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Abstract: Information regarding land use and land cover (LULC) is essential for regional land and
forest management. The contribution of reliable LULC information remains a challenge depending
on the use of remote sensing data and classification methods. This study conducted a multiclass
LULC classification of an intricate mangrove ecosystem using the U-Net model with PlanetScope and
Sentinel-2 imagery and compared it with an artificial neural network model. We mainly used the blue,
green, red, and near-infrared bands, normalized difference vegetation index (NDVI), and normalized
difference water index (NDWI) of each satellite image. The Digital Elevation Model (DEM) and
Canopy Height Model (CHM) were also integrated to leverage the model performance in mixed
ecosystems of mangrove and non-mangrove forest areas. Through a labeled image created from field
ground truth points, the models were trained and evaluated using the metrics of overall accuracy,
Intersection over Union, F1 score, precision, and recall of each class. The results demonstrated that the
combination of PlanetScope bands, spectral indices, DEM, and CHM yielded superior performance
for both the U-Net and ANN models, achieving a higher overall accuracy (94.05% and 92.82%), mean
IoU (0.82 and 0.79), mean F1 scores (0.94 and 0.93), recall (0.94 and 0.93), and precision (0.94). In
contrast, models utilizing the Sentinel-2 dataset showed lower overall accuracy (86.94% and 82.08%),
mean IoU (0.71 and 0.63), mean F1 scores (0.87 and 0.81), recall (0.87 and 0.82), and precision (0.87
and 0.81). The best-classified image, which was produced by U-Net using the PlanetScope dataset,
was exported to create an LULC map of the Wunbaik Mangrove Area in Myanmar.

Keywords: land use and land cover classification; U-Net; artificial neural network; PlanetScope;
Sentinel-2; mangrove

1. Introduction

Mangrove ecosystems are among the most productive coastal habitats and are of
great importance in contributing to the basic needs of local communities, such as wood,
medicine, and food, and in protecting them from severe natural disasters [1,2]. Despite
their significance, these ecosystems are experiencing a decline in status owing to the
rapid increase in human population and developmental dynamics. It has been confronted
with numerous anthropogenic disturbances, including the expansion of agriculture and
aquaculture, urbanization, and the extensive exploitation of commercial fuelwood [3–5]. To
compensate for mangrove deforestation, land use and land cover information for a region
are essential components of an effective mangrove management regime. A reliable and
up-to-date LULC map plays a crucial role in formulating management regulations, decision
making, and restoration programs [6].
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With the rapid development of Earth Observation, many researchers have been ex-
ploring remote sensing technology in environmental sciences. Remote sensing has become
a powerful tool in mangrove conservation across various research areas such as mangrove
extent mapping, species-level identification, LULC classification, and aboveground biomass
estimation [7–9]. Acknowledging the contributions of space technology, numerous satellite
missions, including Landsat and Sentinel, have provided invaluable insights into Earth
observations, particularly for monitoring the condition of mangrove forests. Nguyen et al.
employed Landsat and Sentinel imagery to map the extent of mangroves in Vietnam using a
comparative analysis of unsupervised and supervised classification methods. Their results
revealed that the highest overall accuracy (90.00%) was attained by employing Sentinel-2A
images with a maximum-likelihood supervised classification method [10]. Manna and
Raychaudhuri explored Sentinel-2 imagery to identify mangrove species and physiological
conditions by integrating the Discriminant Normalized Vegetation index (DNVI) in the
Sundarban mangroves [11]. The study underscored the effectiveness of Sentinel-2 coupled
with its proposed spectral index, DNVI, achieving an impressive overall accuracy of 93.90%
through a support vector machine-supervised classification approach. The research con-
ducted by Zeng and Takeuchi demonstrated the performance of the integrated Advanced
Land Observing Satellite (ALOS), Phased Array-type L-band Synthetic Aperture Radar 2
(PALSAR-2) and Landsat imagery to assess mangrove dynamics in China [12]. Some stud-
ies [13,14] have applied very high-resolution images such as World View-3, IKONOS and
Unmanned Aerial Vehicle (UAV) images, and active light detection and ranging (LiDAR)
data to improve the classification accuracy in mangrove species-level identification. How-
ever, the use of LiDAR data and UAV images for acquiring information about large-scale
mangrove zones is relatively limited, and VHR images incur high financial costs. The resul-
tant accuracy of mangrove classification varies based on the type of remote sensing data
and the classification method employed, reflecting the benefits and drawbacks associated
with different approaches [13,14].

