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Abstract: The vegetation–temperature relationship is crucial in understanding land–atmosphere
interactions on the Tibetan Plateau. Although many studies have investigated the connections
between vegetation and climate variables in this region using remote sensing technology, there
remain notable gaps in our understanding of vegetation–temperature interactions over different
timescales. Here, we combined site-level air temperature observations, information from the global
inventory modeling and mapping studies (GIMMS) dataset, and moderate-resolution imaging
spectroradiometer (MODIS) products to analyze the spatial and temporal patterns of air temperature,
vegetation, and land surface temperature (LST) on the Tibetan Plateau at annual and seasonal scales.
We achieved these spatiotemporal patterns by using Sen’s slope, sequential Mann–Kendall tests, and
partial correlation analysis. The timescale differences of vegetation-induced LST were subsequently
discussed. Our results demonstrate that a breakpoint of air temperature change occurred on the
Tibetan Plateau during 1994–1998, dividing the study period (1982–2013) into two phases. A more
significant greening response of NDVI occurred in the spring and autumn with earlier breakpoints
and a more sensitive NDVI response occurred in recent warming phase. Both MODIS and GIMMS
data showed a common increase in the normalized difference vegetation index (NDVI) on the Tibetan
Plateau for all timescales, while the former had a larger greening area since 2000. The most prominent
trends in NDVI and LST were identified in spring and autumn, respectively, and the largest areas
of significant variation in NDVI and LST mostly occurred in winter and autumn, respectively. The
partial correlation analysis revealed a significant negative impact of NDVI on LST during the annual
scale and autumn, and it had a significant positive impact during spring. Our findings improve the
general understanding of vegetation–climate relationships at annual and seasonal scales.

Keywords: vegetation change; near-surface air temperature; annual and seasonal variations;
land–atmosphere interactions; Tibetan Plateau

1. Introduction

Vegetation is an important part of the global terrestrial ecosystem and can significantly
impact global physical energy cycles, carbon balance regulations, and regional climate [1,2].
Global vegetation cover generally increases with the warming of the Earth’s climate [3],
and the surface albedo changes caused by vegetation change affect both the net amount
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of solar radiation absorbed by the earth surface and the evapotranspiration rate. Conse-
quently, vegetation-related evapotranspiration and albedo affect vegetation–temperature
relationships [4,5]. The Tibetan Plateau (TP) is the highest plateau on earth and possesses
a complex topography, which generates a unique relationship between vegetation and
temperature that is extremely sensitive to global climate change [6]. Investigating the
responses and feedbacks of vegetation to the TP’s temperature is crucial for understanding
land–atmosphere interactions.

Numerous researchers have studied the vegetation–temperature relationships on the
TP through different approaches, including field observations [7,8], numerical simulations,
and remote sensing observations [9,10]. However, given the challenging topography and
extreme climate of the TP [11], fieldwork and in situ analysis can be logistically difficult
to perform. It is not easy to consistently assess vegetation–temperature relationships at
different timescales. As such, many studies have employed numerical models to simulate
and analyze their relationships [12], and significant research progress has been made using
these techniques. However, since models often have considerable uncertainties and coarse
spatial resolution, it is unfeasible to numerically simulate the vegetation–temperature
relationships at different timescales for long periods [13]. Satellite Earth observation is
an effective instrument for monitoring bio-geophysical variables of vegetation at large
scales [14]. The vegetation index and albedo derived from satellite observations can capture
vegetation greening and browning and surface albedo change. These changes alter surface
bio-geophysical properties and near-surface aerodynamics, leading to an effect on local
temperature through bio-geophysical feedbacks [15–17]. As satellite remote sensing tech-
nology has developed, the products of widespread vegetation–temperature interactions
that accumulate on the TP can be measured remotely, allowing a quantitative investigation
of vegetation coverage at large scales and over extended periods [6,18]. Consequently, re-
mote sensing observations are becoming a valuable instrument for investigating vegetation
and climate interactions.

