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Abstract: The forests of Central Africa constitute the continent’s largest continuous tract of forest,
maintained in part by over 200 protected areas across six countries with varying levels of restriction
and enforcement. Despite protection, these Central African forests are subject to a multitude of
overlapping proximate and underlying drivers of deforestation and degradation, such as conversion
to small-scale agriculture. This pilot study explored whether transboundary protected area complexes
featuring mixed resource-use restriction categories are effective in reducing the predicted disturbance
risk to intact forests attributed to small-scale agriculture. At two transboundary protected area
complex sites in Central Africa, we used Google Earth Engine and a suite of earth observation (EO)
data, including a dataset derived using a replicable, open-source methodology stemming from a
regional collaboration, to predict the increased risk of deforestation and degradation of intact forests
caused by small-scale agriculture. For each complex, we then statistically compared the predicted
increased risk between protected and unprotected forests for a stratified random sample of 2 km
sites (n = 4000). We found varied effectiveness of protected areas for reducing the predicted risk of
deforestation and degradation to intact forests attributed to agriculture by both the site and category
of protected areas within the complex. Our early results have implications for sustainable agriculture
development, forest conservation, and protected areas management and provide a direction for
future research into spatial planning. Spatial planning could optimize the configuration of protected
area types within transboundary complexes to achieve both forest conservation and sustainable
agricultural production outcomes.

Keywords: earth observation; drivers of deforestation; small-scale agriculture; environmental degradation;
protected areas; spatial planning; Central Africa; transboundary conservation

1. Introduction

The natural ecosystems of the Congo Basin region in Central Africa are critical for
regulating global climate and securing biodiversity in Africa’s largest continuous tract of
forest (Figure 1) [1,2]. There are over 200 protected areas across six countries in Central
Africa (Cameroon (CMR), the Central African Republic (CAR), Democratic Republic of
the Congo (DRC), Republic of the Congo (COG), Gabon (GAB), and Equatorial Guinea
(GNQ)), ranging from national parks and forest or wildlife reserves to hunting areas, with
various degrees of resource-use restriction and enforcement. Meanwhile, Central African
forests also sustain livelihoods at regional, national, and local scales [3–5]. Both protected
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and unprotected Central African forests are under threat of conversion to small- and large-
scale agriculture to meet nutritional and economic needs, along with mining, forestry, and
urban and rural infrastructure expansion [2,6–11]. There are unresolved debates in the
literature regarding whether area-based models of varying degrees of resource-use and
access restriction are appropriate in such contexts of high land and resource needs from
local populations and, more broadly, whether the protected areas model is effective for
biodiversity conservation [12–21].
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While protected areas effectiveness—in terms of maintaining biodiversity and reduc-
ing forest and wildlife habitat loss—is often dependent on local and national contexts,
such as prioritization and funding allocation to conservation [12,24] and local community
needs and perceptions of conservation [25], the literature has identified several generalized
factors that tend to influence effectiveness. First, the level of resource-use restriction (e.g.,
International Union for Conservation of Nature (IUCN) Category Ia—strict nature reserve ver-
sus Category II—national park versus Category VI—protected area with sustainable use of natural
resources) influences the level of forest cover or habitat loss within a protected area [26–28].
The age of the protected area, agricultural suitability of soils, and proximity to international
borders or highly developed areas can also influence protected area effectiveness [18,29–31].
Considering these factors and debates regarding protected area effectiveness in recent
decades, a plurality of management approaches and models have been suggested [19,26].
For example, collaborative transboundary efforts present opportunities for the protection
of ecosystems and landscapes that cross international boundaries [21,32].

As this literature continues to develop, several innovative open-source and cloud-
based geospatial applications have advanced in recent years, enabling access to advanced
processing capabilities for vast collections of high-resolution satellite imagery in the
cloud [6,33–42]. The increased availability, accessibility, and quality of earth observation
(EO) data opens doors to understanding the factors that influence protected area effec-
tiveness through forest and land cover changes in new and under-studied contexts and
creates opportunities to address challenges for ecosystems and sustainable development
via spatial and land use planning [6,10,34,37,43,44].
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This pilot study built on these recent efforts to understand protected area effectiveness
and resource pressure on forests via EO data and cloud-based geospatial processing and
analysis tools. Using a dataset derived via replicable, open-source methodology stemming
from a regional collaboration [2], we deployed a random forest algorithm in Google Earth
Engine and performed statistical analyses of the resulting outputs in R to explore whether
under-studied transboundary protected area complexes featuring mixed resource-use re-
striction categories (e.g., national parks adjacent to forest reserves) are effective in reducing
the predicted level of small-scale agriculture threat to intact forests. Our preliminary re-
sults suggest that effectiveness by this measure varies within and between transboundary
complexes and that the spatial arrangement of resource-use restriction categories can play
a role in determining the risk to intact forests.

1.1. Research Questions

The research questions and corresponding hypotheses in this pilot study were based
on the literature and core theory underlying the area-based model, which suggests that ef-
fective protection reduces the risk of deforestation and degradation of intact forests [18,29]:

(1) Are there significant differences in predicted threat to intact forests caused by deforestation-
driver activities, such as small-scale agriculture expansion, between protected and
unprotected transboundary forests in Central Africa (e.g., inside versus outside
park boundaries)?

H1: Predicted risk to intact forests resulting from small-scale agriculture will be lower inside
protected area boundaries.

(2) To what extent does a mix of protection categories and resource-use restrictions in a
protected area complex influence the predicted threat to intact forests?

