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Abstract: Detecting changes in urban areas presents many challenges, including complex features,
fast-changing rates, and human-induced interference. At present, most of the research on change
detection has focused on traditional binary change detection (BCD), which becomes increasingly
unsuitable for the diverse urban change detection tasks as cities grow. Previous change detection net-
works often rely on convolutional operations, which struggle to capture global contextual information
and underutilize category semantic information. In this paper, we propose SIGNet, a Siamese graph
convolutional network, to solve the above problems and improve the accuracy of urban multi-class
change detection (MCD) tasks. After maximizing the fusion of change differences at different scales
using joint pyramidal upsampling (JPU), SIGNet uses a graph convolution-based graph reasoning
(GR) method to construct static connections of urban features in space and a graph cross-attention
method to couple the dynamic connections of different types of features during the change process.
Experimental results show that SIGNet achieves state-of-the-art accuracy on different MCD datasets
when capturing contextual relationships between different regions and semantic correlations between
different categories. There are currently few pixel-level datasets in the MCD domain. We introduce
a new well-labeled dataset, CNAM-CD, which is a large MCD dataset containing 2508 pairs of
high-resolution images.

Keywords: urban change detection; siamese networks; graph convolution; category semantic
information; multi-class change detection dataset

1. Introduction

Cities are ecosystems with a particularly close relationship to human beings and have
a profound and concentrated impact on the geographical environment [1,2]. Changes
in land use and land cover (LULC) as a reflection of the urbanization process and their
accurate identification are essential for research in urban expansion, economic development,
sociology, and related fields [3,4].

Change detection (CD), a technique for obtaining change information through multi-
temporal satellite images acquired at different times, has been a hot topic of research for
various scholars [5,6]. Among the traditional CD methods, multivariate alteration detection
(MAD), change vector analysis (CVA), slow feature analysis (SFA), and a series of their derived
methods primarily rely on the spectral information in the images to detect changes [7–9].
However, pseudo-changes caused by weather conditions, seasons, and differences in satellite
sensors tend to reduce the accuracy of CD [10]. CD can also be performed based on texture,
edge, and other feature information of mages, but the need for geometric registration and the
tedious process limit the level of automation of CD [11]. The advancements in aerospace and
computer technologies have led to continuous improvement in the quality and types of remote
sensing data available for CD, and some studies have used machine learning algorithms such
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as expectation maximization (EM), extreme learning machine (ELM), and random forest (RF)
to automatically extract features from ground objects and perform CD [12–14]. As a branch of
machine learning, the successful applications of deep learning in image classification [15,16],
target detection [17,18], and semantic segmentation [19,20] provide new ideas for CD research
in remote sensing images, and numerous CD network models based on deep learning have
been presented [21]. Thanks to the powerful feature extraction ability of convolutional neural
networks (CNN), most of the current CD network models are based on CNN [22], and some
studies have also adopted deep supervision strategies, encoder-decoder architectures, and
various attention mechanisms to improve the accuracy of CD [23–25]. Recurrent neural
networks (RNN) are emerging in CD tasks due to their more adept handling of sequential
data and reflecting the dynamic changes of images over time [26]. Given the ability of
transformer networks to model long-distance contextual relationships, CD schemes based on
transformer technology are becoming popular [27,28]. The Siamese network is composed of
two structurally identical and weight-sharing sub-networks; it takes two samples as input
and outputs a representation of the high-dimensional space and has the natural advantage of
judging the difference of bi-temporal images [29].

The existing CD methods mostly focus on binary change detection (BCD), which only
detects the presence or absence of changes and hardly meets the needs of diverse tasks such
as urban management, environmental protection, disaster detection, LULC monitoring, etc.
In contrast to BCD, multi-class change detection (MCD) involves identifying two or more
categories of changes and requires detecting both the extent and type of change. MCD
provides richer change information than BCD; however, the complexity of the MCD task
also makes it more challenging than BCD [30]. The schematic diagrams of BCD and MCD
are shown in Figure 1, where BCD represents areas of change and no change with two
colors, and MCD uses different colors to represent changes in multiple categories, such as
from vegetation to bare land or from water to buildings, etc.
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Numerous CD methods are derived from semantic segmentation networks, and previ-
ous studies have proved that identifying contextual relationships helps in the understand-
ing of objects [31–33]. Using correlations between the same classes (intra-class contextual
information) and differences between different classes (inter-class contextual information)
can strengthen the feature representation [34]. Modeling and reasoning of region rela-
tions often depend on convolutional operations, and while a single convolutional layer
can capture local relations within the convolutional kernel, it falls short in capturing re-
lations between non-adjacent regions that are far apart from each other, which requires
the use of multiple convolutional layers, but this also reduces the efficiency of global
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inference [35–37]. In this regard, a series of optimization methods for CNN employ full
convolution, global convolution, atrous convolution, pyramid pooling, and other methods
to aggregate contextual information from different regions, thus improving the ability to
obtain global information [38–41]. OCRNet [42] allows contextual information to focus on
the object itself, expanding the dimensionality of contextual information representations.
Visual transformers (VT) segment images into non-overlapping patches and calculate the
similarity between pixels using self-attention mechanisms, solving the locality problem
inherent in convolutional operations [43]. However, the high computational complexity
imposes limitations on the application of VT [44]. Chen et al. [35] designed a sparse token
transformers structure that allows the computational complexity of the transformers to be
reduced while maintaining long-range token dependency. In addition, in the process of
reasoning multi-category visual relationships, there may be redundancy in the interaction
between patches within the same category, and there may be a lack of semantic consistency
between patches of different categories [45–47].