Using the available remote sensing data, previous papers report the trends and the
spatial variability of vegetation, surface albedo, and land surface temperature (LST) on the
TP at annual scales. The satellite-derived normalized difference vegetation index (NDVI)
indicates the status of plant growth. This indicator can be quantified by the difference
between the near-infrared (representing vegetation reflection) and red bands (representing
vegetation absorption) [19]. Global inventory modeling and mapping studies (GIMMS)
data suggest an increasing NDVI trend on the TP during 1985–1999, which is likely due to
the shift from an arid to a warm-humid climate and the reduction in human activities in
this region [20]. Similar studies have found an increasing NDVI trend during the latter two
decades of the 20th century [21], which has been confirmed by researchers since the year
2000. Statistical analysis of SPOT (Satellite Pour l’ Observation de la Terre) data collected
during 1999–2014 shows an overall increasing trend in NDVI on the TP coupled with a
moderate increase in air temperature [6]. Studies based on MODIS data collected over
the TP during 2001–2019 also support this, as they show an increasing trend in NDVI
and LST but a decreasing trend in albedo during that period. Increased forest coverage
and decreased snow coverage are considered to be the dominant factors that drove these
changes [22]. Further studies have shown that increased snowfall induced an increase
in albedo on the southwestern TP due to anomalous water vapor transport [23]. Indeed,
the LST warmed at a significantly faster rate than the air temperature, with the annual
temperature increase during 1987–2008 in the former showing 0.78 ± 0.0631 K/decade,
but in the latter, it showed 0.275 ± 0.0216 K/decade [24]. LST on the TP is influenced by
various factors such as elevation, surface radiation, subsurface temperature, and surface
properties [25–27]. Nevertheless, vegetation and albedo are becoming the hot spots for
LST warming studies. This can be attributed to the significant linear relationship between
vegetation and LST [28], the direct contribution of surface albedo to LST [25], and satellite
advantages [29]. Despite different spatial patterns being inferred from different datasets,
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they show consistent support for the overall observed trends and patterns of vegetation
and temperature on the TP.

Most of the studies mentioned above focused on the annual scale, which leaves two
important issues unresolved: (1) no systematic analysis has been performed to analyze the
differences in both the warming phases (well known as a period of increasing temperature)
and the vegetation response to temperature across different timescales over the TP; and
(2) the spatial–temporal pattern of vegetation and its effects on LST across the TP remains
unclear. We addressed these problems by combining site-level observations with GIMMS
data to (1) analyze spatial and temporal patterns at the annual and seasonal scales of air
temperature and NDVI during different warming phases in 1982–2013 and (2) examine
the annual and seasonal scales of NDVI and LST changes during 2000–2021 using MODIS
data products and thus discuss the possible impacts of vegetation on LST at the annual and
seasonal scales. Our results have revealed systematic annual and seasonal characteristics
of air temperature, LST, and vegetation changes on the TP, and this can be used to form a
better understanding of land–atmosphere interaction patterns across the TP.

2. Study Area and Datasets
2.1. Study Area

With an area of 257 × 104 km2 and an average altitude above 4000 m, the TP is the
largest and highest plateau in the world, and it exhibits a complex topography and diverse
underlying surface conditions (Figure 1). The climate and ecological environment on the
TP have both changed dramatically since the middle of the 20th century due to intensified
human activity [30]. Significant warm and wet trends on the TP have occurred since the
1960s as documented by temperature and precipitation data [31]. Due to its distinctive geo-
graphic location and susceptibility to climate change, the TP serves as a natural laboratory
for investigating the intricate relationship between vegetation and temperature.
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Figure 1. Location of meteorological stations on the Tibetan Plateau.

2.2. Data Sources and Processing

The data used in this study were obtained from meteorological station observations
(Figure 1) (near-surface air temperature) and remote sensing (Table 1). Remote sensing data
comprised NDVI products derived from GIMMS and MODIS, albedo, land cover type, and
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LST products derived from MODIS. In this study, winter, spring, summer, and autumn
are defined as extending from December to the following February (DJF), March to May
(MAM), June to August (JJA), and September to November (SON), respectively.

Table 1. Data sources used in this study.

Parameter Dataset Spatial
Resolution

Temporal
Resolution Download Links

GIMMS NDVI Version 5 8 km 15 days

https://climatedataguide.ucar.edu/climate-
data/ndvi-normalized-difference-vegetation-

index-3rd-generation-nasagfsc-gimms,
accessed on 3 October 2022

Normalized difference
vegetation index (NDVI) MOD13A2 1000 m 16 days https://lpdaac.usgs.gov/products/mod1

3a2v061, accessed on 3 October 2022
Land surface

temperature (LST) MOD11A1 1000 m 8 days https://lpdaac.usgs.gov/products/mod1
1a2v061, accessed on 3 October 2022

Albedo MCD43A3 500 m daily https://lpdaac.usgs.gov/products/mcd4
3a3v061, accessed on 3 October 2022

Land Cover Type MCD12Q1 500 m yearly https://lpdaac.usgs.gov/products/mcd1
2q1v061, accessed on 3 October 2022

Air temperature / / monthly https://www.ncdc.noaa.gov/cdo-web,
accessed on 3 October 2022

2.2.1. Meteorological Station Data

Air temperature data were collected from the National Climate Data Center, which is
affiliated with the National Oceanic and Atmosphere Administration (NOAA) (Figure 1).
These data were used to produce the average air temperature at different timescales
from 1982 to 2013. First, we acquired 44 high-quality meteorological stations considering
the geographical scope of the TP and the requirement of high-density temperature data.
Second, we collected the daily mean temperature data for each station during 1982–2013
and replaced the missing values for a few of stations using the average air temperature of
the neighboring days [32,33]. Finally, the mean temperature of annual and seasonal scales
was calculated and used to detect trends and breakpoints in different warming phases of
the TP.

