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Abstract: The composition and structure of mountain vegetation are complex and changeable, and
thus urgently require the integration of Object-Based Image Analysis (OBIA) and Deep Convolutional
Neural Networks (DCNNs). However, while integration technology studies are continuing to
increase, there have been few studies that have carried out the classification of mountain vegetation
by combining OBIA and DCNNs, for it is difficult to obtain enough samples to trigger the potential of
DCNNs for mountain vegetation type classification, especially using high-spatial-resolution remote
sensing images. To address this issue, we propose a self-adaptive-filling method (SAF) to incorporate
the OBIA method to improve the performance of DCNNs in mountain vegetation type classification
using high-spatial-resolution aerial images. Using this method, SAF technology was employed to
produce enough regular sample data for DCNNs by filling the irregular objects created by image
segmenting using interior adaptive pixel blocks. Meanwhile, non-sample segmented image objects
were shaped into different regular rectangular blocks via SAF. Then, the classification result was
defined by voting combining the DCNN performance. Compared to traditional OBIA methods, SAF
generates more samples for the DCNN and fully utilizes every single pixel of the DCNN input. We
design experiments to compare them with traditional OBIA and semantic segmentation methods, such
as U-net, MACU-net, and SegNeXt. The results show that our SAF-DCNN outperforms traditional
OBIA in terms of accuracy and it is similar to the accuracy of the best performing method in semantic
segmentation. However, it reduces the common pretzel phenomenon of semantic segmentation (black
and white noise generated in classification). Overall, the SAF-based OBIA using DCNNs, which is
proposed in this paper, is superior to other commonly used methods for vegetation classification in
mountainous areas.

Keywords: object-based image analysis; deep learning; mountain vegetation type classification; high
spatial aerial remote sensing images

1. Introduction

Vegetation types and their wide distribution are important in forestry [1–4] and agricul-
ture [5,6]. Stand information, including stand structure [7–9], species composition [10–13],
and forest damage [14–17], are important and depend on the results of vegetation classifi-
cation. Mountain vegetation type classification is important in the field of vegetation type
classification. Vegetation in mountainous areas is diverse, abundant, unevenly distributed,
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and irregularly shaped on remote sensing maps. At the same time, vegetation samples in
mountainous areas require expert experience and field visits, making it difficult to obtain
an adequate sample size. This all brings challenges to mountain vegetation classification.
Currently, when the main vegetation remote sensing classification methods are applied
to mountainous areas, their accuracy is relatively low, especially when the sample size
is insufficient. Consequently, identifying an effective method for mountain vegetation
classification is imperative, particularly considering the common occurrence of sample
limitations in practice.

The earliest typical approach to using DCNNs in vegetation remote sensing imagery
was to segment the original image into uniformly sized patches and then feed these patches
into the DCNN for classification. This approach assigns a category to the image flats.
For example, if a piece of image is mostly covered by Quercus acutissima, then this piece of
image can be categorized as Quercus acutissima. Researchers have implemented this process
in LiDAR and airborne imagery for tree species mapping [18], as well as in detecting forest
types by integrating high-resolution satellite imagery with LiDAR data [19]. However, this
approach does not provide clear delineation of the spatial extent of vegetation classes in
the images. For mountain vegetation, the classification error is large because the vegetation
boundary is very irregular and it is difficult to have a whole area of the same category of
vegetation. To accurately classify the range of varied vegetation, Convolutional Neural
Networks have been employed to implement a pixel-based classification approach, namely,
semantic segmentation. Assigning a category pixel by pixel, the range of each category can
be clearly labeled.

Semantic segmentation, i.e., pixel-based DCNN modeling classification, has found
extensive utilization in diverse applications. Examples include plant community map-
ping [20,21], plant species identification [22], deadwood detection [22,23], and forest pest
control strategies [24]. Based on J. Wang’s findings [25], the pixel-to-pixel scheme is deemed
more appropriate than the multivariate classification scheme for binary classification tasks,
specifically in extracting targets from the background. This preference is driven by the
specific considerations of sample size and balance. In addition, mountain vegetation is
so diverse that this is not a binary classification problem. Mountain vegetation is mixed,
which highlights the problem of the pretzel phenomenon that semantic segmentation will
bring. The pretzel phenomenon refers to the black and white noise points that appear
during image processing. It indicates that a single feature is divided into multiple small
pieces or even classified as various types [26]. The issue can be circumvented by employing
an object-based classification method [27].

Traditional OBIA utilizes expert-designed features carefully extracted from segmented
images. Manually designed features rely on a priori knowledge or statistical attributes to
boost the spectral features and texture separability of the land cover [28]. The outcome
often exhibits enhanced visual appeal with equal or superior accuracy compared to pixel-
based classifications. These attributes promote OBIA as an advantageous method over
pixel-based approaches when utilizing remote sensing images. With its evident superiority,
OBIA has emerged as a standard framework for processing high-resolution imagery. How-
ever, the rising data types, expanding volume, and multi-modality present a challenge in
extracting exhaustive manually crafted features [29,30]. DCNNs can autonomously extract
image features and have demonstrated compelling classification performance. Numerous
OBIA application review articles [31,32] underline the necessity to investigate the usage of
DCNNs within OBIA.