Graph neural networks (GNN) have attracted wide attention because of their ability
to model the interrelationship between different entities and have risen to prominence in
the understanding of remote sensing scenes. Yan et al. [48] used CNN to extract high-level
abstract features of each vertex in the graph and GNN to propagate and aggregate the
features to achieve regularized road surface extraction. He et al. [49] modeled multi-target
tracking in satellite video as a graph spatiotemporal inference process to mine potential
higher-order correlations between video frames. Following the proposal of the concept of
graph convolutional networks (GCN) [50], several subsequent methods began to introduce
graph propagation mechanisms to provide broader contextual information. Among them,
GCU [51] learns graph representations from 2D features, where nodes represent regions
in the image and edges represent the relationship between regions. Globe [36] performs
global relational reasoning by projecting information from the feature map to the nodes
in the graph. GINet [52] and SGR [53] incorporate external knowledge to assist in the
reasoning of visual relations. Graph reasoning (GR) is one of the most effective techniques
for establishing remote dependencies in given images. It exchanges and aggregates se-
mantic and spatial information through weighted links between nodes, enabling region
nodes with global semantic information and boundary nodes with local spatial features to
characterize different entity units in the image [36]. GR has been successfully applied to
computer vision tasks such as image classification [54], instance segmentation [55], and ob-
ject detection [56]. Recently, some related work in remote sensing has further expanded the
scope of GR applications. Su et al. [57] explored a more efficient contextual representation
in semantic segmentation by introducing a dynamic graph contextual inference module.
He et al. [58] parsed multiple classes of objects in remote sensing scenes as semantic entities
and learned the higher-order relations through transformer-induced graph networks to
achieve multimodal semantic segmentation.

Although research on MCD has appeared earlier, the datasets and algorithms for MCD
have not been well developed compared to BCD [30]. Some scholars have attempted to ex-
tract multi-class change information using convolutional neural networks (CNN), but their
application still has many limitations due to the lack of semantic information [59]. In recent
years, various MCD datasets with different applied objectives have been made available,
leading to the development of MCD algorithms and evaluation metrics. Daudt et al. [60]
constructed a large-scale semantic change detection dataset (HRSCD) and designed four
MCD training frameworks based on fully convolutional networks (FCNN). Yang et al. [61]
introduced the SECOND dataset and further proposed an asymmetric Siamese network.
Tian et al. [62] proposed a high-resolution remote sensing imagery urban MCD dataset (Hi-
UCD). Several MCD networks have used encoder-decoder architectures. Ding et al. [63]
proposed Bi-SRNet, which uses two additional inference blocks to infer semantic and
change information, respectively. SCDNet [64] adopts multi-scale atrous convolution in the
encoder and introduces attention mechanisms as well as deep supervision strategies in the
decoder to achieve multi-level feature representation. Many studies decompose MCD into
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two subtasks: semantic segmentation and BCD. Zheng et al. [65] proposed a deep multi-task
encoder-transformer-decoder architecture (ChangeMask), in which the semantic-aware
encoder is responsible for modeling contextual relationships, the transformer learns the
change information, and the decoder outputs the change results. Xia et al. [66] exploited
the joint features from multi-temporal images and the automatic soft fusion strategy to
improve the accuracy of MCD. In the MCD dataset, the area ratios of each change category
are unbalanced, and the change categories with small proportions are often difficult to accu-
rately extract. Zhu et al. [67] proposed the Siamese global learning (Siam-GL) framework,
which uses a global hierarchical mechanism and BCD masks to cope with the imbalance
in the category distribution. Xiang et al. [68] designed a separable loss function to resist
the effect of unbalanced labels on the MCD model. CD methods relying entirely on CNN
generally struggle to capture sufficient global information from images. To address this
issue, the latest research integrates global and local information through the combination
of CNN and transformers. Niu et al. [69] introduced the multi-content fusion module
to facilitate the extraction of change features in complex contexts by fusing foreground,
background, and global information. Cui et al. [70] explored the relationship between
semantic segmentation and BCD and further improved detection performance by utilizing
the correlation between the two subtasks.

The lack of datasets and methods has been supplemented by recent research, but there
are still some pressing issues that need to be addressed in the field of MCD. In terms of
the MCD datasets, firstly, large pixel-level MCD datasets are scarce due to the difficulty
of production, and most studies currently rely on the SECOND dataset and the HRSCD
dataset. Secondly, existing MCD datasets often suffer from severe label imbalance, which
not only increases the difficulty of the MCD task but also prevents MCD models from being
compared with rapidly updating BCD models using traditional evaluation metrics, and
existing CD research tends to focus on the BCD field, thereby reducing the persuasiveness
of the comparison effort. Finally, many CD datasets have relatively concentrated scenes and
periods, but images from different scenes and times enable adequate testing of the model’s
generalization performance. On the other hand, concerning the MCD approaches, the
utilization of semantic information from categories by previous MCD models is inadequate,
especially without fully exploiting the connections between category changes. Graph
neural network has shown great superiority in expressing relationships between different
entities, and using it to explore the connections between changes in categories is a novel
and well-founded attempt. In response to the above problems, the main work of this paper
is as follows:

(1) A Siamese graph convolutional network (SIGNet) is proposed for urban MCD tasks.
SIGNet combines the outputs of the Siamese network through joint pyramid upsam-
pling and uses graph convolution to establish reliable and robust spatial connections
to achieve pixel-level MCD results.