H2: The magnitude of predicted risk to intact forests resulting from small-scale agriculture
will vary depending on the type of protected area and/or resource-use restriction. Preliminary
evidence will suggest that the spatial configuration of categories within a protected area
complex influences risk magnitude.

(3) As a pilot study, what does the initial evidence suggest for future directions of expanded
analyses and research to shed further light on the effectiveness of transboundary-protected
area complexes in Central Africa?

H3: Evidence will support future research in spatial econometrics and spatial optimization for
land use planning and protected areas management.

1.2. Literature Review

This study is situated at the intersection of three literatures: drivers of deforesta-
tion and forest degradation, protected area effectiveness, and a sub-literature exploring
comparative and counterfactual analyses inside and outside of protected areas. First, the
drivers of deforestation literature highlights the role of small-scale agriculture as a driver
of forest change in Sub-Saharan Africa (SSA). In SSA, despite substantial efforts towards
protection, small-scale agriculture remains a primary proximate driver of both deforesta-
tion and degradation [6–8,11,20,42,45–47]. Other common drivers include subsistence
extraction activities like fuelwood collection, infrastructure development, small-scale and
industrial mining, and natural or anthropogenic fires, many of which are frequently found
in combination [2,11,42,48,49].

In addition to the proximate causes of forest change in the tropics and SSA, there
are underlying conditions enacted from local to global scales that influence forest and
land cover change [42,45,50–53]. Conflict [30,54–56], political instability, and weak insti-
tutions [54,57,58] impact forest cover through inconsistent application of environmental
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policy or increasing pressure to extract natural resources. Environment and development
economics understands the relationship between the proximate and underlying drivers
as contributing to poverty-environment traps, where underlying drivers create conditions
for proximate drivers that result in environmental degradation—subsequently driving
a positive feedback loop, accelerating proximate drivers, and further degrading natural
resources and the environment [50,59]. Alternative theories, such as the Environmental
Kuznets Curve, have posited that economic development will result in increasing environ-
mental degradation up to a threshold point, beyond which stable underlying institutional
and governance conditions (in addition to shifts in economic activities and livelihoods
themselves) will improve environmental conditions over time [59,60].

Institutional, governance, conflict, and other social, political, and economic factors
that influence forest change also segue into factors that influence protected areas effec-
tiveness [18,31,61]. Conflict, for example, can have varying influences on forest cover, in
some cases increasing degradation and, in other cases, reducing degradation via internal
displacement and reduced pressure on a forest system [42,43,49,55,61]. Yet conflict has
resulted in enforcement challenges and de-prioritization for Central African protected areas
in regions of the DRC and in conflicted areas of CMR and CAR (Figure 2) [62].
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There are questions in the protected areas effectiveness literature, however, regarding
the ability of protected areas to limit the proximate drivers of deforestation and degradation
in addition to their adaptation to underlying conditions in local contexts [20,64]. Perceived
legitimacy of protected areas by local communities has historically been a challenge for pro-
tected areas enforcement, particularly efforts that seek to limit encroachment via proximate
drivers such as small-scale agriculture and subsistence activities [65]. Such legitimacy and
enforcement challenges can be linked to the histories of forced eviction and displacement
of local people and the destruction of livelihoods for protected area demarcation [13,65–68].
Continued subsistence and small-scale agricultural activity in African protected areas can
also be viewed through the lenses of basic needs, livelihoods, food security, and sustain-
able livelihood approaches [69]. Striking a balance between the protection of biodiversity
hotspots such as Congo Basin forests and the economic needs of local communities is
also particularly important, as the literature increasingly emphasizes shifting “blame” for
deforestation and degradation away from local communities in contexts where pressure
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on forest resources comes from multiple underlying and proximate sources not limited to
local community needs [70].

That said, there is also a plurality of models that support different levels of resource
use within protected areas and opportunities for dual benefit for ecosystems and economic
and development needs of communities [19,26,27,71,72]. While different countries may
have varying national systems to classify and prioritize protected areas based on their
own objectives, national categories often align with IUCN categories. For example, as
detailed by Pélissier and others [73] (p. 86), the DRC protected area system features twelve
categories that can be grouped into IUCN categories. Over 25 of the DRC’s protected areas
are hunting reserves, consistent with IUCN’s Category VI—protected area with sustainable
use of natural resources, while the DRC’s special reserves, nature reserves, and wildlife
reserves align with Category II—national park [73] (p. 86). For those protected areas that
align with Category VI, there may be resource-use allowances—but determining what
is a sustainable or unsustainable use may complicate the enforcement efforts in already
challenging contexts like in northern DRC (see Section 2.1). An additional complication is
the transboundary context, where strictness of enforcement or resource-use restriction may
be uneven between countries. In these cases, collaborative transboundary protected area
management presents both an opportunity and a challenge [21,32,57,74–80].

In efforts to quantify the potential effectiveness of protected areas and assess conserva-
tion outcomes, a growing literature has compared parameters inside and outside protected
areas, often utilizing satellite imagery and increasingly using counterfactual analysis with
empirical quantitative research designs that enable causal inference [81–85]. Comparative
analyses of predicted loss inside and outside protected area boundaries shed light on factors
that contribute to deforestation and forest degradation even when a forest is protected,
such as studies by Buřivalová et al. [29] and Heino et al. [86]. Other factors such as forest
cover outside of a protected area, agricultural suitability of the soil, age of the park, and
enforcement may influence the risk to intact forests inside of a protected area [29,86].