Several classification methods combining DCNNs and OBIA have recently emerged.
The authors of [25] proposed an innovative approach that integrates OBIA with DCNNs,
termed as Object Scale Adaptive Convolutional Neural Network (OSA-CNN). This tech-
nique was deployed for land cover classification in high-spatial-resolution (HSR) imagery.
Alessandro et al. [33] built a model called ConvNet based on OBIA and DCNNs for weed
detection in soybean crops. Sean Hartling et al. [34] used directed object-based deep
learning to classify urban tree species.
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One of the problems that must be solved by combining OBIA with DCNNs is that the
images from which the objects are obtained from OBIA generally have irregular shapes,
and the input to the DCNN usually requires a regular rectangle. The most common
operation is to directly frame the irregular image segments with an adaptive rectangle,
fill it with a default background value (e.g., 0), and directly input it into the DCNN.
The background information is clearly meaningless, which makes it difficult for the DCNN
to achieve the classification accuracy it is supposed to. Another common approach is to
obtain rectangular slices from remote sensing maps that completely contain objects for
input into the DCNN, i.e., the input image includes not only the objects but also the spectral
information of other non-objects around the objects. The included spectral information
of other objects will obviously bring influence to the classification results. To address the
aforementioned issue, J. Wang [25] used the method of extracting the main object primitive
axes and sampling the adaptive image patches along the axes to extract the primitive image
patches from the segmented image for DCNN classification, and then classified the patches
extracted from the same segmented image and weighted them according to certain rules to
obtain the final classification results. However, the disadvantage of this method is that it
does not completely utilize all the information of an object; thus, only the information near
the main axis of the image image is utilized and the object edge information is lost.

Another problem faced by OBIA in combination with DCNNs is that a DCNN needs a
large amount of data to trigger its classification potential. Remote sensing image annotation
requires expert experience and mountainous vegetation is difficult to access in the field,
both of which make it difficult to obtain sufficient data samples. Tao Liu [35] proposed a
novel approach to automatically enrich the training dataset by acquiring multi-view data of
each object obtained during orthophoto imaging via UAV. Unfortunately, it is not possible
to enrich the training dataset using this method when there are no multi-view data.

To solve the above problems, we propose a self-adaptive-filling based OBIA combined
with DCNN, named SAF-DCNN. We extract adaptively sized patches from the original
objects recognized by OBIA as filling kernels, and fill the original blank background with
each kernel. This process ensures that we obtain a rectangle that contains all object-specific
information, while each pixel within the rectangle is derived from the initial object. This
scheme fully utilizes all the information about the object obtained by OBIA and each pixel
of the DCNN input, eliminating potential interference from other objects or irrelevant
backgrounds. Meanwhile, when deriving the adaptive filling kernel, we acquire multiple
filling kernels at the same time, which generates multiple different images based on the
original object after filling the original object. This feature enhances the training set of the
DCNN. Experimental results show that SAF-DCNN can improve classification accuracy,
especially in small sample environments.

The main contributions of this paper are as follows:

1. We propose a self-adaptive-filling based OBIA to enhance the classification perfor-
mance of a DCNN classifier using the OBIA technique (SAF-DCNN) for the remote
sensing images of mountain vegetation.

2. To demonstrate the advantages of SAF-based OBIA, we also compare the performance
of using DCNN and random forest classifiers under SAF-based OBIA and traditional
OBIA at two different data volumes.

3. In addition, we compare the performance of OBIA-based methods with semantic seg-
mentation methods on remote sensing images of mountain vegetation by comparing
commonly used methods for the semantic segmentation of remote sensing images.

2. Materials and Methods
2.1. Study Area

Huaguo Mountain is located in the eastern suburb of Lianyungang, with longitude
119°13′–119°29′ east and latitude 34°34′–34°46′ north. The area is a transition zone between
the warm temperate climate and the northern subtropical climate, characterized by a typical
monsoon climate. The topography of the mountain slopes gently on the southeast side and
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becomes steeper on the northwest side. The region is characterized by an average elevation
of approximately 300 m above sea level, a mean annual temperature of 14.1 °C, and an
average annual rainfall of 943.3 mm.

Due to the influence of the oceanic climate, it creates ideal conditions for plant growth,
including heat, light, humidity, and soil composition. These ideal conditions have con-
tributed to the rich biodiversity of Huaguo Mountain, creating a natural wonder of rich
vegetation and a wide variety of plants. The vegetation distribution of Huaguo Mountain
is in a north–south transition; the larger forest areas are generally located on the gentle
southern side, and the main vegetation species include Quercus acutissima, pine forests,
and mixed coniferous and broad forests.

As depicted in Figure 1, we selected a segment of Huaguo Mountain as our study
area, which, located at the south of the mountain range, tends to have gentle topograph-
ical features. Influenced by topography, there is a wide variety of vegetation, including
Castanea mollissima, Quercus acutissima, Cunninghamia lanceolate, Pinus thunbergii, Pinus
taeda, Phyllostachys Spectabilis, and Camellia sinensis. Remote sensing images of vegetation
were classified using this study area to accurately represent the remote sensing image
classification of vegetation types in mountainous areas.

Figure 1. All proposed classifications were tested in an area of 1680 m × 1939 m, which is part
of the Huaguoshan Forest, located in the southern part of Jiangsu Province, China, near the city
of Lianyungang.
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2.2. Data
2.2.1. Data and Preprocessing

The data used in this study were provided by the Lianyungang Bureau of Natural
Resources and Planning and were acquired using an unmanned aerial vehicle during spring
2018. The image includes three bands of RGB with a spatial resolution of 0.2 m. The quality
of the image is fine and it was produced according to GDPJ 05-2013 [36] on the gentle
south slope mountain. Therefore, the differences of the spectral and spatial characteristics
of each vegetation type used for classification are mainly caused by vegetation spectral
characteristics, composition, and structure. It has been orthorectified with GPS control
points and DEM, and at last projected to the Chinese Geodetic Coordinate System 2000
(CGCS 2000).

