectance, red edge slope, liquid water
absorption, and cellulose/lignin absorption features. All regions are more absorptive throughout
visible wavelengths than the mosaic V endmember (green, bottom row, center). Clusters identified
from JC are geographically coherent at the field scale in map space (right).

Figure 9 shows joint characterization as applied to substrate spectra from the single
Atacama scene. Differently colored regions of interest are identified and labeled as clearly
separable clusters from the JC scatterplot (upper right), then projected onto the SVD fraction
space (upper left) for context. Average spectra from pixels in all regions of interest (bottom
row) clearly correspond to exposed geologic substrates. All regions are substantially
more absorptive than the global sand endmember (lower left, thick red). Differences in
albedo and VNIR curvature are present, as well as specific absorption features in the 2.0 to
2.5-micron region (lower right).

Figure 9. Joint characterization for discrimination of substrate spectra in the Atacama Desert. Red,
cyan, yellow, magenta, green, and sienna regions of interest are clearly separable in the joint space
(top row, center) but not in the variance-based SVD fraction space (top row, left). Mean spectra from
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each region (bottom row, left) show differences in amplitude and curvature throughout the spectrum,
including minor but perceptible differences in SWIR wavelengths (bottom row, center). All regions
are darker throughout VSWIR wavelengths than the mosaic S endmember (thick red). Clusters
identified from JC are geographically coherent in map space (right).

Figure 10 shows joint characterization as applied to dark spectra from the single
Bahia Union scene. Differently colored regions of interest are identified and labeled as
clearly separable clusters from the JC scatterplot (upper right), then projected onto the SVD
fraction space (upper left) for context. Average spectra from pixels in all regions of interest
(bottom row) clearly correspond to different shallow and suspended sediment. Differences
in overall brightness and VNIR curvature are present, likely corresponding to factors like
bathymetry and turbidity (lower right).

1 
 

 

Figure 10. Joint characterization for discrimination of dark spectra in Bahia Union coastal ocean.
Regions of interest (red, yellow, magenta, orchid, cyan, and orange) are clearly separable in the
joint space (top row, right) but not in the variance-based SVD fraction space (top row, left). Mean
spectra from each region (bottom row, left) show differences in amplitude and curvature throughout
the spectrum, including significant differences at visible wavelengths (bottom row, right). Clusters
identified from JC are geographically coherent in map space (right).

4. Discussion

This analysis was guided by four major questions. We discuss lessons learned with
respect to each question below.

4.1. Generality of the SVD Model

It has been acknowledged for decades that, for most of the Earth’s land surface,
most variance in decameter-scale multispectral satellite imagery can be expressed in three
dimensions. Early observations of the “brightness”, “greenness”, and “third” dimensions
conceptualized by the Tasseled Cap [58,59] were subsequently extended to the domain
of spectral mixture analysis with generalized global endmembers (EMs) corresponding
to soil and rock Substrate, illuminated photosynthetic Vegetation, and Dark targets like
shadow and water (S, V, and D) [33]. The SVD model has been repeatedly confirmed
for larger compilations of Landsat [55,56], as well as decameter multispectral data with
additional spectral bands from Sentinel-2 [19]. Decameter-to-meter spatial scaling has
been characterized using Landsat:WorldView-2 image pairs [60], as well as decameter-to-
hectometer spatial scaling using coincident Landsat:MODIS observations [57].

Spectral unmixing was largely developed in the context of imaging spectroscopy [30–32].
Models using soil, vegetation, and shadow have been applied to imaging spectroscopy
data for decades, often with the addition of a non-photosynthetic vegetation (NPV) end-
member (e.g., [30,61]). As noted above, the majority of such studies used airborne imaging



Remote Sens. 2023, 15, 2295 13 of 18

spectroscopy and so largely operated at local to regional scales. Studies of compilations
of AVIRIS flight lines have also been performed [28,54,62,63]. Such studies largely focus
on the related but distinct concept of intrinsic dimensionality, e.g., [27,64,65]. Those that
do focus on generality of the SVD model are limited in spatial scope by data availability
to North America, primarily California [17,54,66]. Evaluation of the generality of the SVD
model with geographically and spectrally diverse EMIT data was a primary objective of
this study. To our knowledge, this is the most comprehensive study to date demonstrating
the generality of the SVD model for imaging spectroscopy data and the first to do so with
decameter spaceborne data.