In the present study, we used theory and evidence within this literature to frame our
hypotheses, particularly research suggesting that, if effective, protected areas can reduce
threats to existing intact forest, thereby reducing risk when understood as the probability
of an event multiplied by the magnitude of the degradation or loss [27,29,31,72,87]. We
hypothesized that the predicted risk to intact forests from small-scale agricultural con-
version would be lower inside of effectively protected area boundaries than outside [29].
We contributed an additional dimension to this literature via our focus on transboundary
protected areas, capturing continuous forests overlapping international boundaries. The
effectiveness of transboundary protected areas for reducing forest loss, as compared to
non-transboundary protected areas, has great potential but is still under-studied in the
literature [32,76,78–80]. Further, the potential influence of spatial arrangement of protected
area categories within the same transboundary protected area complex is also under-
studied. There have been analyses of leakage effects from strictly protected to unprotected
areas and international spillover effects [11,21,88], but few studies have explored how the
configuration of protection types might influence the overall effectiveness.

Finally, we note that debates surrounding the appropriateness of the protected areas
model overall have not been resolved in the literature, despite the increasing centrality of
protected areas in global discussions regarding sustainable development, climate change
mitigation and carbon sequestration [89], and biodiversity conservation with the 2021
adoption of the UN Convention on Biological Diversity 30 by 30 Global Biodiversity
Framework to protect 30% of the world’s protected areas by 2030 [90]. Mora and Sale [13]
and Eklund and Cabeza [91] argued that the protected areas model is insufficient to address
the current threats to biodiversity and tropical forests. Du et al. [19], Dudley et al. [71],
Hill et al. [14], Cumming [15], and Green et al. [20] suggest that recent advances and
the plurality of area-based models are promising but support alternative conservation
strategies for currently unprotected landscapes. However, scholars such as Galvin et al. [92]
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have found that even community-focused conservation models do not always achieve their
social objectives at the community level.

2. Materials and Methods

This study involved two major procedures: first, we predicted increased risk to intact
forests from small-scale agriculture inside and outside of transboundary protected area
complex boundaries with a stratified random sampling design within our study sites using
a random forest model in Google Earth Engine. (This Google Earth Engine-based modeling
work was conducted as part of a broader project implemented by the Food and Agriculture
Organization of the United Nations (FAO) Forestry Division and Central African Forest
Initiative (CAFI). The Earth Engine script was adapted from an algorithm originally de-
veloped as a land use planning support tool called Geoinformatics for Land Use Planning
(Geo4LUP), a module for the System for Earth Observations, Data Access, Processing
and Analysis for Land Monitoring (SEPAL), an open-source, cloud-based computing envi-
ronment operated by FAO (https://sepal.io/ (accessed on 27 March 2022)). Second, we
extracted zonal statistics from the prediction outputs and performed comparative statisti-
cal analyses in R (Version 4.3.2) to determine whether there were significant differences
in the risk to intact forests inside and outside of the protected area boundaries. In this
section, we first detail the study area, which included two Central African transboundary
protected area complexes (Section 2.1), then the data used in this study (Section 2.2), and
finally, the procedures used to predict the increased risk of deforestation and degradation
resulting from small-scale agriculture. We then compared predicted risk inside and outside
park boundaries (Section 2.3). Figure 3 presents a simple workflow outlining the major
procedures taken for this study.
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2.1. Study Area

This study focuses on two transboundary protected area complexes: the Sangha Trina-
tional Protected Areas Complex (STPAC) at the borders of Cameroon (CAM), Republic of
Congo (COG) and Central African Republic (CAR) (Figure 4a), and the Bili-Uéré Protected
Areas Complex (BUPAC) at the borders of the Democratic Republic of Congo (DRC) and
Central African Republic (CAR) (Figure 4b).
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Figure 4. (a) Sangha Trinational Protected Areas Complex (STPAC) at the border of CMR, COG, and
CAR, including three national parks (~705,000 ha), a forest reserve (~58,000 ha), and a special reserve
(~339,000 ha). Source: Authors. Data: WDPA, 2023 [22]. (b) Bili-Uéré Protected Areas Complex
(BUPAC) at the border of DRC and CAR, including both Bili-Uéré Hunting Reserve (~3.2 million ha)
and Bomu Wildlife Reserve (~1.1 million ha). DRC official protected area categories are also illustrated.
Source: Authors. Data: Pélissier et al., 2018 [73].

STPAC includes three contiguous national parks (Dzanga-Ndoki National Park, Lobéke
National Park, and Nouabale-Ndoki National Park) and two reserves (Dzanga-Sangha
Special Dense Forest Reserve and Mongokele Forest Reserve), totaling approximately
1.1 million hectares (Figure 4a) [74,75,93]. Relative to BUPAC, there are more strict enforce-
ment and resource-use restrictions in the STPAC, though variations exist between the three
countries within the STPAC territory [75]. STPAC is home to rich biodiversity, including
but not limited to forest elephants, the critically endangered western lowland gorilla, and
chimpanzees [94].

Next, BUPAC is the largest contiguous protected area complex in the DRC, with ap-
proximately 4.3 million hectares (Bili-Uéré and Bomu Wildlife Reserve combined), and is
also considered a part of the expansive DRC–CAR Garamba-Chinko-Bili transboundary
complex, which shares an additional eastern border with South Sudan (Figure 4b) [62,94].
BUPAC is in a remote location and is considered under-studied relative to both (a) its
ecological importance as a habitat for Eastern chimpanzees and forest elephants and (b) its
geopolitical status at the intersection of three countries with considerable internal and re-
gional conflict, with local communities facing significant socioeconomic challenges [62,94].