2.2.2. Sample Data for Training and Verification

The sample data for training and verification in this study came from an existing
forestry map, an in situ survey, and unmanned aerial vehicle (UAV) investigation. On the
existing forestry map, while vegetation type information was displayed, we could only
delineate sample data in some regions where one type of vegetation owned a large area
and concentrated location, as shown in Figure 2. Nevertheless, in most cases, the limits
of various vegetation types could not maintain good correspondence with 0.2 m spatial
resolution aerial images when vegetation structure was fractal, for it was plotted based
on a lower spatial resolution image. For example, as shown in Figure 3, the vegetation
type had been plotted as Castanea mollissima on the forestry map; however, on the aerial
image used in our study, two vegetation types, incuding Castanea mollissima and Quercus
acutissima, could be represented. Therefore, for application to other study regions, field
surveying is necessary to obtain sample data.

Figure 2. Large area of Quercus acutissima with a concentrated location in the largest area wrapped by
the red line.
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Figure 3. Region with fractal and complex structure including two kinds of tree species in the largest
area wrapped by the red line.

An in situ survey was carried out based on the aerial image, and was conducted by
the Lianyungang Forestry Station technicians who were more familiar with the vegetation
structure and its location in the study area. For the 0.2 m spatial resolution image, when the
regions consist of only one vegetation type, it will tend to show relatively uniform spatial
and spectral characteristics, which makes it very easy to discriminate any type of vegetation
from surrounding vegetation, as shown in Figure 4. Accordingly, during the in situ survey
process, when the vegetation types were identified in any accessible place, the sample data
could be plotted. Using this method, for all the accessible regions, the sample data could be
acquired via a combination of in situ survey and visual plotting.

Figure 4. As shown by the purple lines wrapping each area on the map, the region consisting of only
one vegetation type with relatively uniform spatial and spectral characteristics .
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An unmanned aerial vehicle (UAV) was deployed as a complementary technique when
the chosen sample data were located in poor-accessibility regions because vegetation type
classification requires high spatial resolution. Compared to other remote sensing equipment,
UAV imagery offers centimeter-level resolution, enabling the correct determination of
vegetation type data with the help of forestry technicians and experts. Shown in Table 1,
these pictures were taken by a UAV at a height of approximately 60m. Other vegetation
types are either located at favorable accessibility regions, for example, Castanea mollissima,
or have obvious image characteristics, for example, Pinus thunbergii and Camellia sinensis.
Therefore, there are no sample data acquired from a UAV picture.

Table 1. Pictures taken by UAV.

Vegetation Type Picture Taken by UAV Vegetation Type Picture Taken by UAV

Phyllostachys
Spectabilis Quercus acutissima

Cunninghamia
lanceolate Pinus thunbergii

Figure 5 illustrates the final sample data obtained using the above three approaches,
which were used as the training and verifying samples for this paper. This research
ultimately subdivides the vegetation into ten categories, including Castanea mollissima,
Quercus acutissima, Pinus thunbergii, and Cunninghamia lanceolate, among others. These
specific classifications are shown in Table 2.
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Figure 5. The final sample data are shown in the figure.
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Table 2. Mountain vegetation classification types.

Vegetation Type Image Description

Castanea mollissima
This is a tree with edible fruits. The leaves of the tree are characterized by their

broad shape and haphazard arrangement. They exhibit vibrant hues and distinct
spectral features.

Quercus acutissima

In the study area, Quercus acutissima is widely distributed in the mountain
forests due to its remarkable adaptability. Quercus acutissima has smaller leaves
than C. mollissima quercus, with dense, naturally occurring branches. Quercus
acutissima has an inconspicuous crown, giving a distinctly “broken” silhouette.

Pinus thunbergii
This tree has a small canopy, little shading, low numbers, and random

distribution in this study area. It appears black on the image, rarely pure forest,
and is often mixed with green shrubs.

Cunninghamia lanceo-
late

This is similar in image to the textural features of the pine but the color differs
from those of the P.thunbergii, which is a familiar brown color. It is more dense

and slightly taller than the P.thunbergii in the study area.

Pinus taeda
The color of this vegetation on the image is similar to that of Cunninghamia

lanceolate, but the textural features are different and the canopy is more
pronounced than in Cunninghamia lanceolate.

Camellia sinensis Artificially reclaimed Camellia sinensis with neatly shaped and
distinctive features.

Phyllostachys
Spectabilis

This vegetation looks smoother and more finely textured on the image,
with distinctive features, but it is sometimes intermixed with trees whose

canopies can partially obscure it.

Broadleaf Forest A mixture of different species of broadleaf woods.

Shrub and Grass This one appears to have no visible canopy on the image, and sometimes contains
bare rocks or some other trees.

Mixed Broadleaf–
Conifer Forest Contains broadleaf and coniferous forests, mixed together.
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2.3. Study Methods
2.3.1. Traditional Based OBIA

The typical workflow of conventional object-based image classification, commonly
applied to high-resolution imagery, can be outlined in these primary steps: (1) The image is
segmented using a pre-determined set of parameters (e.g., segmentation ratio and shape
weights) to obtain a segmented image fragment, denoted as A. (2) The features of the object
are extracted in the segmented image, such as the average spectral band values. That is,
a series of functions f 1 − f n (n is the number of features) are applied to an image A to
obtain the feature vector a of that image, as shown in Equation (1).

a = [ f1(A), f2(A), ... fn(A)]. (1)

(3) A part of the data from the array of feature vectors [a1, a2, ..., am] (m is the number of
pictures) is selected to train a classifier F, such as SVM or RF classifier. (4) The segmented
image is classified using the trained classifier F. If the classifier is random forest, we will
use OBIA-RF to represent this classifier. The process of applying DCNN directly within the
conventional OBIA framework is referred to as OBIA-DCNN. Unlike OBIA-RF where the
input is the features of the image, the input is an adaptively sized rectangular image patch
(with the blanks filled with 0 values as the background) that contains the objects in their
entirety. This process does not utilize all of the DCNN input pixels. Meanwhile, due to the
complex and heterogeneous nature of mountainous terrain, it is difficult to obtain enough
samples to stimulate the classification potential of DCNN. To address these two issues, we
propose self-adaptive-filling based OBIA.