(2) In the process of spatial relationship reasoning, we utilize the cross-attention mecha-
nism to establish semantic associations with the category information in the dataset
and incorporate the semantic association information between categories into the
spatial context relationships, which provides new inspiration for MCD research.

(3) A large-scale pixel-level MCD dataset (CNAM-CD) is presented, which collects images
from 12 different urban scenes over the last decade. Compared with previously
released datasets, CNAM-CD has more refined labels and a more balanced distribution
of categories, thus providing the possibility to evaluate each category individually.

2. Methods
2.1. SIGNet: A Siamese Graph Convolutional Neural Network

Changes in urban features are primarily caused by human activities, and the regu-
larity of human activities leads to specific spatial and temporal connections between the
changes in features. Especially in the urban remote sensing scene reflecting the real world,
the remote sensing data manifold involves same-type change correlations in the spatial
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dimension (e.g., roads, vegetation, and water) and different-type change correlations in
the temporal dimension (e.g., water and vegetation, buildings and roads, and various
policy-induced changes) [58,71–73]. Theoretically, it is feasible to capture spatiotemporal
connections based on the contextual information from different change regions and the
semantic information from different change categories to improve the accuracy of CD. Ac-
cording to the above hypothesis and findings from previous studies, we proposed SIGNet
for the urban MCD task.

2.2. Model Architecture

The complete structure of SIGNet is presented in Figure 2. Firstly, the visual features of
the image are established, and the semantic features of the category are formed, respectively
(Figure 2a,b). Then, the graph projection projects visual features and category features into
graph representations, respectively, and the graph re-projection projects the visual graph
with category semantic information back to visual features (Figure 2c). Figure 2d illustrates
the interaction process of the visual graph with the semantic graph in the graph interaction
module. Finally, the change information can be obtained through a simple upsampling
(Figure 2e).
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2.2.1. Feature Extraction Module

This module serves to extract and merge visual features (Figure 3). At the beginning
of SIGNet, the pre-trained Siamese HRNet networks are used as the backbone feature
extractor. The multi-resolution parallel streaming architecture used in the HRNet preserves
rich semantic information through cross-resolution interaction [74]. While HRNet can
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effectively extract feature differences between two images, the Siamese network with
two inputs and two subnets demands more computation and training time compared to
conventional networks. To save computational resources, we use joint pyramid upsampling
(JPU) for feature fusion before the subsequent operation. The Siamese backbone network
can output feature maps at various scales. By using the feature maps of the first three
larger scales and further performing subtraction operations between two feature maps at
each scale to obtain the feature differences at different scales (Figure 3a). Then, the feature
differences at different scales are upsampled to the same size, and dilated convolutions
are performed using different convolution kernels (1, 2, 4, 8). Finally, after a concatenation
operation, the spatiotemporal correlations are integrated into a feature map (Figure 3b) [75].
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In order to fully utilize the contextual and category information, we use global graph
reasoning based on graph convolution to establish the contextual connections between
regions (visual representation) and the semantic correlations between categories (semantic
representation), as shown in Figure 4.
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2.2.2. Graph Projection

Graph projection aims to project a 2D feature map into the graph space represented
by nodes and edges. Given an image feature X ∈ RH×W×C, where H and W correspond
to the height and width of the feature map, and C denotes the number of channels. Our



Remote Sens. 2023, 15, 2464 7 of 25

objective is to create a visual graph representation V ∈ RN×D, where N is the total number
of nodes in the graph, and D is the dimension of each node. Here, the image features X are
transformed into V via Z ∈ RN×H×W , which is calculated as follows:

V = ZXW (1)

where W ∈ RC×D refers to trainable parameters, and Z is responsible for transforming the
image features into a node in the graph.

Meanwhile, the category feature vector L ∈ RCN×K is initialized, where CN denotes the
class numbers, and K is initialized to 300. A multi-layer perceptron can be used to transform
L into a category semantic feature S ∈ RCN×D, where D represents the dimensional number
of each node:

S = MLP(L) (2)

Next, the graph convolution operation is performed on the visual features of images
and the semantic representation of categories, respectively [50–52]. The formula of graph
convolution is as follows:

Ṽ = σ(I − Av)VWv (3)

where Av ∈ RN×N is the adjacency matrix of the nodes, which is updated through gradient
descent during training. I is the identity matrix, which mainly serves as a shortcut connec-
tion to alleviate the difficulties of optimization. Wv ∈ RD×D are learnable parameters. σ is
a nonlinear activation function, and mapping spatial features to graphical features through
σ can obtain contextual information between nodes.

Similar graph convolution is performed on the semantic feature representation:

S̃ = σ(I − As)SWs (4)

where As ∈ RCN×CN is a learnable adjacency matrix and denotes semantic correlation or
dependency between categories. Ws ∈ RD×D are learnable parameters. σ is a nonlinear
activation function.

A visual graph (VisG) is thus generated to encode the dependencies between different
visual regions, where each node represents a visual region and the edge represents the
connection between different regions. Concurrently, another semantic graph (SemG) is also
created to encode the correlations among categories.

2.2.3. Graph Interaction Module

The graph interaction module performs interaction between the visual graph and the
semantic graph. As a result of the interaction, each node on VisG obtains both contextual
and category semantic information.