Across and within Central African countries, different protection categories receive
varying levels of enforcement and prioritization from conservation entities and vary in their
fundamental objectives. However, transboundary-protected area complexes often feature
groupings of these mixed-protection categories and resource-use allowances [73,74,76], as
is the case for both BUPAC and STPAC. In the case of STPAC, forest reserves such as the
Dzanga-Sangha Special Dense Forest Reserve were intentionally established as a buffer
area to ensure the protection of core forest and wildlife habitat in Dzanga-Ndoki National
Park and Nouabalé-Ndoki National Park [74]. In the case of BUPAC, enforcement has his-
torically been challenging due to remoteness and local and regional conflict [62,94]. While
the hunting reserve corresponds with IUCN Category VI (protected area with sustainable
use of natural resources), the Bomu Wildlife Reserve is considered for national biodiversity
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conservation prioritization [73], and the Bili-M’Bomu Core Area was prioritized for conser-
vation by IUCN and African Wildlife Foundation (AWF), as it constitutes one of the most
biodiversity-rich and relatively unimpacted zones of BUPAC [94].

These two Central African protected area complexes were selected for this study due
to their transboundary locations and contiguous or adjacent inclusion of mixed-protected
area categories within the same complex, constituting transboundary conservation land-
scapes [76]. BUPAC is under-studied [94], while new analyses for STPAC are also enabled
by increasing the access, availability, and quality of EO data [75]. However, these two
transboundary complexes feature different levels of national and international conservation
priority, protection strictness and enforcement, and pressure from industrial and small-scale
agriculture, timber, infrastructure, and other drivers of deforestation. For these reasons,
we do not directly compare risk to intact forests in these sites but rather use them in our
pilot to illustrate the risk to intact forests inside and outside transboundary protected area
complexes in two distinct contexts within the same regional and landscape-level Central
African forest system [21,58].

2.2. Data

The data analyzed to answer the research questions in this study included: (1) a
previously derived point layer identifying the presence of eight agricultural and economic
drivers of deforestation (e.g., infrastructure, small-scale agriculture, industrial agriculture,
mining, etc.) [2]; and (2) an image stack of several additional biophysical, forest cover, and
socioeconomic and governance raster layers.

First, the deforestation and degradation drivers point layer was critical for predicting
the risk to intact forests attributable to small-scale agriculture. Although we summarize the
key elements of the methodology behind the dataset in this section, readers are referred
to the study by Shapiro et al. [2] for further detail regarding the replicable, open-source
methodology and regional collaboration used to derive this point layer. FAO and regional
partners collected and validated a dataset of n = 12,260 points extracted through stratified
random sampling of a deforestation and degradation change map derived from dense time
series analysis (calibration period of 2012–2020 for the monitoring period of 2015–2020)
of Landsat satellite imagery using the Breaks for Additive Seasonal and Trend (BFAST)
algorithm in six countries in Central Africa (CMR, CAR, DRC, COG, GAB, and GNQ) [2].
Of these samples, 3360 were identified as “change,” and one or more direct drivers were
identified within a 2 km box centered at these coordinate locations [2] (p. 4).

Within the “change” points, change classes included deforestation, degradation, and
stable points. Deforestation was defined as “a conversion of forest to other land use, or
a permanent reduction in tree cover below an established forest definition threshold” [2]
(p. 2). Although forest degradation is defined differently in many studies across the
literature, we follow Saskaki and Putz [95] and Shapiro et al. [2] to define degradation as
“a permanent or temporary change in forest cover that does not fall below the established
forest definition threshold.” These thresholds are defined at the national level for each
country and operationalized in the development of the drivers’ dataset, as presented in
Shapiro et al. [2].

To identify which drivers were responsible for change at each point, a validation
procedure was undertaken with ≥150 random points per change class (deforestation,
degradation, stable) selected, with more points for larger map classes (n = 11,078), along
with a random sample of stable points from all land cover classes (n = 1192). Table 1
presents the characteristics of driver types identified within the 2 km box centered at each
coordinate location. As described by Shapiro et al. [2]:

“Visual interpretation of all points was performed using [Collect Earth Online],
using available high-resolution optical image mosaics from Planet. Samples
were uploaded to Collect Earth Online for visual interpretation by a group of
60 experts from the project technical committee [that] developed guidelines and
agreed definitions . . . the validation phase [extended] over a period of 5 months,
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[as] each point was validated by three independent users to avoid user bias.”
(p. 5)

Table 1. Key drivers of deforestation identified by the drivers of deforestation dataset [2] (p. 7, with
example images from satellite imagery for each driver).

Driver Characteristics

1 Small-scale agriculture Small irregular fields, generally less than 5 ha
2 Industrial agriculture Large regular fields of homogenous crops
3 Infrastructure Roads or paths suitable for vehicular traffic
4 Settlements Presence of houses, buildings, huts, or other built-up features
5 Artisanal forestry Forest with small canopy gaps or perforations and felled trees
6 Industrial forestry Large consistent cuts (>5 ha),felled trees and logging roads
7 Artisanal mine Small muddy clearings, often along turbid waterways
8 Industrial mine Extensive infrastructure, open pits, and exposed soils

For this study, we used this dataset to create a distance raster layer for each driver,
whereby the pixel value equaled the distance (meters) from the pixel center to the nearest
driver point. These raster layers were used to train the random forest model to predict the
risk to intact forests resulting from drivers, particularly small-scale agriculture, as the focus
of this study. In addition to the proximate drivers themselves, to account for the multitude
of additional factors that may contribute to risk to intact forests, we included a variety
of other data layers for training the random forest model, as listed in Table 2. Figure 5
visualizes the distance raster layer relative to the point layer for the small-scale agriculture
points defined in Table 1.