2.3.2. Self-Adaptive-Filling Based OBIA

In the SAF-based OBIA framework, the steps for classification based on traditional
classifiers (e.g., SVM and RF) are as follows: (1) Segment the image using a set of predefined
parameters, such as segmentation ratio and shape weights, to obtain a segmented image
patch A. (2) Obtain multiple filled images [A1 − AI] by filling the objects obtained from
segmentation using the self-adaptive-filling method G proposed in this paper, as shown in
Equation (2).

[A1, A2, ..., AI ] = G(A). (2)

(3) Extract the features of multiple filled images [A1 − Ai] for each object separately, using
a series of functions f1 − fn, such as the average band value and the feature ratio of the
band value for the segmented image. The feature vector ai corresponding to the ith image
generated by filling is shown in Equation (3).

a1≤i≤I = [ f1(Ai), f2(Ai), ... fn(Ai)]. (3)

(4) Train a classifier F, such as SVM or RF. (5) Use the trained classifier to classify the
filled images of each object and then vote on the classification results to arrive at the final
classification result. If the classifier is random forest, we will use SAF-RF to denote the
classifier. For a particular original image patch A, its i filled images A1 − AI are predicted
and the classification result ri for each filled image is obtained as shown in Equation (4).

r1≤i≤I = F(ai). (4)

We obtain a set of classification results for the filled images R = {r1, r2, ...., ri}. The classifi-
cation result r which occurs most times in the set R is used as the classification result of the
original image patch A.

Similarly, if DCNN is used as a classifier for SAF-based OBIA, this classification
method is referred to as SAF-DCNN. The steps for SAF-DCNN classification are similar to
those mentioned above for SAF-based OBIA in traditional classification methods such as
SAF-RF. The difference is that SAF-DCNN does not require the manual feature extraction
process mentioned in step (3) above. The filled images are directly used to train the classifier
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F. Contrary to the conventional usage of DCNN in the traditional OBIA framework, we
propose filling in the blank areas of the adaptive image patches—using the pixel blocks
contained in the object itself—in order to eliminate the effect of other values contained in
the adaptive image patches not of this object (meaningless background values or spectral
values of the object’s surroundings) on the classification accuracy of the DCNN. In addition
to this, the SAF-based OBIA expands the training set by using different blocks of pixels
from the object itself for filling to obtain different image patches to input to the DCNN
to enhance its performance. The detailed process of SAF-based OBIA classification is
illustrated in Figure 6.

Figure 6. As shown in the figure, all the segmented image patches are segregated into train and
test sets. Subsequently, the self-adaptive-filling procedure is performed on each set to obtain filled
images for classifier training and prediction. The trained classifier is then used to predict multiple
images generated from the same segmented object and finally vote for the final classification result.
The classifier in the figure can use traditional classification methods such as SVM, RF, or DCNN.

2.3.3. Filled Image Generation for SAF-Based OBIA

The purpose of this section is to illustrate how to generate filled images on a segmented
object corresponding to that object to support SAF-based OBIA classification. We believe
that the original information about the object should be left unaltered when using the
object’s own pixels to fill in blank areas to generate rectangular, adaptive image patches.
In addition, the filling kernels should preserve as much of the original spatial and spectral
information as possible in order to make the filled image more similar to natural vegetation
growth. Specific filled image generation is divided into three steps as follows: Firstly, cut
the segmented image patches collected by OBIA to obtain image patches. Secondly, cut
multiple filling kernels from each image patch to obtain multiple self-adaptive-filling ker-
nels. Thirdly, fill each filling kernel into the original image patch to obtain the enhancement
sample. The specific process is shown in Algorithm 1 and Figure 7.
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Algorithm 1: Self-adaptive-filling Algorithm
Data: An image A of size a × b × 3
Result: An array P[n, a, b] of n images of size a × b × 3

1 Declare an array K[n, c, c] to store the filling kernels, where c is the size of the
sliding window (c < b and c < a);

2 Initialize the sliding window size to c × c;
3 Slide the window over the entire source image, ensuring that each pixel within the

window is non-empty. Store the window in the filling kernels array K;
4 Slide the window by c pixels;
5 If the end of the image is reached, decrease the value of c;
6 Repeat steps 3–5 until n filling kernels are obtained;
7 Declare an output array P[n, a, b];
8 Iterate over the filling kernels array K and obtain a filling kernel K[i] (where i = 0);
9 Find an empty pixel A[x, y] in image A;

10 For each j and k in the range (0, c):;
11 If A[x + j, y + k] is not null:;
12 Set A[x + j, y + k] to K[i](0 + j, 0 + k);
13 Repeat steps 9–12 until the entire image A is traversed. Set P[i] to A;
14 Increment i by 1 and repeat steps 8-13 until all filling kernels in K are used;
15 Output the array of filled images P.

Figure 7. This figure illustrates the specific flow of the self-adaptive-filling algorithm. The red boxes
are the selected filling kernels and the filling process is visualized.