2.2.2. Remote Sensing Products

The remote sensing data used in this study included the GIMMS and MODIS datasets.
The GIMMS NDVI product (1982–2013) was derived from the AVHRR sensor of the Na-
tional Oceanic and Atmospheric Administration (http://www.ncdc.noaa.gov/cdo-web,
accessed on 3 October 2022), and it has a temporal resolution of 15 days and a spatial
resolution of 8 km. The initial version of this dataset is not ideal for capturing vegetation
dynamics, and therefore, the latest version mitigates this problem by correcting sensors,
aerosols, and view geometry [34–36]. A maximum value composite procedure was used to
remove some sources of interference, such as clouds, the atmosphere, and variation in solar
altitude angle; after that, annual and seasonal NDVI values were obtained [37].

Compared to the AVHRR instrument, the updated MODIS instrument has a better
sensitivity to chlorophyll with higher spatial resolution. We employed MODIS datasets
of 2000–2021 including NDVI (MOD13A2), LST (MOD11A1), albedo (MCD43A3), and
land cover types (MCD12Q1). Specifically, MOD13A2 and MOD11A1 have a 1 km spa-
tial resolution and a 16-day temporal resolution. MOD11A1 and MCD43A3 were used
in this study to better understand the relationships between LST and vegetation change.
MCD12Q1 (version 6.1), providing annual land cover types (2001–2021), was also ob-
tained to analyze the effect of land cover change on NDVI change trends. Additionally,
all of the MODIS datasets were aggregated to 1 km to ensure the consistent spatial
resolution of these datasets. We adopted different strategies in processing the MODIS-
derived surface parameters by referring to previous studies. For each timescale, we
processed the NDVI data using the maximum value composite method [37], and we
processed the LST and albedo data using the mean value composite method [29,38].

https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms
https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms
https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms
https://lpdaac.usgs.gov/products/mod13a2v061
https://lpdaac.usgs.gov/products/mod13a2v061
https://lpdaac.usgs.gov/products/mod11a2v061
https://lpdaac.usgs.gov/products/mod11a2v061
https://lpdaac.usgs.gov/products/mcd43a3v061
https://lpdaac.usgs.gov/products/mcd43a3v061
https://lpdaac.usgs.gov/products/mcd12q1v061
https://lpdaac.usgs.gov/products/mcd12q1v061
https://www.ncdc.noaa.gov/cdo-web
http://www.ncdc.noaa.gov/cdo-web
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2.3. Methods

Our analyses were performed in three major steps. Firstly, to analyze the NDVI re-
sponses at different warming phases, we performed breakpoint detection of air temperature
data. Considering previous artificial temporal segmentation on NDVI variation [17,39–41],
the Sequential Mann–Kendall (SQMK) [32–34,42] was employed to estimate the breakpoints
of temperature change, and it was used as a proxy for classifying the different phases of
NDVI responses. Please see the Supporting Information S1 for the detailed introduction to
the SQMK test.

Secondly, we analyzed trends and performed a significance analysis [43,44] on key
surface parameters. Sen’s slope estimator, a nonparametric test [45], was employed to
determine trends in NDVI, LST, and albedo for different warming phases of all timescales.
Please see the Supporting Information S2 for the detailed introduction to the Sen’s slope.

Thirdly, to identify the impacts of the NDVI on LST, both the detrending method
and partial correlation analysis were performed among the NDVI, albedo, and LST. The
purpose of using the detrending method was to eliminate any spurious correlations among
the three parameters that may have been caused by temporal variations. As for the partial
correlation analysis, it was used to better quantify the individual impact of NDVI or
albedo on LST. The specific procedures included two aspects: (1) Using the first-difference
detrending method (i.e., the difference of values in one year to the previous year), we
examined and filtered the temporal trends of NDVI and albedo. (2) For partial correlation
analysis, the partial correlation coefficient is an assessment of the net correlation between
a single factor and the target value, provided that the impact of other factors is fixed or
deducted. Considering the significant co-impact of vegetation and albedo on LST, the partial
correlation coefficient is a good indicator for analyzing the relationship between them.