For a node Ṽi ∈ RD in VisG and a node S̃j ∈ RD in SemG, the feature correlation
matrix Gs2v

i,j ∈ RN×CN between the two nodes is calculated as follows:

Gs2v
i,j =

exp(WvṼi·WsS̃j)

∑CN
cn=1 exp(WvṼi·WsS̃cn)

(5)

where i ∈ {1, · · ·, N}, j ∈ {1, · · ·, CN}, Wv ∈ RD/2×D and Ws ∈ RD/2×D are learnable ma-
trices.

Specifically, the study here is inspired by the self-attention mechanism [42,76], as
shown in Figure 5, which applies a one-dimensional convolutional layer on Ṽi and S̃j

to generate ki ∈ RD and qj ∈ RD, respectively; further, the dot product operation is
performed on ki and qj, and the result is normalized using a softmax layer to generate
association weight A. Another one-dimensional convolutional layer is applied to S̃j to
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generate Vj ∈ R2×D; then, Vj and A are weighted and summed, and the final output is the
set of values weighted by the association weights:

Attention(QKV) = ∑CN
j=1 so f tmax(

qjkT
i√
d
)vj (6)Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 26 
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Figure 5. Schematic of the cross-attention between category graph and visual graph.

When using Gs2v, it is possible to enhance the VisG representation with information
extracted from SemG:

Vs = Ṽ + βs2vGs2v (7)

where Ṽ is the visual graph representation, and βs2v ∈ RN is the learnable vector.

2.2.4. Graph Re-Projection

Finally, the graph space representation needs to be re-projected into the coordinate
space to augment the original features [51]. We reuse the projection matrix Z to re-project
the VisG generated by the graph interaction module into the pixel-level space to recover
the image features. Given a node Vs of VisG, the reverse projection can be expressed by the
following equation:

X = ZTVsWr (8)

where Wr ∈ RD×C is a trainable weight matrix that converts the node from Vs ∈ RD to
Vs ∈ RC, and ZT ∈ RN×H×W denotes the transposed matrix of Z.

2.2.5. Loss Function

Cross-entropy loss is common in multi-classification tasks, and its formula is as follows:

lossce = −y∗ + log(∑cn
i=1 exp(ŷi)) (9)

where cn is the class number, y∗ is the label vector, and ŷi is the prediction vector.
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Considering that a simple summation of the losses may be insufficient, we introduce
an auxiliary loss for directly supervising the learning process of the backbone network at
the shallow level of the model. The final loss of the SIGNet is the sum of the two losses:

loss = lossce + αlossaux (10)

where α is a learnable hyperparameter to be used to balance two losses.

3. Datasets and Experiment
3.1. CNAM-CD: A Multi-Class Change Detection Dataset

Pixel-level MCD datasets are scarce, and we propose a new MCD dataset, CNAM-CD,
to enable comparison with the BCD model using traditional evaluation metrics.

3.2. Study Area

China initiated the establishment of State-level New Area (SLNA) in the early 1990s,
and to date, 19 SLNAs have been established in 23 cities (Figure 6). As strategic develop-
ment areas in China, SLNAs have been supported with additional policies and resources
and are the most dynamic areas in cities, as well as areas with rapid and complex changes
in the geographical environment [77,78]. Among the 12 SLNAs, we selected the regions
with relatively balanced categories to construct CNAM-CD. The dataset contains 2503 pairs
of images in GeoTiff format with a pixel size of 512 × 512, and the capture time of the
images varied from 2013 to 2022 (Table 1).
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Table 1. Details of each region and the corresponding SLNA.

ID Source Jurisdiction City Time1
(Y/M/D)

Time2
(Y/M/D)

Area
(km2)

1 Xihai’an New Area Qingdao 2014/09/25 2019/09/18 14.6
2 Jiangbei New Area Nanjing 2013/07/13 2018/10/11 12.7
3 Xiangjiang New Area Changsha 2018/04/07 2021/05/09 12
4 Binghai New Area Tianjin 2015/09/13 2020/06/05 20.5
5 Dianzhong New Area Kunming 2018/03/03 2022/01/05 18.7

6 Zhoushan Archipelago
New Area Zhoushan 2018/03/13 2022/04/07 13

7 Harbin New Area Harbin 2015/06/13 2021/05/19 18
8 Tianfu New Area Chengdu &Meishan 2020/02/19 2021/04/29 16.6
9 Xixian New Area Xi’an &Xianyang 2014/08/25 2021/11/22 18.4
10 Xiong’an New Area Baoding 2015/08/22 2021/06/19 15.7
11 Changchun New Area Changchun 2016/07/03 2020/06/11 19.9
12 Ganjiang New Area Nanchang &Jiujiang 2017/12/26 2020/11/15 18.7