Regarding classification methods, studies have explored LULC classification using
both unsupervised and supervised approaches with different satellite images [15,16]. Cur-
rently, the application of machine and deep learning in LULC classification has proven to
perform better than conventional approaches [17–21]. Unlike traditional machine learning
classification methods, deep learning models exhibit the unique ability to automatically
extract features and learn complex patterns from input features, thereby alleviating the
necessity for extensive variable training. Numerous studies have demonstrated the supe-
rior performance of deep learning models over traditional ML methods in remote sensing
applications [22–24]. Among state-of-the-art models, the U-Net segmentation model and
artificial neural networks (ANNs) have consistently demonstrated superior performance
in remote sensing image analysis [25–27]. However, limited studies have applied the
U-Net and ANN models using different spatial resolution of satellite images for mangrove
ecosystem [28–30]. Moreover, their research focused only on mangrove and non-mangrove
classifications to highlight the distribution and dynamics of mangroves. Consequently,
there is still a need to deploy U-Net and ANN models with various satellite images for
LULC classification of an intricate mangrove ecosystem.

Despite the limitations of remote sensing technology, the mangrove community itself
thrives in the intricate ecosystem of the intertidal zone of tropical and subtropical coastlines.
Consequently, LULC classification in mangrove regions encounters unique challenges, such
as spectral confusion between similar classes of mangrove status and other land use types.
Therefore, the contribution of accurate information to LULC classification of mangrove
ecosystems remains challenging. Furthermore, this study explored the integration of
differences of Digital Elevation Models to leverage model performance in complex areas
where mangrove and non-mangrove forests are mixed. The advent of Plant Scope imagery
with 3 m resolution enables researchers to better understand and detail the acquisition
of mangrove ecosystems for multiclass LULC classification. Through the Research and
Education Program offered by PlanetScope, this study was granted access to high-resolution
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PlanetScope imagery with 3 m resolution for LULC classification in the Wunbaik Mangrove
region in Myanmar. It is worth examining the performance of DL models using different
satellite images for the LULC classification of an intricate mangrove ecosystem.

The Wunbaik Mangrove Area (WMA) is one of the largest remnant mangrove biomes
endowed with diverse mangrove species and provides invaluable ecosystem services to
local communities in Myanmar. Owing to the rapid population explosion, low income,
and scarcity of electricity, local people are highly dependent on mangrove forests for their
fuelwood. Large areas of mangrove forests are cleared for main livelihoods, including
shrimp ponds and paddy fields [31,32]. Being inaccessible and the least developed region
in Myanmar, the Wunbaik Mangrove Forest is not well managed by officials, despite be-
ing an impressive natural mangrove area. Although mangrove restoration projects have
been implemented by the Forest Department, few studies have been conducted to provide
reliable information on the mangrove conservation of the WMA. A project report by the
Food and Agricultural Organization in 2011 [31] has investigated the LULC classification
of the Wunbaik Reserved Mangrove Forest (WRMF), a reserved forest. The doctoral re-
search by Saw [33] investigated mangrove dynamics in the WRMF using Landsat images
from 1990 to 2014. However, they only employed traditional classification approaches
using medium-resolution satellite images. In 2020, Maung and Sasaki applied an ANN
model with 10 m resolution Sentinel-2 imagery to detect the natural recovery of mangrove
forests in the WMF, but their focus was also on mangrove and non-mangrove identifica-
tion [34]. Therefore, there is a prominent research gap in updating the LULC information
for such massive mangrove areas. In addition, it is challenging to determine how state-
of-the-art deep learning models can accurately distinguish LULC classes in an intricate
mangrove ecosystem.

Based on the detailed literature review above, this study aimed to (1) compare U-Net
and ANN models using PlanetScope and Sentinel-2 images for LULC classification in a com-
plex mangrove ecosystem and (2) contribute accurate and up-to-date LULC information to
mangrove management regimes for Wunbaik Mangrove conservation. Furthermore, we
explored the integration of topographic and canopy height information to improve the clas-
sification accuracy. By fulfilling these research objectives, the proposed method can improve
the performance of multiclass LULC classification in an intricate mangrove environment.