Table 2. Data layers and sources.

Data Layer Source Years Authors’ Note

Direct Drivers–Validated Drivers of
Deforestation
Point Layer

Shapiro et al., 2023 [2] 2015–2020
Derived dataset from FAO-CAFI with

high-quality data for study area using recent
time series

Conflict Fatalities (points) ACLED Conflict Database,
2022 [63] 2015–2023 Most recently available conflict data at time

of analysis

Deforestation and Degradation
2015–2020 Change CAFI, 2022 [2,23] 2015–2020 Derived classification from FAO-CAFI with

high-quality imagery for study area

Land Cover 2015
Landsat (U.S. Geological Survey)

and Sentinel 1
(European Space Agency)

2015
Derived land cover classification from

FAO-CAFI with high-quality imagery for
study area

Forest Fragmentation 2015 CAFI, 2022 [2,23];
Soille & Vogt, 2009 [96] 2015 Derived classification from FAO-CAFI with

high-quality imagery for study area

Croplands 2019
Landsat (U.S. Geological Survey)

and Sentinel 1
(European Space Agency)

2019 Most recently available agricultural
classification at time of analysis

Protected Areas WDPA, 2022 [22] 2022 Comprehensive, up-to-date dataset available
for study area at time of analysis

Roads CAFI, 2022 [23];
Kleinschroth et al., 2019 [97] 2019 Comprehensive, up-to-date dataset available

for study area at time of analysis

Administrative Boundaries
Central Africa

FAO Global Administrative Unit
Layers [98] 2022 Up-to-date dataset available at time

of analysis

Forest Landscape Integrity Index Grantham et al., 2020 [99] 2019 Comprehensive, up-to-date dataset available
for study area at time of analysis

World Governance
Indicators—political stability,

regulatory quality
World Bank, accessed 2022 [100] 2015–2020 Comprehensive, up-to-date dataset available

at time of analysis

DEM NASA DEM, accessed 2022 [101] 2022 Most recently available at time of analysis
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Table 2. Cont.

Data Layer Source Years Authors’ Note

Accessibility to Cities Weiss et al., 2018 [102] 2018
Comprehensive global accessibility data

used for comparative purposes alongside
road layer

ALOS-Palsar Mosaic Japanese Space Agency, JAXA;
Shimada & Ohtaki, 2010 [103] 2015, 2022 Mosaics used as base data as part of

derivation of other layers

Soil Fertility and Bulk Density Hengl et al., 2021 [104] 2021 Most recently available at time of analysis

Climate (monthly average, min, max
temperature, and precipitation) Hijmans, et al., 2005 [105] 2000 Climate surfaces as base data for derivation

of other layers

Burned Forest Area Giglio et al., 2018 [106] 2016–2022
Derived using MODIS burned area product

and the CAFI 2015 forest mask for
Central Africa

Tree Cover CAFI, 2022 [23] 2015 Baseline tree cover for monitoring period [2]

Note: Data layers were accessed via GEE assets in the FAO project repository https://data.congo.dddafrica.info
(accessed on 27 March 2022).
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Figure 5. Using the small-scale agriculture points [2] from the drivers of deforestation point layer (a),
we then created the distance raster layer for small-scale agriculture for the BUPAC extent (b).

2.3. Procedures

The model training extent was determined by drawing a rectangular polygon encap-
sulating both BUPAC and STPAC and the surrounding unprotected landscape in Google
Earth Engine. For the BUPAC extent, a gap on the eastern side of the park complex was
not included to avoid any model prediction error caused by the border with South Sudan,
where drivers data points are not available. After determining the training extent, two
main sets of procedures were undertaken following the workflow as outlined in Figure 3:
(1) predicting risk to intact forests attributable to small-scale agriculture, then (2) comparing
risk inside and outside park boundaries.

First, we selected the random forest modeling approach for our prediction step for
several reasons. We took an algorithmic approach, as the research questions for this study
target deforestation and degradation risk prediction accuracy rather than estimation to
explore the nature of relationships between variables, as would be central in a statistical
modeling approach [107]. Second, considering the variety of data layers used in this study,
including both raw and derived data, we determined that the decision tree approach—
and random forest modeling in particular—was suitable, as it can account for data layers
with varying distributions and has high prediction accuracy when applied in appropriate
contexts [107]. Random forest was suitable in this context, as the predictions are within
both the geographic and value bounds of the training data.

https://data.congo.dddafrica.info
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After model selection, the random forest model was then trained on the identified
incidents of deforestation and forest degradation, proximity to the small-scale agriculture
drivers data points [2] (Table 1, row 1), and additional biophysical, governance, and
ecological data layers (Table 2). Predicted incidents of deforestation and forest degradation
identified by the model were reclassified to probabilities to encapsulate risk [86,87]. After
training the model on the image stack, a new set of small-scale agriculture points was
introduced via stratified random sample (using ee.Image.stratifiedSample in Google Earth
Engine with points generated on areas of intact forest) (total n = 4000) to predict the levels
of increased risk associated with potential future small-scale agriculture. The stratified
random sample of small-scale agriculture points included an equally sized random sample
of sites inside and outside the park boundaries, accounting for the number of intact forest
pixels. For both BUPAC and STPAC, n = 1000 intact forest points were sampled inside and
outside the park boundary, resulting in n = 2000 points per complex and a total of n = 4000
points. The resulting predicted increased risk output was a raster layer at 30 m resolution,
with one increased risk raster layer for each protected area complex.