3.3. Data Sources and Categories

After comparing various satellite images, we chose Google Earth level 19 images.
On the one hand, SLNAs cover a wide range, and the accurate identification of feature
categories depends on the resolution of the images, and Google Earth’s level 19 product
provides very high-resolution images of 0.5 m per pixel. On the other hand, due to
the large and dispersed study areas and the need to balance the categories in the label,
Google Earth images are easier to acquire and process, thereby saving a lot of effort
in the study area selection and image pre-processing [79]. Nevertheless, it should be
additionally pointed out that users of images from Google Earth must comply with these
terms and conditions as outlined on the Google Earth website (https://www.google.com/
permissions/geoguidelines/, accessed on 7 March 2023). Due to differences in sensors,
camera angles, weather conditions, seasons, and scenes, considerable differences occurred
in the appearance (hue, saturation, contrast, brightness, etc.) of the bi-temporal images
from Google Earth, making the dataset challenging and placing higher demands on the
CD model. Figure 7 shows that the features in CNAM-CD are classified as bare land,
vegetation, water, impervious surfaces (buildings, roads, parking lots, squares, etc.), and
others (clouds, hard shadows, clutter, etc.), which have been widely used in previous
urban-related research [80].
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3.4. SECOND Dataset

The SECOND comprises 4662 pairs of high-resolution images, of which only 2968 pairs
are publicly available. These images were collected from multiple platforms and sensors in
Hangzhou, Chengdu, and Shanghai, and each image is 512× 512 pixels in size. The CNAM-
CD dataset focuses on growth changes, while the SECOND dataset focuses on growth
and extinction changes. Specifically, the change features in SECOND are divided into six
categories: non-vegetated surface, low vegetation, trees, water, buildings, and playgrounds,
among which non-vegetated surface mainly represents bare land and impervious surface
(Figure 8).
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3.5. Categorical Distribution

Figure 9 shows the difference in category distribution between the two datasets.
Overall, the proportion of the change category in CNAM-CD is 6.5% higher than that
in SECOND (Figure 9a,b). The distribution of change categories in CNAM-CD is more
balanced than that of the SECOND dataset. In the SECOND dataset, N.v.g. Surface accounts
for the largest proportion of the area of change at 43%, while Playground accounts for the
smallest proportion at 0.38%, a difference of 113 times. In the CNAM-CD dataset, bare land
has the largest proportion, accounting for 34.12% of the area of change, while water bodies
have the smallest proportion, accounting for 7.83%, a difference of 4.3 times (Figure 9a,b). It
should also be noted that since the existing method for identifying water bodies is relatively
mature, areas with too many water bodies were discarded in the selection of data sources,
and each SLNA selected contains all the categories to make the dataset more balanced
(Figure 9c). The difference in category distribution between the two datasets serves as an
important basis for choosing different evaluation metrics in subsequent work.
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3.6. Experiment
3.6.1. Evaluation Metrics

The evaluation metrics commonly used in CD tasks are inherited from semantic
segmentation and include pixel accuracy (PA), precision (PR), recall (RE), and intersection
over union (IoU):

PA = (TP + TN)/(TP + TN + FP + FN) (11)

PR = (TP)/(TP + FP) (12)

RE = (TP)/(TP + FN) (13)

IoU = (TP)/(TP + FP + FN) (14)

where TP denotes the count of positive examples accurately identified as positive. FN
represents the count of positive examples inaccurately identified as negative. FP denotes
the count of negative examples correctly identified as negative. TN represents the count of
negative examples inaccurately identified as positive.

We also introduce the Kappa coefficient and F1-Score, which are defined as:

Kappa = (Po− Pe)/(1− Pe) (15)

F1− Score = (PR× RE× 2)/(PR + RE) (16)

where Po is the overall accuracy and indicates the probability that each pixel agrees with
the label. Pe indicates the probability that the classification result agrees with the label due
to chance. The value of the Kappa coefficient is 1 when the result is in perfect agreement
with the label.
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It is worth noting that in the overall evaluation of the model, mean intersection over
union (MIoU), mean precision (MP), mean recall (MR) and mean F1-score (MF) for multiple
categories in the CNAM-CD dataset were adopted.

Due to the significant differences in the proportion of each category in the SECOND
dataset, it is unreasonable to use traditional evaluation metrics to evaluate model perfor-
mance. For example, since each pixel is equivalent in the calculation of PA, the dominant
unchanged pixels (80%) will result in an unreasonably high score. Similarly, in the area of
change, the N.v.g. Surface category, which accounts for 42.9% of the total pixels, clearly
affected the evaluation results significantly, while the Playground category, which accounts
for only 0.38% of the total pixels, can hardly affect the evaluation results.

In order to alleviate the effect of label imbalance, many MCD studies used MIoU and
separated kappa coefficient (Sek) to evaluate different models:

MIoU = 0.5× (IoU 1+IoU2) (17)

where IoU1 and IoU2 denote the IoU of the change and no-change parts, respectively.
Given a multi-class confusion matrix Qij =

(
qij, 1 ≤ i ≤ C, 1 ≤ j ≤ C

)
, where C repre-

sents the number of categories and q11 is set to 0 to reduce the number of true positives in
the no-change category, and Sek is defined as:

Sek =e(IoU2−1) × (ρ− η)/(1− η) (18)

ρ =
C

∑
i=1

qii/
C

∑
i=1

C

∑
j=1

qij (19)

η =
C

∑
i=1

(
qj+ × q+j

)
/

(
C

∑
i=1

C

∑
j=1

qij

)2

(20)

where qj+ denotes the row sum of Q, and q+j denotes the column sum of Q.
The calculation of the comprehensive score based on MIoU and Sek is as follows:

Score = 0.7× Sek + 0.3×MIoU (21)

3.6.2. Data Enhancement

During training, data augmentation was performed by mixing two images and their
corresponding label as a new sample, randomly selecting bands in the image, random
vertical and horizontal flips with 50% probability, and randomly swapping the order of
the images.