3. Results
3.1. Air Temperature and Vegetation Trends during 1982–2013 at Annual and Seasonal Scales
3.1.1. Annual Trends in Air Temperature and Vegetation

The air temperature and vegetation coverage on the TP generally increased on an
annual scale (Figure 2a), while vegetation changes during each warming phase showed
significant spatial and temporal variation. A significant abrupt change (p < 0.05) occurred
in 1996 for air temperature trends on the TP (Figure 2b), and the warming trend during
1996–2013 (0.043 ◦C/year) was notably higher than that during 1982–1996 (0.042 ◦C/year),
suggesting that the warming rate on the TP accelerated after 1996. The significant result
(p < 0.05) revealed that the annual NDVI is generally increasing (Figure 2a) and the clustered
NDVI increase and decrease in the second warming phase are greater than that in the first
warming phase (Figure 2d,f). Specifically, the NDVI greened more than it browned during
the first warming phase (Figure 2d), and there was clustered NDVI greening and browning
in the eastern and western plateau (Figure 2f), respectively.
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3.1.2. Seasonal Trends in Air Temperature and Vegetation

The air temperature and vegetation coverage on the TP during the spring seasons gen-
erally showed an increasing trend throughout the study period (Figure 3a). The breakpoint
and warming rates were very different from those of the annual scale. The breakpoint for
spring’s air temperature trend occurred in 1994, with a slope of 0.040 ◦C/year in the first
warming phase and 0.034 ◦C/year in the second warming phase (Figure 3b), indicating
that warming on the TP during the spring has slowed down. The NDVI showed a general
increase over time, although the trend was more significant during the second warming
phase (Figure 3c,e). Furthermore, the NDVI showed a significant increasing trend (p < 0.05)
in the eastern TP and a significant decreasing trend in the northwestern part (Figure 3e).
The significance statistics (p < 0.05) suggested that the clustered NDVI changes occurred
in the second phase rather than in the first phase (Figure 3d,f). For example, TP NDVI
decreased in the western part and increased in the eastern part (Figure 3f).
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For summer, the TP exhibited both the largest NDVI value and the most significant
warming trend (Figure 4a, p < 0.05), as did the largest pre- and post-phase difference in air
temperature (Figure 4b). The breakpoint for the summer temperature on the TP occurred in
1998, which is slightly later than for the spring and annual scales. The trend for the second
warming phase reached a rate of 0.047 ◦C/year, which is notably higher than that of the
first warming phase. This implied that the warming rate in summer on the TP is much
greater than that in other timescales. The significance analysis (p < 0.05) indicated that the
NDVI increase is greater in the first warming phase than that in the second warming phase
(Figure 4d,f), particularly in the western TP.
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Autumn vegetation trends and warming both showed a lower value compared to
the summer (Figure 5a). The breakpoint of temperature during the autumn occurred
in 1994 (Figure 5b), similar to the spring. The first and second phases during autumn
recorded trends of 0.029 ◦C/year and 0.018 ◦C/year, respectively. As such, the trend for the
second phase was significantly weaker than that of the first phase, demonstrating that the
warming rate on the TP becomes slow during autumn. The NDVI showed a non-significant
fluctuation in general, and the significance statistics (p < 0.05) showed that the increase or
decrease in the TP’s NDVI is less significant in the first phase than that in the second phase
(Figure 5d,f), which is similar to the vegetation change pattern in spring.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 5. Vegetation and air temperature trends in autumn. GIMMS-based NDVI and air tempera-
ture trends during 1982–2013 (a); air temperature breakpoint detection based on the MK method 
(b). In (b), the gray dashed line denotes the detected temperature breakpoint, and UF and UB refer 
to the statistics of forward and backward sequence, respectively; GIMMS-based NDVI trends (c) 
and regions of significant change (d) during the first warming phase. GIMMS-based NDVI trends 
(e) and regions of significant change (f) during the second warming phase. 

The vegetation and air temperature changes on the TP documented during the winter 
were similar to those during the autumn, although they showed much smaller magni-
tudes than other timescales (Figure 6a,b). The breakpoint in the winter temperature be-
tween warming phases on the TP occurred in 1998; the trends of the first and second 
warming phases were 0.017 °C/year and 0.021 °C/year, respectively, indicating that the 
winter warming on the TP is accelerating (Figure 6b). Winter changes in the NDVI values 
were generally small. A fragmented NDVI increase occurred in the eastern TP of the first 
phase, but a massive NDVI decrease occurred in the second phase, which was not found 
for any other timescales (Figure 6d,f). 