2. Materials and Methods
2.1. Study Area

Wunbaik Mangrove Area (WMA) is one of large remnant mangrove assets covering
a land area of about 55,000 ha, which is located between 19◦05′00′ ′N–19◦25′00′ ′N and
93◦50′00′ ′E–94◦05′00′ ′E in Rakhine State, Myanmar (Figure 1). Most mangrove forests
in the study area have been reserved as forest areas under management by the Forest
Department since 1931: Main Wunbaik Reserved Mangrove Forest (WRMF), Mingyaung
Public Mangrove Forest, and Extended Mingyaung Mangrove Forest. According to a Food
and Agricultural Organization (FAO) report, 34 mangrove species thrive in mangrove-
reserved forests. The study area is endowed with diverse ecosystems of mangrove and
non-mangrove forests, with different topographic features ranging from 0 to 95 m. The
report of the Myanmar Information Management Unit (MIMU) (https://themimu.info/
states_regions/rakhine, accessed on 12 June 2023) in 2019 mentions that temperature of the
study area is between 27 ◦C and 33 ◦C and annual rainfall is 4860 mm. The main livelihoods
of local people in the study area are rice production and shrimp pond aquaculture.

https://themimu.info/states_regions/rakhine
https://themimu.info/states_regions/rakhine
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Figure 1. Location of field GPS points collected in Wunbaik Mangrove Area, Myanmar (PlanetScope 
image) (coastal border is in blue and terrestrial is in red). 

2.2. Ground Truth Data Collection and Creating a Labeled Image 
To create a robust deep learning model, training the model with accurately labeled 

data is necessary and challenging. Some studies have employed existing globally labeled 
datasets, but considering the unique characteristics of the mangrove ecosystem in our 
study region, we created a field-based fully labeled image for the classification. We con-
ducted a field survey of ground-truth data collection for model training from 2 to 28 May 
2023. Due to the diverse ecosystems and local livelihoods depending on the mangrove 
area, the study area contains various land use and land cover types, as shown in Figure 2. 
We used a handheld GARMIN GPS with 3 m accuracy, which is suitable for collecting 
land cover data. A total of 224 GPS points were recorded with latitude, longitude, and 
LULC information (Table 1) and then imported them into ArcGIS Pro 3.2.1 version for 
double checking using very high-resolution Google Earth and PlanetScope images. 

To minimize the potential for misinterpretation, which is occasionally encountered 
in the conventional manual annotation of multiple LULC classes, we initially applied the 
ISODATA approach to the QGIS acquired on 12 February 2023, which was not used for 
model training [25,35]. Based on 224 Field GPS points and very high-resolution Google 
Earth and Planet Scope Dove images, the ISODATA output image was manually corrected 
using a raster editor tool in QGIS (QGIS Development Team (2009); Open-Source Geospa-
tial Foundation Project, http://qgis.osgeo.org, accessed on 10 June 2023). We also referred 
to a classified image with 95% accuracy for mangrove and non-mangrove areas in 2020, 
which was provided by Maung and Sasaki [34]. Following careful visualization and vali-
dation by field experts, a reliable and accurately labeled image with seven LULC classes 
was obtained for training deep learning models. 

  

Figure 1. Location of field GPS points collected in Wunbaik Mangrove Area, Myanmar (PlanetScope
image) (coastal border is in blue and terrestrial is in red).

2.2. Ground Truth Data Collection and Creating a Labeled Image

To create a robust deep learning model, training the model with accurately labeled
data is necessary and challenging. Some studies have employed existing globally labeled
datasets, but considering the unique characteristics of the mangrove ecosystem in our study
region, we created a field-based fully labeled image for the classification. We conducted
a field survey of ground-truth data collection for model training from 2 to 28 May 2023.
Due to the diverse ecosystems and local livelihoods depending on the mangrove area, the
study area contains various land use and land cover types, as shown in Figure 2. We used a
handheld GARMIN GPS with 3 m accuracy, which is suitable for collecting land cover data.
A total of 224 GPS points were recorded with latitude, longitude, and LULC information
(Table 1) and then imported them into ArcGIS Pro 3.2.1 version for double checking using
very high-resolution Google Earth and PlanetScope images.