3.6.3. Training Details

Our work is based on PaddlePaddle, which is an open-source deep learning platform
that provides free GPU resources for a limited time and enables easy deployment and
application of deep learning models [81]. The hardware device for training is the NVIDIA
Tesla V100 GPU. The Adam optimizer is used. The initial learning rate is set to 0.0002 and
reduced to 90% of the original learning rate every 1000 iterations. The epoch of training
is 150 times. To save computing resources and prevent overfitting, we use early stopping
to end the training in advance during training. Training ends when the model evaluation
does not improve for 10 consecutive epochs, and the metric corresponding to the maximum
MIoU is selected for comparison.

4. Results
4.1. Model Comparison
4.1.1. CNAM-CD Dataset

Existing CD work mainly focuses on BCD, while previous MCD work tends to select
MCD models for comparison. Meanwhile, most BCD models inherit from semantic seg-
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mentation models, and severely unbalanced labels may also limit the effectiveness of BCD
models. The CNAM-CD provides the opportunity to compare with excellent BCD models
using metrics commonly applied in semantic segmentation, which enhances the objectivity
of the work. Therefore, we selected recently published BCD models and slightly adapted
their outputs for comparison with SIGNet.

FC-Siam-Conc and FC-Siam-Diff are fully convolutional Siamese neural networks
with a skip connection structure [82].

SNUNet-CD [24] is a Siamese network with dense connections.
BIT [28] introduces the transformer as the encoder and the decoder to enhance

change features.
DSAMNet [83] uses the metric module to learn change maps by comparing embedded

feature vectors of bi-temporal images.
CDNet [84] constructs a deconvolutional architecture to detect changes in street scenes.
DSIFN [25] consists of two networks that perform feature extraction and difference

discrimination, respectively.
EncNet-CD is an improved EncNet specifically designed for the CD task, with HRNet-

W18 as its backbone network [33].
Table 2 lists the accuracy of different CD models, and the SIGNet model consistently

outperforms other models in most metrics. Compared to the SIGNet18 model, the SIGNet30
model, which uses HRNet-W30 as the backbone, shows a slight improvement in accuracy.
Further experiments were conducted using HRNet-W48 as the backbone, but the accuracy
of the model was hardly improved. Experiments have shown that continuously expanding
the output structure of the backbone has limited contribution to the model but increases the
number of parameters of the model. CDNet was proposed earlier and initially for CD of
street scenes, and the mere deconvolution architecture is not suitable for larger-scale remote
sensing scenes. As a result, CDNet has the lowest scores on most metrics; for example, the
MIoU scores for the no-change and change categories are 7.52% and 15.94% lower than our
proposed SIGNet18, respectively. DSIFN uses the VGGNet to extract features and the deeply
supervised network to determine the differences, but the lack of grasp for global semantic
information limits its performance, with MIoU only 3.82% and 0.39% higher than CDNet
for the no-change and change categories, respectively. SNUNet-CD refines the features at
different semantic levels through dense connections and channel attention modules, with
slightly better results than the FC-Siam series networks using skip connections. DSAMNet
integrates different attention modules and adopts a deep supervision strategy, outperforming
other CNN-based models. ENCNet-CD performs global contextual reasoning and highlights
the category information related to the scenes, and the introduction of this model can prove
the validity of a model with a similar design philosophy to SIGNet, thus showcasing the
benefits of incorporating global contextual information and category information into the
model design. Its MIoU in no-change and change categories is 1.58% and 5.19% lower than
SIGNet18, respectively. The BIT based on the transformer architecture also performed well,
scoring close to ENCNet-CD on all metrics.
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Table 2. The general accuracy achieved by the different models in the CNAM-CD dataset.

Model Backbone Type MIoU (%) MR (%) MP (%) MF (%) PA (%) Kappa

Fc-Siam-Diff Unet All 59.51 69.69 74.83 71.91 85.55 0.70
No-change 84.96 94.90 89.02 91.87
Change 53.15 63.38 71.29 66.92

Fc-Siam-Conv Unet All 60.62 74.34 72.59 73.11 85.09 0.75
No-change 84.78 92.03 91.50 91.77
Change 54.58 69.92 67.86 68.45

EncNet-CD HRNet-W18 All 65.86 78.30 76.65 77.38 87.83 0.77
No-change 87.40 93.97 92.59 93.28
Change 60.48 74.38 72.67 73.41

BIT ResNet18 All 66.46 77.26 78.72 77.80 87.69 0.76
No-change 86.56 93.45 92.16 92.80
Change 61.44 75.04 73.53 74.05

DSIFN VGGNet16 All 57.15 70.77 71.73 70.70 84.67 0.69
No-change 85.28 93.58 90.57 92.05
Change 50.12 65.07 67.02 65.36

DSAMNet ResNet18 All 63.41 72.99 78.67 75.05 87.90 0.72
No-change 85.85 94.13 90.70 92.39
Change 57.80 67.70 75.66 70.71

SNUNet-CD Unet++ All 62.06 78.18 71.87 74.26 84.77 0.71
No-change 83.80 89.84 92.57 91.19
Change 56.63 75.27 66.69 70.03

CDNet De-Conv All 56.08 70.49 69.53 69.08 82.52 0.65
No-change 81.46 90.09 89.48 89.78
Change 49.73 65.59 64.54 63.91

SIGNet18 HRNet-W18 All 69.45 79.99 81.12 80.31 89.51 0.80
No-change 88.98 95.79 92.55 94.14
Change 65.67 76.04 78.26 76.85

SIGNet30 HRNet-W30 All 70.33 81.40 80.90 81.07 89.63 0.80
No-change 88.93 95.37 92.99 94.17
Change 64.58 77.90 77.87 77.79

Backbone refers to the backbone network or architecture used by the model, and the All refers to all categories in
the dataset. The best results are marked in bold.