4.2. Feature Space Dimensionality and Topology: Hyperspectral vs. Multispectral

The cross-sensor generality of the SVD model is intrinsically related to similarity (or
lack thereof) in spectral feature space dimensionality (variance partition) and topology. As
noted above, the intrinsic dimensionality of imaging spectroscopy data has been studied
previously, but studies have been limited by both data coverage and line-to-line differences
in sensor calibration and atmospheric correction. The EMIT reflectance product used for
this study is likely to exhibit substantially enhanced image-to-image radiometric stability
relative to compilations of multiple flight lines from airborne sensors. The similarity
in dimensionality between EMIT and simulated multispectral sensors when quantified
using eigenvalues computed from reflectance—and dissimilarity when quantified using
variance partition computed from the mixture residual—aligns with and extends previous
results of [17,20] in clearly demonstrating that the greater spectral information content in
hyperspectral image data can be effectively conceptualized as a greater departure from a
simple three endmember linear mixing model. The fundamental differences in topology
between the UMAP(MR) results for EMIT vs. all other sensors, discussed below, also
strengthen and extend this finding.

4.3. Mixture Residual Efficacy: Hyperspectral vs. Multispectral

UMAP results from EMIT spectra at full spectral resolution indicate a demonstrably
distinct manifold structure from all simulated multispectral sensors (Figure 6). While this
distinction is observed when examining reflectance spectra, differences are much more
apparent with the mixture residual. The separability among clusters of MR spectra both
within and across EMIT scenes is unambiguous. This result strongly suggests that the
spectral signatures captured by EMIT can differentiate biogeophysically distinct Earth
surface materials which are not resolved by multispectral sensors like Landsat and Sentinel.
The further loss of the distinct tendrils observed in Landsat and Sentinel in the SuperDove
MR manifolds suggests that SWIR bands are especially important for the differentiation
of these land cover types. This is particularly true for mineral absorptions in substrates,
consistent with expectations of important information at SWIR wavelengths.

4.4. Efficacy of Joint Characterization with EMIT Data

Figures 7–10 clearly indicate that Joint Characterization (JC) has significant potential to
assist with exploratory analysis of high SNR decameter spaceborne imaging spectroscopy
data. SVD mixture fractions provide natural quantities for the variance-based (global)
axis of the JC. For this purpose, mixture model fractions have important advantages (e.g.,
physically interpretable) which are not generally true for other global metrics like PC
dimensions. For the topology-based (local) axis of the JC, UMAP scores are clearly shown
to provide useful information. Clusters identified from the JC space are consistently found
to be statistically distinct and geographically coherent. Cluster position is not generally
interpretable in UMAP space, but introducing S, V, and D fractions effectively provides
physical order.
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4.5. Limitations and Future Work

While the results of this study are promising, we do note some significant limitations.
First, sampling is not truly global, so spectral diversity is underrepresented. While a wide
range of geologic and floristic landscapes are sampled, several important areas are not
yet included. Notably: (a) no scenes are included from Europe or Australia, (b) only one
urban area (Los Angeles) is included, (c) only one major agricultural basin is sampled
(San Joaquin), (d) no boreal (e.g., tundra) environments are included, and (e) cryospheric
diversity is underrepresented. Future studies with greater data coverage may significantly
extend these results, particularly in the form of more extreme endmember spectra.

Second, while the generalized SVD model is effective at modeling a wide range of
terrestrial environments, it is intentionally exclusive of some materials. Such materials
not well-fit by the SVD model include natural materials like evaporites, cryosphere (snow
and ice), and shallow water substrates (e.g., reefs), as well as anthropogenic materials like
roofing materials, plastics, and paint. While we recommend that regional analyses include
both global and local EMs, it is likely that study areas that include significant areal coverage
of evaporite pans, cryosphere, and/or urban areas may especially benefit from local EM
selection and (potentially) mixture models with more than three endmembers.

Third, the results of this approach are inherently statistical, data-driven characteri-
zations. Physical meaning, particularly of differences in cluster spectra identified from
JC, does require user knowledge of reflectance spectroscopy. This approach is capable of
identifying statistically distinct spectral signatures—but the interpretation of the physical
meaning of those features is likely to benefit from models constructed for a different pur-
pose. In particular, synergy with models which feature a direct physical interpretation like
Tetracorder [67] is likely to be particularly interesting.