To minimize the potential for misinterpretation, which is occasionally encountered
in the conventional manual annotation of multiple LULC classes, we initially applied the
ISODATA approach to the QGIS acquired on 12 February 2023, which was not used for
model training [25,35]. Based on 224 Field GPS points and very high-resolution Google
Earth and Planet Scope Dove images, the ISODATA output image was manually corrected
using a raster editor tool in QGIS (QGIS Development Team (2009); Open-Source Geospatial
Foundation Project, http://qgis.osgeo.org, accessed on 10 June 2023). We also referred to a
classified image with 95% accuracy for mangrove and non-mangrove areas in 2020, which
was provided by Maung and Sasaki [34]. Following careful visualization and validation by
field experts, a reliable and accurately labeled image with seven LULC classes was obtained
for training deep learning models.

http://qgis.osgeo.org
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Figure 2. Different LULC types of our classification in the study area. (a) Water body; (b) shrimp
pond; (c) bare land; (d) non-mangrove forest; (e) open mangrove; (f) closed mangrove; (g) paddy field.

Table 1. Ground truth points collected in field survey.

Annotation Code Description of LULC Classes Number of GPS Points

0 Water: areas mainly covered by marine water. 20

1 Shrimp pond: man-made ponds used for shrimp farming,
characterized by the presence of water and often geometric shapes. 31

2 Bare land: unvegetated areas such as tidal flat in mangrove areas or
exposed soil in terrestrial areas. 22

3 Non-mangrove forest: forested areas consisting of tree cover that is
not dominated by mangrove species. 25

4 Open mangrove: mangrove areas with a relatively sparse canopy,
allowing more sunlight to reach the ground. 38

5 Closed mangrove: dense mangrove areas with a thick canopy,
where mangrove trees form a dense cover. 58

6 Paddy field: agricultural fields used for cultivating rice, typically
similar shapes to shrimp ponds. 30

Total 224
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2.3. Earth Observation Data
2.3.1. Satellite Band and Spectral Indices

This study mainly used two different satellite images of Planet Scope images with
3 m resolution and Sentinel-2 images with 10 m resolution. Planet launches an incredible
support of education and research program, by which we could access very high-resolution
PlanetScope images for our study area. Orthorectified and atmospherically corrected
images were downloaded from the Planet portal. Sentinel-2 level 2A products were
collected from the Copernicus Open Access Hub using the semi-automatic Classification
Plugin (SCP) tool in the QGIS 3.8 version. Level 2A products have provided atmospherically
corrected Surface Reflectance images since December 2018. Sentinel-2 provides 13 bands
with resolutions of 10, 20, and 60 m. Our study specifically utilized RGB and NIR bands
with a 10 m resolution. To ensure consistency in spatial resolution, these bands were
resampled to match the 3 m resolution of the PlanetScope bands; more detailed information
is reported in Table 2.

Table 2. Specification of satellite imageries used in this study.

Title 1 Acquisition Date Cloud Coverage Band Used Spatial Resolution Processing Level

PlanetScope 21 January 2023 0 RGB, NIR 3 -
Sentinel-2 14 February 2023 0 RGB, NIR 10 Level-2A

We also used two popular and effective spectral indices, NDVI and NDWI, derived
from the preprocessed spectral bands of Planet Scope and Sentinel-2. NDVI was calculated
from Red and Near-infrared (NIR) bands, while NDWI was created from Green and NIR
bands, which are available in both satellite images, using Equations (1) and (2), respec-
tively [36,37]. The NDWI with a visible green band and NIR can be used to distinguish
mangroves from water bodies because of their sensitivity to vegetation [37].

NDVI =
NIR − RED
NIR + RED

(1)

NDWI =
GREEN − NIR
GREEN + NIR

(2)