Figure 5. Cont.



Remote Sens. 2023, 15, 2475 9 of 21

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 5. Vegetation and air temperature trends in autumn. GIMMS-based NDVI and air tempera-
ture trends during 1982–2013 (a); air temperature breakpoint detection based on the MK method 
(b). In (b), the gray dashed line denotes the detected temperature breakpoint, and UF and UB refer 
to the statistics of forward and backward sequence, respectively; GIMMS-based NDVI trends (c) 
and regions of significant change (d) during the first warming phase. GIMMS-based NDVI trends 
(e) and regions of significant change (f) during the second warming phase. 

The vegetation and air temperature changes on the TP documented during the winter 
were similar to those during the autumn, although they showed much smaller magni-
tudes than other timescales (Figure 6a,b). The breakpoint in the winter temperature be-
tween warming phases on the TP occurred in 1998; the trends of the first and second 
warming phases were 0.017 °C/year and 0.021 °C/year, respectively, indicating that the 
winter warming on the TP is accelerating (Figure 6b). Winter changes in the NDVI values 
were generally small. A fragmented NDVI increase occurred in the eastern TP of the first 
phase, but a massive NDVI decrease occurred in the second phase, which was not found 
for any other timescales (Figure 6d,f). 
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The vegetation and air temperature changes on the TP documented during the winter
were similar to those during the autumn, although they showed much smaller magnitudes
than other timescales (Figure 6a,b). The breakpoint in the winter temperature between
warming phases on the TP occurred in 1998; the trends of the first and second warming
phases were 0.017 ◦C/year and 0.021 ◦C/year, respectively, indicating that the winter
warming on the TP is accelerating (Figure 6b). Winter changes in the NDVI values were
generally small. A fragmented NDVI increase occurred in the eastern TP of the first phase,
but a massive NDVI decrease occurred in the second phase, which was not found for any
other timescales (Figure 6d,f).
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3.1.3. The Spatial and Temporal Responses of NDVI to Air Temperature

Our study identified consistent breakpoints in air temperature for spring and autumn
as well as for summer and winter. We observed that the first warming phase showed a
smaller trend than the second warming phase on most timescales. This suggests that while
warming continues on the TP, the later warming trend is slightly decreasing.

We also investigated the spatial trends of NDVI at different warming phases. During
the first warming phase, we found that the area of NDVI greening is smaller in spring and
autumn with earlier breakpoints compared to summer and winter with later breakpoints.
However, in the second warming phase, we observed that the area of NDVI increase is
larger in spring and autumn with earlier breakpoints compared to summer and winter with
later breakpoints. This indicates that the timescale with the earlier breakpoints exhibits
a greater NDVI increase in the second warming phase. For instance, the air temperature
breakpoint at the annual scale earlier than summer and winter showed a significantly larger
area of NDVI increase in the second warming phase.

Furthermore, we found that in the relatively weaker second warming phase, there
is more NDVI decrease at all timescales across the sparsely vegetated northwestern TP.
This may be attributed to two factors: (1) limitations in the ability of the AVHRR sensor to
capture detailed NDVI changes in sparsely vegetated areas, and (2) an increased vegetation
sensitivity to air temperature during the second warming phase.

3.2. LST, Vegetation, and Albedo Trends during 2000–2021 at Annual and Seasonal Scales
3.2.1. LST Trends at Different Timescales

The spatial pattern of LST trends recorded at different timescales was more concen-
trated than that for the NDVI data. Alongside being common in winter, the LST warming
trend on the TP from 2000 to 2021 was most prominent in the southern TP (Figure 7a–e).
The LST warming rate was significantly higher in summer and autumn than during winter
and spring, and it was mainly concentrated in the southwestern TP (Figure 7c,d). The LST
cooling trend was most prominent on the northern TP on an annual scale and during spring,
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summer, and autumn (Figure 7a–d). During the winter, cooling mostly occurred in the
southwestern TP. The spatial distribution of significance trends (p < 0.05) showed that the
most significant decrease in LST occurs at annual scale and in spring (Figure 7f,j), with 7.06%
and 7.93% of all pixels recording these changes, respectively. Significant LST increases
(p < 0.05) in autumn were represented by 10.60% of all pixels (Figure 7i), which covered a
much larger area than that for spring (5.01%; Figure 7g), summer (6.71%; Figure 7h), and
winter (1.42%; Figure 7j).
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3.2.2. NDVI Trends at Different Timescales