2.3.4. RF and DCNN Using SAF-Based OBIA for Experiments

For the experiments on the SAF-based OBIA method proposed in this paper on
traditional classification methods, we chose a representative method, RF. Representative
features including spectral features, texture features, and spectral indices were also selected.
The details are shown in Table 3.
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Table 3. Feature definitions and formulas.

Feature
Category

Feature
Name Calculation Formula Description

Spectral
character-
istics

Mean c−k (o) =
1
n ∑

(x,y)∈Po

ck(x, y) (5)
Grayscale values of
all image elements in
the kth band

Standard
Deviation σk(o) =

√√√√√
 ∑

(x,y)∈Po

c2
k(x, y)− 1

n

 ∑
(x,y)∈Po

ck(x, y)2

× 1
n

(6)

Standard deviation of
grayscale values of all
image elements in the
kth band

Ratio Ratio =
ck(o)

∑K
k=1 ck(o)

(7)

The ratio of the mean
grayscale value of the
image in the kth band
to the overall bright-
ness of the object

Texture
character-
istics

Entropy
N−1

∑
i,j=0

Pi,j

(
− ln Pi,j

)
(8)

Reflects the amount
of information in the
image object

Homogeneity
N−1

∑
i,j=0

Pi,j

1 + (i − j)2 (9)

Reflects the intrinsic
variability of the im-
age object and the
smaller the variance
the larger the value

Contrast
N−1

∑
i,j=0

Pi,j(i − j)2 (10)

Reflects the degree of
change in image ob-
jects and highlights
anomalies

Correlation
N−1

∑
i,j=0

Pi,j(i − µi)
(

j − µj

)
σ2

i σ2
j

(11)

Reflects the degree of
linear correlation of
grayscale within the
image object

Angle
Second
Moment

N−1

∑
i,j=0

P2
i,j (12)

Reflects the unifor-
mity of grayscale dis-
tribution within the
image object

Mean µi,j =
∑N−1

i,j=0 Pi,j

N2 (13)

Reflects the average
grayscale within the
image object

Standard
Deviation σi,j =

√√√√N−1

∑
i,j=0

(
Pi,j − µi,j

)
(14)

Reflects the magni-
tude of grayscale
changes within the
image object

Dissimilarity
N−1

∑
i,j=0

Pi,j|i − j| (15)

Reflects the degree of
grayscale detail vari-
ation within the im-
age object
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Table 3. Cont.

Feature
Category

Feature
Name Calculation Formula Description

Vegetat-
ion Index

EXG 2 ∗ G − R − B (16) Over Green Index

EXR 1.4 ∗ R − G (17) Super Red Index

EXGR EXG − EXR (18)
Super Green Super
Red Differential In-
dex

NGBD I (G − B)/(G + B) (19)
Normalized Green
and Blue Disparity
Index

RGBV I (G − B ∗ R)/(G + B ∗ R) (20) Red, Green, and Blue
Vegetation Index

NGRD I (G − R)/(G + R) (21) Normalized Red–
Green Variance Index

Po is the set of image elements in object o; n is the number of image elements in po ; ck(x, y) is the gray value of
the image element (x, y) in the k-band; ck(o) is the average value of all pixels in the k-band of the image; σk(o)
denotes the standard deviation of o in band k-band; K is the total number of bands involved in the operation; N
stands for the number of gray levels; Pi,j represents the values of the elements in row i, column j of the grayscale
covariance matrix; µi,j is the texture mean; σi,j is the texture standard deviation; R is the red band spectral value;
G is the green band spectral value; B is the blue band spectral value.

The limitation of traditional classifiers is that features must be selected manually.
Improper feature selection will reduce the classification accuracy. SAF-based OBIA using
DCNN can effectively avoid the accuracy problem caused by improper manual feature
selection. To begin with, SAF-based OBIA collects patches of segmented images. Subse-
quently, multiple filling kernels are cut from each image patch to obtain multiple filling
kernels. Lastly, each filling kernel is filled into the original image patch to obtain the
enhancement sample. Finally, all the enhanced samples are classified and then voted on
to obtain the final classification results. In the experimental stage, we refer to the OSA-
CNN proposed by Jie Wang [25] and use the DCNN classification module in OSA-CNN to
conduct experiments.

2.3.5. RF and DCNN Using OBIA for Comparison

Object-Based Image Analysis (OBIA) is a significant tool for target detection in remote
sensing imagery, as referenced in [37]. Therefore, in order to measure the effectiveness
of SAF-based OBIA proposed in this paper, it was compared with random forest and
DCNN based on traditional OBIA. The comparison was built on exactly the same training
and testing sets. When using random forest, the same features were selected as in the
SAF-based OBIA experiments, all shown in Table 3. The exact same network structure as in
the SAF-based OBIA experiment was also used when employing DCNN as a classifier.

2.3.6. Semantic Segmentation: U-net, MACU-net, and SegNeXt for Comparison

Semantic segmentation has been widely used in many fields with better results.
Among them, U-net [38] is a deep learning architecture for image segmentation. It was ini-
tially proposed for medical image segmentation and was later used in other fields, such as
remote sensing, with good results. The network structure of U-net is a symmetric encoder
and decoder with a hopping connection path in between. The encoder part consists of a se-
ries of convolutional layers and pooling layers for extracting image features and gradually
reducing the spatial resolution. The decoder part consists of a series of convolutional layers
and upsampling layers to gradually restore the feature map to its original size and generate
segmentation results. We chose U-net for comparison because its accuracy in tree species
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recognition is similar to two other classical semantic segmentation methods, SegNet and
FCDenseNet, but it is easier to train [39].