2.3.2. Topographic and Canopy Height Information

Integration of topographic and canopy height information has been explored to show
accuracy improvement in LULC classification [38–41]. This study exhibited Multi-Error-
Removed-Improved-Terrain (MERIT) (https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_
DEM/, accessed on 20 January 2020) and Global Canopy Height Model (GCHM) datasets
(https://langnico.github.io/globalcanopyheight/, accessed on 17 July 2023) with the aim
of leveraging classification accuracy in distinguishing mangrove and non-mangrove forest
in a mixed ecosystem of the large study area. To the best of our knowledge, this study is the
first attempt to use the GCHM as an input feature for the LULC classification of mangrove
ecosystems. The mangrove forests in our study area thrive in specific topographic niches,
which are flat and low-lying inland coastal regions. The MERIT DEM and GCHM can
help highlight these topographic features and tree height information, making it easier
to distinguish mangrove habitats from non-mangrove forests in mountainous regions.
Yamazaki et al. improved the MERIT DEM by removing the vertical error from SRTM
3 arc (90 m resolution) imagery [42]. This information is accessible free of charge on the
MERIT_DEM website. Lang et al. developed a GCHM by fusing the Global Ecosystem
Dynamic Investigation (GEDI) space-borne LiDAR mission and Sentinel-2 imagery [43,44].
The GCHM dataset is available on the Google Earth Engine with a spatial resolution of
10 m. We then resampled MERIT and GCHM to a 3 m spatial resolution using the Nearest
Neighbor approach to align them with other spectral information.

https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
https://langnico.github.io/globalcanopyheight/
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2.4. Deep Learning Models for LULC Classification
2.4.1. U-Net Model

The U-Net architecture proposed by Ronneberger et al. [45] is a deep learning model
that has gained significant attention because of its exceptional performance in biomedical
image segmentation tasks. With a unique U-shaped design, the U-Net architecture consists
of an encoder and a decoder, facilitating the extraction of features and reconstruction of
high-resolution segmentation maps using skip connections. Through hyperparameter
tuning, we designed a U-Net architecture suitable for LULC classification (Figure 3). In
the proposed U-Net design, the encoder processes the input features from 128 × 128 × 8
image patches. Using 3 × 3 2D convolutional layers with activation functions, hierarchical
features were iteratively extracted, and the feature depth was progressively enhanced. To
control the spatial dimensions and establish a contracting path that formed an efficient
encoder for capturing contextual information, 2 × 2 max pooling layers were employed. In
the bottleneck stage, the encoder converges to a central bottleneck using augmented filters,
thereby capturing the most abstract features from the input data.
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The decoder, forming the expansive path, begins with 2 × 2 and 3 × 3 Conv2DTranspose
upsampling layers to restore spatial resolution and reconstruct fine-grained details. Simul-
taneously, skip connections are established through concatenation, preserving low-level
details and enabling seamless information transfer between paths. The conclusive layer
generates the output, which is aligned with the input dimensions. The output layer mirrors
the spatial dimensions of the input image, with each pixel predicting the LULC class for
the corresponding region.

2.4.2. ANN Model

The ANN model was inspired by the design of a biological neural network of the
human brain with a multilayer perceptron of input, hidden, and output layers [46]. In each
layer, the nodes are interconnected to receive information, analyze it, and produce data.
Referring to the basic ANN architecture, we developed the proposed deep neural network
design with one input layer with eight variables, three hidden layers with 256,125, and
64 nodes, and one output layer with seven LULC classes, as shown in Figure 4.
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In both the U-net and ANN architectures, we employed an Exponential Linear Unit
(ELU) in each layer as an activation function to analyze the features transferred from the
input layer, as shown in Equation (3): ELU have shown faster and more precise learning
in deep neural network computations than the commonly used Rectified Linear Unit
(ReLU) [47]. Studies have already demonstrated the superior performance of ELU over
ReLU through experimental analyses [48,49] and have effectively applied ELU in deep-
learning segmentation tasks [50–52]. The softmax activation function was applied to the
output layer to produce seven probabilistic LULC classes (Equation (4)).

f(y) =
{

y if y > 0
∝ (exp(y)− 1) if y ≤ 0

(3)

f(y) =
exp(yi)

∑ exp(yj)
(4)

2.4.3. Assessment of Model Performance

Using a separate testing dataset, the performances of the models were evaluated
using different metrics: overall accuracy (OA), IoU, F1 score, precision, and recall. First,
we created a confusion matrix to provide a better understanding of the matching of the
prediction results with the labeled data in each class. OA is one of the most widely used
measures in LULC classification, showing the percentage of classification accuracy [53]. It
was calculated based on the proportion of correctly classified pixels to the total number of
pixels using Equation (5). A higher OA represents a better overall classification performance,
but it sometimes leads to misleading results in an imbalanced dataset. Therefore, we
employed other IoU metrics: F1 score, precision, and recall.