Fourth, this analysis uses the standard EMIT reflectance data product, which is derived
from measured radiance spectra using the Optimal Estimation (OE)-based ISOFIT retrieval
algorithm [68]. It is possible that significant differences might exist when compared to
reflectance derived using different (non-Bayesian) atmospheric corrections and/or joint
characterization of radiance. We suggest that further such intercomparisons represent
important and interesting avenues for future work.

5. Conclusions

We analyze a spectrally and geographically diverse mosaic of 20 scenes from NASA’s
novel Earth Mineral Dust Source Investigation (EMIT) mission. We evaluate the applicabil-
ity of the generalized Substrate, Vegetation, Dark (SVD) linear mixture model from previous
studies to these data and find the model to successfully fit the broad, high variance signa-
tures in EMIT reflectance (average RMSE of non-masked pixels 3.1%; 99% of pixels < 3.7%).
EMIT data are convolved to the spectral response functions of three common multispectral
sensors. We find the partition of variance of EMIT reflectance spectra to be comparable
to simulated Landsat and Sentinel reflectance spectra, but significant and consistent dif-
ferences are present in the partition of variance among sensors for the spectral mixture
residual. Similarly, the UMAP-estimated manifold structure for EMIT mixture residual is
topologically distinct (more clustered) from the more continuous manifold structure of the
multispectral mixture residuals. Joint characterization is found to effectively synergize the
physical interpretability of the SVD mixture model with the statistical strengths of UMAP
to effectively render additional potentially useful information. These results synthesize
recent developments in hyperspectral high dimensional characterization, highlight the
superb data quality from the novel EMIT mission, and demonstrate the quantitative and
qualitative added value of spaceborne imaging spectroscopy over traditional multispectral
satellite imaging.
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Appendix A

Table A1. EMIT scenes used in this study. Latitude and longitude refer to the northwest corner of the scene.

Title Short Name Latitude Longitude

EMIT_L2A_RFL_001_20220909T145335_2225209_006 Horqueta −41.53 −68.60

EMIT_L2A_RFL_001_20220903T163129_2224611_012 Bahia Union −39.24 −62.09

EMIT_L2A_RFL_001_20220903T101734_2224607_026 Eastern Cape −33.01 23.50

EMIT_L2A_RFL_001_20220830T065605_2224205_022 Tuwaiq 24.74 46.30

EMIT_L2A_RFL_001_20220828T174405_2224012_007 Los Angeles 34.99 −118.51

EMIT_L2A_RFL_001_20220817T140711_2222909_021 Murzuq 26.30 12.39

EMIT_L2A_RFL_001_20220815T042838_2222703_003 Caspian 40.12 54.22

EMIT_L2A_RFL_001_20220815T025827_2222702_016 Gurbantunggut 45.68 88.96

EMIT_L2A_RFL_001_20220814T223520_2222615_004 Black Rock 41.36 −119.54

EMIT_L2A_RFL_001_20220814T160517_2222611_005 Sierra Nevada 38.45 −119.69

EMIT_L2A_RFL_001_20220909T131308_2225208_011 Atacama −21.95 −69.18

EMIT_L2A_RFL_001_20220905T083937_2224806_033 Bushveld −24.46 26.61

EMIT_L2A_RFL_001_20220827T043253_2223903_002 Tian Shan 41.95 77.10

EMIT_L2A_RFL_001_20220814T160505_2222611_004 San Joaquin 37.97 −120.41

EMIT_L2A_RFL_001_20220901T034405_2224403_006 Hindu Kush 36.73 68.68

EMIT_L2A_RFL_001_20220909T114035_2225207_003 Mata Atlântica −22.75 −44.88

EMIT_L2A_RFL_001_20220909T070044_2225204_005 Okavango −18.83 22.51

EMIT_L2A_RFL_001_20220912T154138_2225510_002 Patagonia −49.58 −74.14

EMIT_L2A_RFL_001_20220816T070436_2222805_008 Gobi 41.72 104.40

EMIT_L2A_RFL_001_20220901T052019_2224404_013 Zagros 27.70 55.64
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