The choice to use a stratified random sample of points inside and outside of the park
boundary, incorporating equal measures of intact forest pixels, limited potential site-based
factors and biases that might be introduced with a simple case study comparison of two
locations: one within and one outside of the park boundary. While we did not employ
matching techniques, as by Wolf et al. [72], or a counterfactual analysis design that would
enable causal inference [27,81], our sampling design mitigates the potential pitfalls of a case
study approach. For example, if non-random, equally sized (1 ha) hypothetical agricultural
plot polygons were drawn on either side of the park boundary based on pre-established
criteria or the matching technique, even with an equal or similar proportion of intact forests
inside and outside of the border, there would still be some chance of bias towards the
protected forest due to the possible confounding factor in model training of simply having
more intact forests within the protected area or other factors that may not be considered.

Using the resulting predicted increased risk output 30 m resolution raster layer, the
next major procedure involved statistically comparing risk values inside and outside of
the protected area boundaries at each site. Comparisons were enabled by zonal statistics
and statistical analysis of the derived predicted risk layer and compared with additional
variables from the image stack, such as the distance from the protected area boundary. The
risk output layers for each protected area complex at 30 m resolution were exported from
Google Earth Engine for pre-analysis vector processing. The 4000 random points were
reprojected to UTM35N, and a 2 km buffer was drawn around each point. The risk output
layer was clipped to the 2 km buffers “inside park” and “outside park” points, so that mean
increased-risk pixel values and other comparisons between the “inside park” and “outside
park” raster values were conducted on equal area and from random locations within each
(for clarity, the 2 km buffers are distinct from the 2 km boxes used to identify drivers around
the training data). Zonal statistics from the masked raster were then extracted for each 2 km
point buffer for analysis. The resulting shapefiles with zonal statistics from the “inside”
and “outside” were exported and merged into one dataset (n = 4000) for analysis in R.

Then, the risk-pixel zonal statistics for each random 2 km zone were compared by
“inside” and “outside” of park boundary using t-tests and regression analysis with robust
standard errors, as the increased risk values demonstrated heteroskedasticity, with variance
increasing as the risk values increased. Simple regression analysis included, for instance,
estimation of the influence of proximity to the protected area boundary on predicted risk
via de f orriski = β0 + β1 padisti + β2X1i + εi, where the dependent variable, de f orriski, is
the predicted risk value at pixel i, and independent variables include padisti, as well as
the distance to the protected area boundary from the centroid of pixel i, and a vector of
controls X1i (Table 2), including an inside vs. outside protected area dummy variable. εi
is the error term. In the Results section, we visualize the comparison of predicted risk
values inside and outside of protected areas at our two sites with descriptive boxplots and
kernel density estimation, which is a common non-parametric technique for visualizing the
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smoothed shape of a distribution [108]. The results are presented with disaggregation by
site, protected area category, and country in the transboundary system.

We also performed analyses to understand the spatial distributions of the predicted
risk values considering protected area boundaries at both sites. K-means clustering was
used to illustrate where spatial groupings of similar risk values were evident relative
to protected area and international boundaries. K-means clustering is commonly used
for partitioning data into distinct subsets, sorting n (number of points) into k (number
of groups) by iteratively minimizing within-cluster sum of squared distances from each
group’s centroid until a predetermined number of iterations is reached or the minimized
distances no longer change significantly, resulting in each data point being sorted into one
distinct group [109–111]. Although k-means clustering and its visualization were useful
in our study for understanding the spatial distribution of predicted risk relative to the
protected area and international boundaries, the technique has well-known limitations
and sensitivities, such as sensitivity to outliers and specification of k clusters [109,110]. We
sought to address these limitations in arriving at a final visualization. For instance, because
k-means clustering is sensitive to assigned starting points for iteration, we compared
outputs from randomized initialization (iterations = 1000) and the commonly used k-
means++ algorithm as described by Arthur and Vassilvitskii [112]. These resulted in similar
outputs with k = 4 clusters (the ratios of the between-cluster to the total sum of squares
at 0.612 and 0.611, respectively), and we ultimately presented the random initialization
output in our Results section.

3. Results

In this section, we first present the results from the prediction of increased risk of
deforestation and degradation to intact forests, then the results of comparative analysis
using zonal statistics. First, as anticipated and as demonstrated in the random forest
variable importance chart in Figure 6, the model indicated that small-scale agriculture and
infrastructure are the variables in the image stack for which the prediction error would
increase the most if they were removed from the model. Figure 7 provides a visual of the
risk output layer for BUPAC, from which zonal statistics were then extracted to the 2 km
buffers (n = 4000).
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Figure 6. Variable importance in random forest model used to predict increased risk to intact
forest resulting from randomly generated small-scale agriculture points. All image stack variables,
including small-scale agriculture and infrastructure, are the variables in the image stack for which
the prediction error would increase the most if they were removed from the model.
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Figure 7. (a) Risk to intact forest output layer, displaying predicted increased risk resulting from
randomly generated small-scale agriculture points, presenting a close-up view of (b) unprotected
and (c) protected points.

Next, our results from the comparative statistical analysis were mixed in terms of
aligning with our hypotheses. Select results, including the summary statistics and t-test
results of the comparative analysis between the “inside park” and “outside park” risk-pixel
values, are presented in Table 3. These results are also visualized in Figure 8 in the boxplots
(Figure 8a) and kernel density plot (Figure 8b).

Table 3. Summary statistics and results of t-tests comparing zonal statistics of increased risk to intact
forest from small-scale agriculture for “inside protected area” and “outside protected area” raster
outputs based on a stratified random sample (n = 4000). Comparative statistics (t-values) are bolded,
and interpretation is provided within the table for clarity.