Proposed in 2015, U-net is widely used in remote sensing with good results. In order
to increase the persuasiveness of the comparison experiments, we chose the MACU-net [40]
method based on the improvement in U-net++. MACU-net is a network that was proposed
by Rui Li in 2021. The network also enhances the feature representation and extraction
capabilities of the standard convolutional layers with asymmetric convolutional blocks.
The proponents of this method have experimentally demonstrated, on two remote sens-
ing datasets captured by different satellite sensors, that the method (i.e., MACU-Net)
outperforms benchmark methods such as U-Net, U-Net 3+, and U-Net with PPL.

SegNeXt [41] is a recently proposed semantic segmentation method. This approach
uses convolutional attention to encode contextual information more effectively than the
self-attention mechanism in transformers. SegNeXt substantially enhances the perfor-
mance on well-recognized benchmarks compared to preceding cutting-edge methods,
including ADE20K, Cityscapes, COCO-Stuff, Pascal VOC, Pascal Context, and iSAID.
We chose this method comparison to make up for our shortcomings regarding the new
method comparison.

2.3.7. Experiment Design

This section aims to delineate the experimental framework designed to accomplish the
research objectives outlined in the introductory section. Firstly, once the original images
were acquired, they were labeled via visual interpretation and field visits, and the original
and labeled sample images were obtained by combining the results of previous forestry
surveys. Then, the images were cropped into two groups of image patches according to the
different requirements of OBIA and semantic segmentation. Using OBIA-based methods,
we determined the optimal segmentation ratio and shape weights for image segmentation
based on experiments and expert experience. All OBIA methods use the same segmentation
ratio and shape weights. Each set of image patches was divided into two equal numbers
of copies, one for the training set and one for the testing set. A quarter of the training set
was then randomly selected from the training set as a small sample. Figure 8 summarizes
the experiments performed using the SAF-based OBIA approaches, the traditional OBIA
approaches, and the semantic segmentation approaches to compare the performance of
each approach on two datasets with different data volumes.
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Figure 8. As shown in the figure, all segmented image segments are divided into a training set and
a test set, after which we keep the test set unchanged and a quarter of the training set is randomly
selected as the training set to represent small sample classification. The nomenclature of results in the
figure is “method type–method name–data sufficiency”, for example, “Segmentation–U-net–Data-
poor” indicates the classification result of the U-net method in semantic segmentation in the case of
limited data.

3. Results
3.1. Overall Accuracy Evaluation

Overall Accuracy (OA) is a common metric for evaluating the performance of a
classification model [42–44] and it is given by

OA = (TP + TN)/(TP + FP + TN + FN), (22)

The Kappa coefficient is a statistical metric that is also commonly used for classification
accuracy assessment [43–45] and it is calculated as follows:

κ =
Po − Pe

1 − Pe
(23)
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MIoU refers to mean intersection over union. It is a common measure of image
segmentation accuracy and is used in computer vision tasks such as target detection and
semantic segmentation.

mIoU =
1

ncl

ncl

∑
i=1

 pii

∑ti
j=1 pij + ∑ti

j=1 pji − pii

 (24)

ncl represents the total number of classes. pij is the count of pixels of class i predicted to
belong to class j. ti is the total count of pixels belonging to class i. pii is the count of pixels
of class i that were correctly predicted.

The results of OA, Kappa, and mIoU coefficients for all experiments in this paper are
shown in Figure 9.

Figure 9. Cont.
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Figure 9. OA, Kappa, and mIoU for experimental results.

3.2. Accuracy of Each Vegetation

The evaluation metrics known as User’s Accuracy (UA) and Producer’s Accuracy (PA)
are frequently employed in fields such as remote sensing imagery and feature classification
to assess the precision of classification outcomes.

UA is the number of samples correctly predicted out of the total number of samples
predicted in the category from a prediction point of view.

PA is the number of correctly predicted samples from the perspective of the sample as
a percentage of the total number of samples in the category.

These two metrics are commonly used to evaluate the performance of classification
algorithms [43,46,47], and can help to determine the reliability of the classification results
and the effectiveness of the classifier. The producer and user accuracies for each method
and each vegetation are shown in Table 4.
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Table 4. Specific results of vegetation classification.

Castanea
mollissima

Quercus
acutissima

Pinus
thunbergii

Cunninghamia
lanceolate Pinus taeda Camellia

sinensis
Phyllostachys

Spectabilis
Broadleaf

Forest
Shrub and

Grass
Mixed

Broadleaf–
Conifer Forest

SAF-RF-DR * PA 0.177 0.565 0.547 0.520 0.546 0.800 1.000 0.354 0.647 0.467
UA 0.214 0.718 0.265 0.520 0.300 0.348 0.125 0.193 0.734 0.525

SAF-DCNN-DR PA 0.568 0.745 0.667 0.633 0.750 0.696 0.750 0.467 0.745 0.660
UA 0.595 0.708 0.623 0.740 0.545 0.696 0.375 0.523 0.784 0.635

OBIA-RF-DR PA 0.286 0.463 0.497 0.471 0.500 0.667 0.500 0.300 0.644 0.401
UA 0.098 0.634 0.307 0.519 0.045 0.087 0.125 0.199 0.703 0.411

OBIA-DCNN-DR PA 0.632 0.814 0.628 0.652 0.069 0.875 1.000 0.473 0.724 0.719
UA 0.571 0.759 0.689 0.779 0.273 0.913 0.500 0.464 0.784 0.462

U-net-DR PA 0.403 0.596 0.460 0.536 0.342 0.611 0.451 0.255 0.603 0.488
UA 0.372 0.684 0.324 0.449 0.603 0.453 0.070 0.228 0.674 0.456