Spatial variations in the surface parameters across the study region revealed that
MODIS-based NDVI data show significantly more greening trends than GIMMS-based
NDVI data (Figure 8). These NDVI data showed that the eastern TP records the largest
greening area during 2000–2021 at all timescales (Figure 8a–e), and the greening rate in
the spring is significantly higher than for the other timescales (Figure 8b). The southern
TP showed the highest NDVI browning rate (Figure 8a–d), which was highest in autumn
out of all the considered timescales (Figure 8d). The NDVI data recorded an increasing
trend on an annual scale, with 40.16% of pixels showing a significant increase and only
3.56% showing a significant decrease trend (Figure 8f, p < 0.05). Approximately 44.62%
of the NDVI pixels showed a significant increase in the spring, and 2.53% significantly
decreased (Figure 8g). Furthermore, 38.84% of the NDVI pixels showed significant greening
(p < 0.05), and 3.49% showed a considerable browning during the summer (Figure 8h). An
approximately equal proportion of NDVI pixels showed browning (21.13%) and greening
(21.35%) in autumn (Figure 8i). Finally, 52.56% and 2.24% of the NDVI pixels recorded
greening and browning in winter, respectively, with these values being significantly higher
than their equivalents during the other seasons (Figure 8j).

3.2.3. Albedo Trends at Different Timescales

Albedo trends at all timescales showed relatively few spatial hotspots except for in
winter (Figure 9a–e). The fastest albedo growth rates during 2000–2021 occurred in spring
and winter (Figure 9b,e); however, the albedo trends in summer and autumn were less
pronounced (Figure 9c,d). The decreasing rate of albedo was similar to its increasing rate in
the temporal pattern. A significant increase in albedo was observed in the western plateau
region at all timescales, and a significant decrease is found in the south and northeast
plateau (Figure 9f–j, p < 0.05). In terms of areas distribution, a relatively high percentage of
pixels showed a significant increase during spring (7.78%; Figure 9g) and winter (4.92%;
Figure 9j), and they were notably higher than the values of 0.49% in summer and 0.38%
in autumn. This effect may have been due to snow accumulation in spring and winter.
The largest areas with significant decreasing trends in albedo were monitored in summer
and autumn (Figure 9h,i, p < 0.05). These areas comprised 26.30% and 16.36% of the total
number of pixels in the study region, respectively, and these changes might potentially be
linked to increased vegetation coverage during the growing season.

3.2.4. Vegetation Impacts on LST at Different Time Scales

A statistical method was used to quantify the individual effect of vegetation on
LST, and we simultaneously considered the varying albedo (see Section 3.2.3) due to its
significant role in the vegetation–LST relationship [46,47]. Specifically, we employed the
detrending method and partial correlation analysis to analyze the individual effects of the
NDVI and albedo on LST. First, we examined the linear trends of the NDVI and albedo
(see the Supporting Information S3 for details). The results suggested that the NDVI of the
TP shows significant temporal trends at different timescales, and the summer albedo also
shows significant temporal trends (Table 2). Consequently, we filtered the temporal trends
of the indicated six variables using the detrending method. Second, we fixed NDVI (albedo)
to analyze the correlation between albedo (NDVI) and LST. The results showed that the
partial correlation coefficients of the NDVI and albedo with LST are significant except in
summer (Table 3). This may be due to the saturation effect of the summer vegetation and
albedo contributions on the LST [48], resulting in their insignificant trend of contribution.
The individual contribution of albedo to LST was larger than that of NDVI at all timescales,
especially in spring and autumn. This may be attributed to the fact that (1) the individual
contribution of albedo to LST includes both the indirect contribution of vegetation altering
albedo [49] and the direct contribution of albedo; and (2) an advanced vegetation growing
season and a delayed vegetation ending season can alter surface albedo strongly [50,51],
causing the contribution of surface albedo to be larger in spring and autumn. In terms
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of winter, faded vegetation and deepened snow cover would reduce the contribution of
vegetation but increase the contribution of albedo [47].
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Table 2. Significance of temporal trends in NDVI and albedo over 2000–2021.

Independent Variables R2 F-Test Sig.

MODIS-based annual NDVI 0.628 33.729 0.000
MODIS-based spring NDVI 0.437 15.509 0.001

MODIS-based summer NDVI 0.581 27.779 0.000
MODIS-based autumn NDVI 0.412 14.040 0.001
MODIS-based winter NDVI 0.567 26.174 0.000
MODIS-based annual albedo 0.000 0.004 0.950
MODIS-based spring albedo 0.008 0.156 0.697

MODIS-based summer albedo 0.490 19.188 0.000
MODIS-based autumn albedo 0.030 0.608 0.445
MODIS-based winter albedo 0.050 1.061 0.315
MODIS-based annual NDVI 0.628 33.729 0.000

Table 3. Partial correlation coefficients and significance of NDVI (albedo) with LST after fixing for
albedo (NDVI).