BUPAC Mean Value a Maximum Value Pixel Count

Outside park 124.6 6721 3104.8
Inside park 155.8 7065 2914.1

t-value

7.28 ***
Overall mean risk

values were
significantly higher

inside park

1.91 *
Maximum risk value

was significantly
higher inside park

−10.21 ***
Non-zero pixel count

was significantly
lower for outside
park, indicating
possible areas of
higher extremes

STPAC Mean value Maximum value Pixel count

Outside park 78.48 4023 13,112
Inside park 68.02 4317 12,362

t-value

−3.52 ***
Overall mean risk

values were
significantly lower

inside park

1.93 *
Maximum risk value

was significantly
higher inside park,

indicating pockets of
higher risk despite
overall lower risk

inside park

−8.87 ***
Non-zero pixel count

was significantly
lower for outside
park, indicating
possible areas of
higher extremes

a Mean is of average pixel value within all 1000 2 km buffer points on each side of the park boundary. * indicates
p < 0.15; *** p < 0.01.
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Figure 8. (a) Boxplots comparing mean risk values inside and outside the protected area complex
boundaries. (b) Comparing distributions via kernel density estimation.

The predicted increased risk to intact forests resulting from small-scale agriculture
was significantly lower for intact forests inside the STPAC boundaries than for unprotected
intact forests in that landscape (p < 0.01), which aligned with our hypothesis, H1. In
contrast, we were surprised by the finding that the increased risk of deforestation of intact
forests from small-scale agriculture was significantly higher inside the BUPAC boundaries
than for the unprotected forests outside the boundaries (p < 0.01), which contradicted our
hypothesis, H1.

Figures 9 and 10 descriptively and visually present the mean predicted increased risk
to intact forest values by protected area category, which supports our hypothesis, H2. These
are not generalizable to other protected area categories outside of BUPAC and STPAC
but provide further useful information regarding the categories of protected area that
demonstrated the highest mean and maximum value of predicted increased risk resulting
from small-scale agriculture in the study areas (Figure 9). Figure 10 visualizes the spatial
distribution of high predicted increased risk within each protected area complex using
k-means clustering, with dark green points indicating clusters of higher predicted risk
and dark blue points indicating clusters of lower predicted risk. Higher risk in BUPAC
corresponds with the Bomu Wildlife Reserve, which also shares the international border
with CAR. The higher risk in STPAC corresponds with the Dzangha-Sangha Special Reserve
of CAR, which was historically intended to be a buffer zone for the Dzangha-Ndoki
National Park and the Nouabale-Ndoki National Park in COG.
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Finally, within the random forest model for predicting increased risk, distance from
protected area boundary followed behind only small-scale agriculture, artisanal forestry
(timber harvesting), and infrastructure development as a key factor for predicting the
increased risk of deforestation and degradation of intact forests (Figure 6). In the regression,
proximity to the BUPAC protected area border was associated with increased risk to
intact forests from small-scale agriculture when the forest was inside the protected area
(beta = 20.31, p < 0.001). For forests outside of the protected area, the distance to the
protected area boundary was not significant (p > 0.15). Distance to the protected area
boundary was not significant for STPAC (p > 0.25).

4. Discussion

Returning to our research questions and hypotheses, we initially hypothesized the
increased risk to intact forests from small-scale agriculture to be lower inside than outside
the protected area complex boundaries for both sites [18,29]. We postulated that consid-
ering that protected areas are included in the model training, if BUPAC is effective in its
conservation objectives, the algorithm would be more likely to predict a lower risk of
deforestation and degradation inside the park boundary, ceteris paribus. We anticipated
that, due to the higher-strictness configuration of reserves and national parks at STPAC
compared to BUPAC, the increased risk levels would be higher by magnitude at BUPAC,
which features hunting reserves and wildlife reserves. STPAC also features nature reserves
intentionally spatially arranged as buffer zones for increased protection of the national
parks [74], which we expected to further lower the predicted risk inside the protected
area boundaries.

There are several possible aspects that can explain the finding of higher risk inside
park boundaries for BUPAC, based not only on factors consistent with the evidence in
the literature, such as conflict and complex underlying drivers at the site [18,54,55] but
also due to the management realities at BUPAC [62]. First, the higher risk values inside
protected area boundaries could be simply a function of the less-strict protection category
of the Bili-Uéré Hunting Reserve that aligns with Category VI—protected area with sustainable
use of natural resources [73]. The importance of the category as a factor is demonstrated in
Figure 9 and aligns with existing evidence, such as the findings of Tranquilli et al. [18].
However, this does not necessarily explain the overall increased risk inside the BUPAC
boundaries when also considering the spatial configuration of the protected area complex,
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including the adjacent Bomu Wildlife Reserve. Thus, higher risk inside park boundaries
is more likely a combination of several factors, including regional, local, and cross-border
conflict and instability (Figure 2), enforcement challenges, and the overall remoteness
of the site [54,62,94]. Cross-border traffic and population displacement between CAR
and northern DRC is not only a product of conflict, but also climate change, as BUPAC
becomes a grazing area for pastoralists and others moving northwards. Furthermore,
law enforcement challenges and site remoteness favor the expansion of mining camps,
particularly in the western areas of BUPAC [113], which can compound with other driver
pressures to constitute “driver archetypes” [2,43] or drivers that are found together. For
example, mining camps may be supported by nearby agriculture, leading to increased
potential threats from small-scale agriculture as a knock-on threat from mining, enabled by
enforcement challenges in the landscape.