Figure 10 depicts the accuracy obtained by SIGNet and other models in different cate-
gories, where the solid lines are SIGNet18 and SIGNet30. The SIGNet family of networks
achieves the highest accuracy in detecting change, no change, impervious surface, bare
land, and vegetation, and the accuracy of the two models is extremely close. Moreover, the
SIGNet model is more advantageous in detecting the change category than the no-change
category (Figure 10a,b). The most challenging CD task is the vegetation category, where
the detection accuracy of various models is relatively low compared to the other categories
(Figure 10e), mainly due to the highly variable appearance of vegetation and the absence
of vital spectral information in the images, which is described in the discussion. The
distribution of water bodies is generally curved and long with spatial correlation, and
the BIT model achieves the best results in detecting changes in water bodies (Figure 10f),
which highlights the advantages of the transformer in capturing long-range contextual
information.
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4.1.2. SECOND Dataset

To validate the effectiveness of SIGNet models on MCD datasets with severe label imbal-
ance, some BCDs and MCD models published in previous successful works were selected to
conduct comparative experiments with our proposed model on the SECOND dataset.

The HRSCD series has three networks with encoder-decoder structures based on
different learning strategies [60]. HRSCD-str2 treats each change category as a separate
label for semantic segmentation. HRSCD-str3 trains two independent networks, where the
first network performs BCD, and the second network determines the category of change.
HRSCD-str4 integrates two FCNN networks into one multi-task network that performs
both BCD and semantic segmentation simultaneously.

HBSCD [64] is a network with HRNet40 as the backbone.
ANS-ATL [61] explores the logical relationship among semantic categories through

adaptive thresholds.
SCDNet [64] is an MCD network that uses a parallel UNet structure for multi-level

feature fusion.
Table 3 shows the accuracy of different models on the SECOND dataset. Overall,

except for the acceptable results of the BIT model, the performance of the BCD model was
inferior to that of the MCD model. It can be seen that SIGNet18 has a higher MIoU and Score
than the second-ranked SCDNet model by 1.66% and 1.63%, respectively, and Sek is 1.18%
higher than the second-ranked ANS-ATL model. The HRNet backbone network performs
respectably on both SECOND and CNAM-CD datasets, demonstrating its special advantage
as a feature extractor for MCD tasks. In addition, among the HRSCD series networks, the
one that adopts the strategy of simultaneously training semantic segmentation and BCD
tasks is more advanced.
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Table 3. The accuracy achieved by the different models in the SECOND dataset.

Model Backbone MIoU (%) Sek (%) Score (%)

FC-Siam-conv UNet 70.10 12.89 30.05
FC-Siam-diff UNet 70.22 12.51 29.82
DSIFN VGGNet 69.07 5.90 24.85
BIT ResNet18 72.43 15.62 32.66
HRSCD-str.2 [61] FCNN 59.70 5.70 21.90
HRSCD-str.3 [61] FCNN 62.10 8.40 24.51
HRSCD-str.4 [61] FCNN 67.20 13.00 29.26
ANS-ATL [61] ANS 70.20 17.30 33.17
HBSCD HRNet-W40 70.40 15.46 31.94
SCDNet UNet 72.75 16.86 33.63
SIGNet18 HRNet-W18 74.41 18.48 35.26
SIGNet30 HRNet-W30 74.64 18.85 35.59

Backbone refers to the backbone network or architecture used by the model. The best results are marked in bold.

4.2. Model Inference

We performed inference and prediction for some of the images on the CNAM-CD
test set using the SIGNet model and compared the results with the BIT, SNUNet-CD, and
ENCNet-CD models. Visual inspection of Figure 11 indicates that the SIGNet’s inference
results are closer to the labels, with lower error rates and smoother feature boundaries
than other models. SNUNet-CD has a superficial understanding of the objects in remote
sensing images, as evidenced by many originally smooth features being fragmented into
pixel clusters. In contrast, ENCNet-CD and BIT have a deeper understanding of the
objects, resulting in more natural boundaries of the land features inferred, but there are still
inevitably many errors.
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Benefiting from a sufficient number of labels with change information, coupled with
the higher robustness of the SIGNet model, as shown in Figure 12, SIGNet yields the
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correct prediction for the few negative samples that are mislabeled (red circle) and for the
unlabeled change features (blue circles).
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The SECOND dataset consists of two temporal sequences of changes, and we com-
pared SIGNet with some models by inference. As shown in Figure 13, the first six rows
represent the increasing features over time, and the last six rows represent the disappearing
features over time. It can be observed that in almost every inference map, the SIGNet
model produces better results than other models, as reflected in its inference results be-
ing the closest to the ground truth and having fewer erroneous pixels. Additionally, the
SIGNet model demonstrated higher accuracy in recognizing small-scale categories such
as playgrounds and water bodies, highlighting its advantages in identifying small-scale
features. Compared with SIGNet, other models mark some pseudo-changes caused by
color changes as areas of change, especially changes in playgrounds and vegetation, which
are poorly identified by other models.