MODIS-Based LST
MODIS-Based NDVI MODIS-Based Albedo

Partial Correlation Coefficient Two-Tailed Test Partial Correlation Coefficient Two-Tailed Test

annual −0.478 0.028 −0.603 0.004
spring 0.467 0.033 −0.856 0.000

summer −0.283 0.214 −0.277 0.223
autumn −0.436 0.048 −0.883 0.000
winter 0.041 0.858 −0.803 0.000

Note that we utilized a statistical method to elucidate the relationship between vegeta-
tion, albedo, and LST, but we acknowledge its limitations due to the absence of a detailed
surface radiation balance analysis. Achieving an accurate decomposition of surface radia-
tion components would require further discussion beyond the scope and word limit of this
paper. Therefore, for the purpose of this study, we considered the statistical method as a
reasonable proxy for interpreting the individual impacts of vegetation and albedo on LST
at various timescales. The individual impacts of vegetation and albedo to LST using surface
radiative balance methods is expected in the near future. In addition, vegetation data are
considered in producing LST products, yet it is difficult to estimate the contribution of
vegetation data due to a lack of robust methods. Therefore, the vegetation contribution
to LST estimation may have some uncertainties in the dense vegetation growth of the
southeastern TP.

4. Discussion

Vegetation–temperature relationships can be affected by estimation methods, data
sources, and land cover types. We therefore discussed the breakpoint method for vegetation
trends, the differences between GIMMS and MODIS NDVI datasets, and the impacts of
land cover types on annual NDVI trends.

Firstly, we analyzed vegetation–temperature relationships during different warming
phases. In terms of methodology, the relationship between vegetation and climate variables
on the TP presented remarkable phase changes. However, the phase division of such a
relationship was usually subject to the limitation of the time span of remote sensing observed
vegetation datasets and the study period. For example, a 5-year time step was used to
investigate the relationship between climatic and non-climatic factors and vegetation on the TP
during 1980–2010 [40], and a visual graphical approach was used to determine the breakpoints
in TP vegetation during 1982–2002 [41] as well as artificial time segmentation to investigate
the TP vegetation feedback to climatic factors [39,46]. These methods may lead to bias in the
vegetation response analysis. We therefore used the breakpoints in temperature change as
the reference time points when analyzing the TP vegetation changes at different phases. We
found that the breakpoints of TP temperature during 1982–2013 at different time scales largely
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occurred between 1994 and 1998 (Figures 2–6). This result is not only closer to direct NDVI
segmentation investigation on the TP [52], but it is also closer to the artificial breakpoint of
2000 years in some investigations of TP NDVI response analysis [39,46]. Nevertheless, our
results strongly imply that the artificial abrupt points later than 2000 may bring greater bias in
TP NDVI response analysis. Our study also found that a common warming trend occurred
at all timescales during 1982–2013, and the breakpoints of the TP were earlier in spring and
autumn than those annually and in the summer and winter (Figures 2–6). This indicates that
the growth and end season of vegetation may advance the warming breakpoint of the TP [50].
With the TP warming, the second phase of NDVI increase was significant at all timescales
except winter, implying potential temperature accumulation induced by the first warming
phase contributing to the vegetation growth in the second phase.

Secondly, our investigation demonstrated a significant NDVI trend difference between
the GIMMS and MODIS datasets. Overall, NDVI trends were greater in MODIS data than
in GIMMS, and this finding was consistent with [46,53]. The GIMMS NDVI data did not
show a significant increase in 2000–2013, which was also found in [46,54]. This may be
attributed to the wider NIR band [55] and the imperfect atmospheric effects processing
technique for GIMMS data [56]. Fortunately, MODIS data are usually more reliable than
GIMMS data and fill the GIMMS data gap well [57]. For example, our results indicated a
significant increase in MODIS NDVI trends during 2000–2021 (Figure 8). Nevertheless, both
GIMMS and MODIS products showed a common trend of vegetation changes on the TP
(Figures 3a and 8a). However, given the advantages of the long time series of GIMMS data
and the moderate accuracy of MODIS data, it is of great significance to integrate multiple
datasets to analyze the future vegetation and climatic factors on the TP.