In addition to the issues of protected area category and spatial configuration of pro-
tected areas within each site, and of course the contextual factors that create a different mix
of driver pressure circumstances for each transboundary complex, there is also a question of
the influence of the protected area borders themselves [114]. The finding of an association
between proximity to the BUPAC protected area and increased risk to intact forests from
small-scale agriculture inside the protected area follows previous studies that have assessed
the influence of border effects and suggest that these could have different implications
inside and outside protected area boundaries—an area for future research [115].

Again, revisiting our initial research questions and hypotheses, our findings suggest
that there may be significant differences in the level of threat to intact forests caused by
deforestation-driver activities, such as small-scale agriculture expansion, between protected
and unprotected forests, and in some cases, risk of a deforestation or degradation incident
resulting from small-scale agriculture can actually be higher for protected forests. This
finding speaks directly to the debate in the protected areas effectiveness literature [13,14].
However, addressing the second research question and following the perspectives of
Cumming [15], Green et al. [20], and Du et al. [19], there are a multitude of social, ecological,
and other factors that may be contributing to protected areas ineffectiveness—in addition to
its success stories. In the case of BUPAC, heightened pressure from small-scale agricultural
expansion may be driven, for example, by better soil suitability for agriculture inside the
parks than in surrounding areas [35]. Pressure could also stem from nearby conflict or
social dimensions like park legitimacy [54,55,91].

The results of this pilot study provide direction for future research. For example,
causal inference and spatial econometrics techniques could be applied to address the role
of spatial configuration of protected area categories in transboundary complexes and guide
land use planning efforts. Future research could also explore alternative algorithmic ap-
proaches, such as neural nets, to determine if there is any change in the predicted risk to
intact forests resulting from small-scale agriculture associated with an alternative modeling
technique. Future research is also needed to clarify how and when designated protec-
tion categories within a broader complex do not align with realities on the ground. For
example, our results indicated that the highest predicted increased risk to intact forests
associated with small-scale agriculture in BUPAC was not Bili-Uéré Hunting Reserve but
within Bomu Wildlife Reserve, which, according to Pélissier et al. [73] and official pro-
tected area categorizations, should have a greater level of enforcement and resource-use
restriction. However, as Ondoua Ondoua et al. [62] describe, militia operations, poaching,
and trafficking in the area may exceed the capacity of local enforcement. Similarly, in
STPAC, the Nouabale-Ndoki National Park in COG presented higher predicted increased
risk to intact forests than other less-strict categorizations within STPAC. These variations
highlight the ways in which enforcement and prioritization dynamics can be influenced
by transboundary contexts. As scholars such as Mason et al. [32], Schoon [57], and Peturs-
son et al. [78] have previously described, the varying national governance, institutional,
political, economic, and social contexts, and indeed the varying degrees of conservation
prioritization on each side of a border may also play critical roles in the level of protected
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area monitoring and effort. Furthermore, those factors can also play a role in the status of
food security, socioeconomic conditions, and pressures to convert intact forests to other
uses that can support livelihoods [75]. While this study highlights the need for future
research to understand these transboundary dynamics, considering these factors, this study
further builds a foundation for future research assessing within-country variations in pre-
dicted increased risk from small-scale agriculture and other drivers by national protected
area categorization in Central Africa. For example, within-country analysis could also
compare context-specific adaptations and innovations to the protected areas model, such as
community-managed forests in DRC, and the procedures used in this study can be repeated
for country-level disaggregation of protected area categories for DRC [116]. This also has
important implications for reducing the risks and potential threats to biodiversity within
protected areas such as BUPAC [94].

5. Conclusions

This pilot study contributed to debates within three overlapping literatures: drivers of
deforestation and forest degradation [2,11], protected areas effectiveness [12–18,24], and
comparative analysis using EO data inside and outside of protected areas boundaries
and across international boundaries [84–86]. This study contributed to the literature by
providing insights regarding the potential influence of spatial configuration of protection
types and categories on the effectiveness of under-studied transboundary protected area
complexes for reducing the risk to intact forests attributed to small-scale agriculture, in
addition to the influence of international boundaries. Following existing theory and evi-
dence [18,29], we asked whether there are significant differences in the levels of threat to
intact forests attributable to small-scale agriculture expansion pressure between protected
and unprotected forests in transboundary Central African protected area complexes. The
study further asked whether protected area categorization and the configuration of these
categories within a protected area complex can play a role in levels of predicted risk from
small-scale agriculture. We predicted an increased risk to intact forests from small-scale
agriculture using a random forest algorithm iterated over an image stack of biophysical,
ecological, and social data, in addition to a drivers of deforestation dataset derived through
an open-source, replicable methodology and regional collaboration [2]. Zonal statistics
from a stratified random sample of points then enabled comparison of predicted risk for
n = 4000 equally sized sites inside and outside of the boundaries of two transboundary
Central African protected area complexes. Our findings suggest varied effectiveness of
protected area complexes in reducing the predicted risk of deforestation and degrada-
tion to intact forests attributed to small-scale agricultural conversion by both site and
category of protected areas. These early results provide direction for future research and
suggest that transboundary protected area complexes could benefit from careful manage-
ment and planning consideration of optimal spatial configuration of mixed resource-use
restriction categories within the same complex. As the 30 by 30 Global Biodiversity Frame-
work places protected areas increasingly at the center of global biodiversity conservation
discussions [32,90,91], our results further emphasize the importance of spatial planning,
the need to balance local livelihoods and resource needs, and transboundary considerations
in effective forest conservation efforts in Central Africa.
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