The IoU is used when the classes are imbalanced in a dataset. It measures the overlap
between the predicted class and true class by calculating the ratio of intersection of the
predicted and true classes to their union (Equation (6)) [54]. The F1 score is described as
the harmonic mean of the precision and recall, and its value ranges from 0 to 1, indicating
that higher F1 scores represent better classification results (Equation (7)). Precision is also
expressed as the ratio of correctly classified positive classes to the total number of true and
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false positive classes, whereas recall focuses on the total number of true positive and false
negative classes, as shown in Equations (8) and (9)) [55].

OA =
Number of correct prediction

Total number of prediction
(5)

IoU =
True postive

True positive + False positive + False negative
(6)

F1 = 2 × Precision × Recall
Precision + Recall

(7)

Precision =
True positive

True positive + False positive
(8)

Recall =
True positive

True positive + False negative
(9)

2.5. LULC Classification Workflow

The main workflow of this study is illustrated in the flowchart shown in Figure 5.
First, we acquired the necessary remote sensing data, as mentioned in Section 2.3. During
the pre-processing stage, the images were mosaiced, and the study area was extracted
from each image. All data were resampled to a 3 m resolution based on PlantScope
imagery using the Nearest Neighborhood resampling approach. We then created two main
datasets, PlanetScope and Sentinel-2, each integrated with their spectral indices, DEM,
and GCHM data. The following processes were performed separately for the Planet and
Sentinel-2 datasets.
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All remote sensing images were sliced into 128 × 128 patches. A total of 3700 images
with 128 × 128 patches were created and aligned with the same number of labeled im-
ages encoding seven classes of LULC information. Sliced remote sensing images with
128 × 128 patches were concatenated into a dataset of 128 × 128 × 8 patches. We then
split the datasets into a 75% training dataset with 2389 images and 15% for validation with
500 images. The remaining 10% of the 388 images were reserved as the testing dataset to
evaluate the performance of the models. Our proposed U-Net and ANN models are then
trained in 200 epochs and accessed using TensorFlow version 2.1.5 in python 3.10 on the
Wisteria/BDEC-01 supercomputer system of the University of Tokyo.
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3. Results

In this study, LULC classification was explored using the U-Net and ANN models
with two different datasets: Planet Scope and Sentinel-2. Each dataset was also combined
with DEM and GCHM data to leverage the classification performance. The models were
trained using a training dataset and evaluated using a testing dataset to compare their
performances for complex LULC classes in the Wunbaik Mangrove Area.

3.1. Model Performance with PlanetScope Imagery

Using the RGB and NIR bands of Planet Scope, NDVI, NDWI, DEM, and GCHM,
both U-Net and ANN models demonstrated promising results in classifying various LULC
categories. The U-Net model exhibits an overall accuracy (OA) of 94.88% for the training
dataset and 94.05% for the testing dataset. The U-Net model also produced an Intersection
over Union (IoU) of 0.82, and average values of precision, recall, and F1 score of 0.94. The
ANN model, on the other hand, achieved an OA of 93.61% with the training dataset and
92.82% when the test dataset was predicted, with an IoU of 0.79, an F1 score of 0.93, a
precision of 0.94 and a recall of 0.93.

We also investigated all matrices in each class to analyze the model performance in
each LULC category in detail. The results showed that both the U-Net and ANN models
classified water, open mangrove, and closed mangrove areas with the highest scores in all
metrics. The U-Net consistently outperformed the ANN in most LULC classes. However,
notable strengths of the ANN model were observed in some classes, which are in bold in
Table 3. Both models identified bare land with the lowest scores in most matrices among
other classes. In the context of non-mangrove classes, which represent the smallest portion
within the dataset, U-Net demonstrated a relatively strong performance in distinguishing
them from mangroves, whereas ANN exhibited notably lower scores for this specific task,
except for the precision score. In our study area, the paddy fields had a shape similar to
shrimp ponds and similar spectral information to that of bare land during the post-harvest
season. U-Net, however, could extract paddy fields from confusing classes with slightly
higher IoU and F1 scores compared to the ANN’s performance. The images classified by
each model were randomly extracted, and their differences are shown with the labeled
images in Figure 6.