4.3. Ablation Experiment

Table 4 shows the role of the various methods used in the SIGNet model. The SIGNet is
the complete model. SIGNet-GCN eliminates the graph convolution module, and SIGNet-CSI
abandons the category semantic interaction module. SIGNet-AL does not use auxiliary loss.
Backbone is the Siamese backbone network. Comparing the complete SIGNet model, the
accuracy of the model is reduced to some extent after the removal of the GCN or CSI module,
and the accuracy of the backbone network without both GCN and CSI significantly decreases.

Table 4. Changes in metrics after performing ablation tests for SIGNet.

Model GCN CSI AL MIoU (%) PA (%) MP (%) MF (%) MR (%) KAPPA

SIGNet
√ √ √

69.45 89.51 81.12 80.31 79.99 0.80
SIGNet-GCN

√ √
68.30 89.37 81.00 79.23 78.53 0.80

SIGNet-CSI
√ √

68.06 89.12 81.16 79.33 77.88 0.79
SIGNet-AL

√ √
67.49 88.62 78.43 78.77 79.12 0.78

Backbone 64.26 87.24 76.76 75.64 75.23 0.75
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5. Discussion
5.1. Attention Visualization of the Model in Different Stages

SIGNet’s backbone network outputs four different scales of feature differences: scale 1,
scale 2, scale 3, and scale 4, where scale 1 is 18 × 128 × 128 (CHW), scale 2 is
36 × 64 × 64 (CHW), scale 3 is 72 × 32 × 32 (CHW), and scale 4 is 144 × 16 × 16 (CHW).
We explore the distribution of attention weights of the model to the images by visualizing
the feature maps at different stages of SIGNet (Figure 14). In the Siamese backbone network
stage, scale 1 mainly contains a large amount of texture information, and some semantic
information is obtained in scales 2 and 3, but partial details are lost. Scales 1, 2, and 3 are
fused by the JPU model (JPU column), which can fuse feature differences across different
scales and suppress changes caused solely by the color that may mislead CD. After graph
convolution and category semantic interaction (terminal column), the model concentrates
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on the significant change information. The final output of SIGNet is the result learned from
the auxiliary column together with the terminal column.
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Figure 14. Attention maps for each stage of the SIGNet. Scale 1–4 columns are the four features output
by the Siamese backbone network. The JPU column is the feature obtained after the fusion of scales 1, 2,
and 3. The auxiliary column is an additional attention map used to supervise the backbone network.
The terminal column is the attention map after graph convolution and category semantic interaction.

As depicted in Figure 14, in the label column, white indicates the unchanged areas,
while other colors indicate the changed areas. By comparing the terminal column and
the label column, it can be observed that the SIGNet model has attention self-selectivity
(ASS). For example, in the first three rows, SIGNet tends to focus on changed areas, while
in the last three rows, it tends to focus on unchanged areas. This adjustment of attention
based on the characteristics of the objects also increases the model’s recognition ability
and robustness.

5.2. The Impact of the Characteristics of Different Categories on the Model

Apart from the proportion of categories, the characteristics of each category also
impact the model’s evaluation of that category. For example, affected by terrain and satellite
attitude, there are geometric distortions and displacements of buildings in high-resolution
satellite images (Figure 15a) and the presence of buildings under construction in rapidly
urbanizing areas (Figure 15b). These factors have an impact on the CD of buildings [85].
The CNAM-CD dataset includes vegetation in different seasons, growth phases, densities,
and types (Figure 15c–f). Moreover, the dataset is derived from Google Earth, which
lacks infrared and other channels that are more sensitive to vegetation, making the task
of detecting changes in vegetation with complex representations in the images difficult,
and the accuracy for vegetation detection is lower than in other categories (Figure 10).
Furthermore, to approximate real city scenes, we did not deliberately select the regions
with relatively simple categories, and the CNAM-CD dataset includes other complex
features such as clouds (Figure 15g), hard shadows (Figure 15h), clutter (Figure 15i,j), etc.
Due to the numerous categories and the difficulty of visual interpretation, we categorize
them as either change or no change and detect them as a whole.
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struction of buildings. (c) Vegetation in different seasons. (d) Vegetation in different growth phases.
(e) Vegetation in different types. (f) Vegetation in different densities. (g) Clouds. (h) Hard shadows.
(i,j) Clutter.

6. Conclusions

This paper is the first to apply graph convolution to MCD work, and combined
with the Siamese network, a model SIGNet for MCD is proposed. Through various ex-
periments, it has been proven that the global graph reasoning method based on graph
convolution can establish effective spatial associations to obtain rich contextual change
information. Moreover, we use the cross-attention mechanism to map the category semantic
information to the scope of change, improving the semantic consistency of bi-temporal
images, and together with reasonable data augmentation methods, satisfactory CD results
are achieved on MCD datasets with different category distributions. It is demonstrated
that the interaction of category semantic information is helpful for the task of MCD in
cities and provides new ideas for CD research in complex geographical environments.
Finally, we expect that the CNAM-CD dataset presents an opportunity for researchers
to pursue the development of data-hungry MCD algorithms in regions of high spatial
heterogeneity. In future work, we intend to continuously update this dataset to create a
larger dual-task-oriented MCD benchmark dataset that includes more categories and all of
China’s new state-level areas. The first version of the CNAM-CD dataset can be found at
https://github.com/Silvestezhou/CNAM-CD, accessed on 3 May 2023.
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