MACU-net-DR PA 0.604 0.771 0.679 0.587 0.503 0.712 0.000 0.511 0.725 0.611
UA 0.502 0.764 0.671 0.567 0.470 0.661 0.000 0.362 0.770 0.718

SAF-RF-DP * PA 0.750 0.477 0.478 0.432 0.250 0.556 0.000 0.274 0.632 0.409
UA 0.071 0.706 0.214 0.416 0.050 0.217 0.000 0.133 0.713 0.442

SAF-DCNN-DP PA 0.575 0.659 0.656 0.592 0.563 1.000 0.000 0.453 0.660 0.542
UA 0.548 0.704 0.483 0.623 0.409 0.652 0.000 0.351 0.796 0.522

OBIA-RF-DP PA 0.000 0.432 0.450 0.421 0.000 0.000 0.000 0.234 0.577 0.292
UA 0.000 0.597 0.249 0.312 0.000 0.000 0.000 0.166 0.680 0.324

OBIA-DCNN-DP PA 0.190 0.670 0.571 0.613 0.800 1.000 0.000 0.364 0.635 0.526
UA 0.095 0.699 0.420 0.597 0.182 0.522 0.000 0.318 0.826 0.482

U-net-DP PA 0.014 0.261 0.149 0.060 0.010 0.031 0.010 0.076 0.277 0.105
UA 0.009 0.113 0.124 0.252 0.066 0.078 0.006 0.080 0.284 0.032

MACU-net-DP PA 0.426 0.679 0.542 0.624 0.312 0.000 0.000 0.486 0.694 0.495
UA 0.431 0.676 0.578 0.554 0.219 0.000 0.000 0.352 0.704 0.657

* DR stands for data-rich representing a well-sampled experiment. * DP stands for data-poor, representing a poorly sampled experiment. The best results for these two different sample
sizes are shown in bold.
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3.3. Classification Results Map

In order to compare the performance of OBIA-based methods and semantic segmen-
tation methods in the classification of vegetation types in mountainous areas, this paper
chooses the MACU-net-DR method, which has the best effect of semantic segmentation,
and the SAF-DCNN-DR method, which has the best effect based on OBIA. The results of
classifying the whole study area using these two methods are shown in Figure 10.

Figure 10. Results of SAF-DCNN-DR and MACU-net-DR. White areas in Ground Truth are un-
surveyed areas and white areas in SAF-DCNN-DR are non-vegetated areas. In this study, only
the classification accuracy of vegetation types is considered and the accuracy of non-vegetation is
not explored. Legend is the same as in Figure 5, see Figure 5.
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4. Discussion
4.1. Performance of SAF-DCNN on Mountain Vegetation Classification

When the data volume is small, SAF-DCNN has obvious advantages in the remote
sensing of mountain vegetation. As shown in Figure 9, the results of this method are 0.624 in
OA, 0.529 in Kappa, and 0.386 in mIoU, which are the highest among all compared methods.
When the amount of data is large, SAF-DCNN is 0.685 in OA, only 0.002 lower than MACU-
net, which has the highest accuracy. Both SAF-DCNN and MACU-net achieved the highest
kappa of 0.495. For the kappa metric, SAF-DCNN’s 0.610 is nearly 0.003 lower than the
highest MACU-net’s 0.613. However, due to the pretzel phenomenon present in the results
of semantic segmentation, the results of SAF-DCNN are still more visually appealing than
MACU-net. For the evaluation metric of mIoU, SAF-DCNN was 0.472, only 0.006 lower
than the highest OBIA-DCNN of 0.478. To further compare SAF-DCNN and OBIA-DCNN,
we performed a ten-fold cross-validation and t-test, and the results are shown in Table 5.
The results showed statistically significant differences between these two methods.

Table 5. The 10-fold cross-validation and t-test results.

Classifiers SAF-DCNN OBIA-DCNN

Fold #1 0.662 0.635
Fold #2 0.651 0.621
Fold #3 0.649 0.652
Fold #4 0.729 0.688
Fold #5 0.694 0.658
Fold #6 0.698 0.653
Fold #7 0.686 0.667
Fold #8 0.675 0.630
Fold #9 0.674 0.649

Fold #10 0.673 0.665
Mean 0.679 0.651

Pairwise t-test t:5.549 p:0.00357 1

1 p < 0.01.

In order to check the robustness of SAF-DCNN, we performed a validation for two
other regions of Huaguo Mountain (as shown in Figure 11). The results are shown in
Table 6.

Table 6. The OA, Kappa, and mIoU in Region A and Region B.

Region OA Kappa mIoU

Region A 0.694 0.573 0.403
Region B 0.624 0.461 0.426

Region A is similar in size, has a similar sample size, and has similar overall evaluation
metrics to the study area. Region B is smaller than the study area, with a smaller sample
size and slightly lower evaluation indicators than the study area.



Remote Sens. 2024, 16, 31 22 of 27

Figure 11. Regions A and B for validation.

4.2. Performance of SAF-Based OBIA

From Figure 9, it can be seen that SAF-DCNN proposed in this paper has some
improvement over the OBIA-DCNN in both OA and Kappa evaluation metrics. In the case
of a larger data volume, the improvement in OA is smaller, from 0.673 to 0.685, while in
the case of a smaller data volume, the improvement is more obvious, from 0.597 to 0.624.
Similarly, Kappa improves less with larger amounts of data, from 0.488 to 0.495, and more
significantly with smaller amounts of data, from 0.39 to 0.422. This may be due to the fact
that our proposed SAF-based OBIA can increase the number of samples and stimulate the
potential of DCNN without relying on additional data. However, there are some types of
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vegetation with reduced accuracy, which may be due to the padding method blurring the
boundary of vegetation in image segmentation.