Thirdly, given the recent warm and wet trends on the TP [31,58], we further estimated
the relative impact of NDVI changes in different land cover types on annual NDVI trend
on the TP. Based on the MODIS land cover product, we detected annual land cover data in
2001 and 2021 and produced change pixels and unchanged land cover types on the TP. The
results showed that 89% of the land cover types on the TP have remained unchanged over
the 2001–2021 period (Figure 10). Given that the unchanged pixels cover the majority of the
TP, a stepwise backward method based on these areas was employed to filter the intended
land cover types and then evaluate their relative impact on the estimation of NDVI trends
of TP. The results suggested that only bare land has a relative impact of 9.746% on the
TP NDVI trend, but the relative impact of other land cover types on the TP NDVI trend
does not exceed 5% (Table 4). This implied that the NDVI growth of bare land contributes
significantly to the TP vegetation. In addition, we also found that the mean NDVI value
of the TP reaches the highest after filtering the bare land compared to other cover types
(Figure 11). Accordingly, we suggest that future NDVI trend and intensity studies on the
TP should pay more attention to vegetation changes in bare land.

Table 4. Relative impact of land cover on annual NDVI trends on the Tibetan Plateau.

Filtered Land Cover Trend R2 Sig. Relative Impact (%)

Evergreen Needleleaf Forests 10.839 0.625 0.000 0.324
Evergreen Broadleaf Forests 10.826 0.624 0.000 0.204

Deciduous Needleleaf Forests 10.804 0.628 0.000 0.000
Deciduous Broadleaf Forests 10.798 0.627 0.000 0.056

Mixed Forests 10.828 0.622 0.000 0.222
Closed Shrublands 10.804 0.628 0.000 0.000
Open Shrublands 10.814 0.628 0.000 0.093
Woody Savannas 10.785 0.621 0.000 0.176

Savannas 10.782 0.626 0.000 0.204
Grasslands 10.986 0.883 0.000 1.685

Permanent Wetlands 10.802 0.628 0.000 0.019
Croplands 10.787 0.628 0.000 0.157

Urban and Built-Up Lands 10.809 0.628 0.000 0.046
Cropland/Natural Vegetation Mosaics 10.804 0.628 0.000 0.000
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Table 4. Cont.

Filtered Land Cover Trend R2 Sig. Relative Impact (%)

Permanent Snow and Ice 10.834 0.625 0.000 0.278
Barren 11.857 0.518 0.000 9.746

Water Bodies 10.293 0.599 0.000 4.730
Null 10.804 0.628 0.000 /

Notes: Null means no filtered land cover type.
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Figure 11. Mean NDVI distribution for 2000–2021 after removing different land cover types. L1, L2,
L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, and L17 represent evergreen needleleaf
forests, evergreen broadleaf forests, deciduous needleleaf forests, deciduous broadleaf forests, mixed
forests, closed shrublands, open shrublands, woody savannas, savannas, grasslands, permanent
wetlands, croplands, urban and built-up lands, cropland/natural vegetation, mosaics, permanent
snow and ice, barren, and water bodies, respectively. Null means no filtered land cover type.
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5. Conclusions

This study aimed to investigate the differences in vegetation changes during various
warming phases on the Tibetan Plateau (TP) as well as the trends and patterns of NDVI
at different timescales and its influence on LST over the past two decades. First, the
warming trend on the TP occurred at different timescales, corresponding to breakpoints
that took place in 1994–1998, with earlier occurrences observed in spring and autumn.
Secondly, as the warming of the TP continued, the vegetation in the second warming phase
exhibited a larger greening area. These findings suggested that the time of temperature
breakpoints may have an impact on the area of vegetation increase, and NDVI changes
are more sensitive to air temperature during the recent warming phase. Third, MODIS
data highlighted more greening compared to GIMMS data. Using MODIS data, we also
found the fastest NDVI increase trend in spring and the fastest LST warming in autumn.
The partial correlation analysis indicated that NDVI has a significant negative impact on
LST during the annual scale and autumn while also having a significant positive impact
on LST during spring. This suggests that the contribution of NDVI to LST varies across
different timescales since 2000. To summarize, our findings systematically uncover the
spatiotemporal patterns of air temperature, LST, and NDVI on the TP across different
timescales. These results provide significant insights into the annual and seasonal patterns
of vegetation responses and feedback to climate change on the TP. Furthermore, our analysis
reveals distinct seasonal trends between NDVI and LST, which can be leveraged to enhance
the accuracy of numerical simulations that aim to replicate the relationships between
vegetation and climate over the TP.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs15092475/s1, Section S1: Detailed procedures of SQMK test; Section S2:
Detailed procedures of Sen’s slope; Section S3: Overall trends of NDVI, LST, and albedo over the
Tibetan Plateau (Figure S1: MODIS-based NDVI, LST, and albedo trends over the Tibetan Plateau at
annual and seasonal scales during 2000–2021) [59,60].
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