Meanwhile, SAF-RF, which combines the SAF-based OBIA framework proposed in
this paper with RF, also performs better relative to the traditional OBIA-RF. As shown in
Figure 9 regarding the evaluation metric of OA, there is an improvement of five percentage
points at high data volume and six percentage points at low data volume. For Kappa,
the evaluation metric, there is an improvement of about five percentage points for both
different data volumes. The analysis in this paper suggests that the following two reasons
may have boosted RF performance. The first is that SAF’s expansion of the sample also
helps RF. The second is that there is a change in the image features after self-adaptive-filling
processing, as shown in Figure 12. It may be that this change is more favorable than RF
for classification.

Figure 12. In the figure, rmean refers to the mean of the gray values of the Red band, rstd refers
to the standard deviation of the gray values of the Red band, and rratio is the ratio feature of the
gray matrix of the Red band. The left column of the figure shows the features after the image in
the SAF-based OBIA framework and the right column shows the features of the image in the OBIA
framework. This figure shows the changes in the distribution of image features under the SAF-based
OBIA framework relative to those under the OBIA framework, using Castanea mollissima and Camellia
sinensis as examples.

4.3. Comparison of OBIA and Semantic Segmentation in Mountain Vegetation Classification

In this research, four OBIA-based methods and two semantic-segmentation-based
methods are selected for comparison. The four OBIA-based methods are the traditional
OBIA based on manually selected features and OBIA-RF with random forest, OBIA-DCNN
combined with DCNN classification, the improved SAF-DCNN based on OBIA-DCNN,
and improved SAF-RF based on OBIA-RF proposed in this paper. The two semantic
segmentation methods are the classical U-net and the improved MACU-net based on the
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U-net proposed in 2021. From the experimental results in Figure 9, it is seen that the
accuracy assessment of the newer classifiers in OBIA using DCNN and the newer methods
in semantic segmentation using MACU-net are similar at large data volumes. However,
as can be seen in Figure 13, the OBIA-based approach effectively mitigates the pretzel
phenomenon produced by the semantic segmentation approach. In the case of small data
volume where the amount of data is not sufficient, the OBIA-based method, SAF-DCNN,
has a slight advantage in accuracy (two percentage points higher). This suggests that the
OBIA-based method can better minimize the negative impact of insufficient sample size
relative to the semantic-segmentation-based method.

Figure 13. The result of zooming in on some areas. The first column is the original image. The second
column is the sample, where the white areas are unlabeled regions. The third column is the classifica-
tion result of SAF-DCNN-DR, where the white areas are non-vegetated areas. The fourth column is
the classification result of MACU-net-DR. Legend is the same as in Figure 5, see Figure 5.

5. Conclusions

This study represents an early application of DCNN-based OBIA for vegetation classi-
fication in mountainous areas. In this way, we have achieved better results than traditional
OBIA based on manually selected features. We also propose an improvement called SAF-
based OBIA (self-adaptive-filling based OBIA) because it not only integrates OBIA and
DCNN, but it also utilizes the pixels contained in the object itself to fill the null-valued
region around the object. Therefore, each pixel of the image input to the DCNN classifier
is meaningful. It also increases the number of samples fed into the DCNN classifier (in
this experiment it is five times the original sample size). SAF-based OBIA triggers the
capability of the DCNN classifier more efficiently via training on the augmented dataset.
For this reason, the accuracy is improved in the case of the same DCNN classifiers, and this
improvement can be large when the original training set is small. It effectively alleviates
the problem of obtaining sufficient samples due to intricate vegetation in mountainous
areas. Meanwhile, the improved method of SAF-based OBIA proposed in this paper also
improves classification accuracy when acting on traditional classification methods such as
random forest.
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In addition, this study compares the performances of the OBIA-based approach and
the semantic-segmentation-based approach on mountain vegetation classification. In terms
of large data volume, the accuracy evaluation of the two method types is similar. However,
OBIA-based methods do not produce the pretzel phenomenon that is common in semantic-
segmentation-based methods. The accuracy of OBIA-based methods is higher than for
semantic segmentation at a small data volume. Although the accuracy evaluation of the
new methods in the two classes of methods is similar in terms of the amount of large
data, since the OBIA-based method does not produce the pretzel phenomenon of the
semantic-segmentation-based method, this paper concludes that the OBIA-based method
is superior to the semantic-segmentation-based method. This may be because DCNN,
especially DCNN in semantic segmentation methods, requires a large amount of data.
However, the SAF-based OBIA proposed in this paper can enhance the dataset to improve
the performance of the DCNN classifier. In conclusion, an OBIA-based approach is superior
to a semantic-segmentation-based approach.

We believe that our methodology has implications for forestry and conservation, and
that it provides a new option for classifying and identifying forest types and species. This
will help foresters to better understand and manage forest resources, protect endangered
species, and maintain biodiversity. Additionally, utilizing our method for more accurate
vegetation classification can improve the efficiency of forest conservation and management.

Last, we believe it is necessary to test the effects of the segmentation parameter pairs,
DCNN output sample size, and filling kernel size in Algorithm 1 on SAF-based OBIA
classification accuracy. It is also interesting to explore why SAF-based OBIA can increase
the classification accuracy of random forests. However, the problem with SAF is that it
produces extra samples, which can be difficult due to storage space and training time. We
hope to reduce this extra resource consumption in our subsequent work.
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