Remote Sens. 2024, 16, 76 10 of 21 
 

 

3. Results 
In this study, LULC classification was explored using the U-Net and ANN models 

with two different datasets: Planet Scope and Sentinel-2. Each dataset was also combined 
with DEM and GCHM data to leverage the classification performance. The models were 
trained using a training dataset and evaluated using a testing dataset to compare their 
performances for complex LULC classes in the Wunbaik Mangrove Area. 

3.1. Model Performance with PlanetScope Imagery 
Using the RGB and NIR bands of Planet Scope, NDVI, NDWI, DEM, and GCHM, 

both U-Net and ANN models demonstrated promising results in classifying various 
LULC categories. The U-Net model exhibits an overall accuracy (OA) of 94.88% for the 
training dataset and 94.05% for the testing dataset. The U-Net model also produced an 
Intersection over Union (IoU) of 0.82, and average values of precision, recall, and F1 score 
of 0.94. The ANN model, on the other hand, achieved an OA of 93.61% with the training 
dataset and 92.82% when the test dataset was predicted, with an IoU of 0.79, an F1 score 
of 0.93, a precision of 0.94 and a recall of 0.93. 

We also investigated all matrices in each class to analyze the model performance in 
each LULC category in detail. The results showed that both the U-Net and ANN models 
classified water, open mangrove, and closed mangrove areas with the highest scores in all 
metrics. The U-Net consistently outperformed the ANN in most LULC classes. However, 
notable strengths of the ANN model were observed in some classes, which are in bold in 
Table 3. Both models identified bare land with the lowest scores in most matrices among 
other classes. In the context of non-mangrove classes, which represent the smallest portion 
within the dataset, U-Net demonstrated a relatively strong performance in distinguishing 
them from mangroves, whereas ANN exhibited notably lower scores for this specific task, 
except for the precision score. In our study area, the paddy fields had a shape similar to 
shrimp ponds and similar spectral information to that of bare land during the post-harvest 
season. U-Net, however, could extract paddy fields from confusing classes with slightly 
higher IoU and F1 scores compared to the ANN’s performance. The images classified by 
each model were randomly extracted, and their differences are shown with the labeled 
images in Figure 6. 

 

 

Figure 6. The classification results of PlanetScope image, label image, and U-Net-predicted and 
ANN-predicted images. 

Figure 6. The classification results of PlanetScope image, label image, and U-Net-predicted and
ANN-predicted images.



Remote Sens. 2024, 16, 76 11 of 21

Table 3. Classification results of U-Net and ANN using Planet Scope dataset.

LULC Class
IoU F1 Score Precision Recall

U-Net ANN U-Net ANN U-Net ANN U-Net ANN

Water 0.97 0.96 0.97 0.97 0.97 0.98 0.97 0.96
Shrimp pond 0.82 0.72 0.84 0.79 0.85 0.88 0.82 0.72

Bare land 0.76 0.84 0.73 0.70 0.70 0.60 0.76 0.84
Non-mangrove forest 0.92 0.83 0.91 0.85 0.89 0.87 0.92 0.83

Open mangrove 0.91 0.95 0.93 0.94 0.95 0.94 0.91 0.94
Closed mangrove 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.98

Paddy field 0.92 0.89 0.92 0.90 0.92 0.92 0.92 0.92

Average Score 0.82 0.79 0.94 0.93 0.94 0.94 0.94 0.93

Overall accuracy on testing dataset (%) 94.05 92.82

Note: Notable strengths of the ANN model were observed in some classes, which are in bold.

3.2. Model Performance with Sentinel-2 Imagery

We also employed U-Net and ANN on the Sentinel-2 dataset, including the same
spectral bands, indices, DEM, and GCHM. The U-Net model exhibited a higher OA of
98.15% in the training phase; however, the accuracy decreased up to 86.94% for the testing
datasets. However, the ANN model showed steady performance, resulting in 82.03% and
82.08% performance on both the training and testing datasets, respectively. A mean IoU
of 0.71 and an average value of 0.87 for the F1 score, precision, and recall were obtained
with the U-Net model. In sharp contrast, the ANN model classified LULC classes with
lower scores: mean IoU, 0.63; average F1 score, 0.81; precision, 0.81; and recall, 0.82. With a
detailed analysis of each class, the U-Net model outperformed the ANN model, with higher
scores, except for IoU, recall of shrimp ponds, and recall of closed mangroves highlighted
in bold in Table 4. The results indicated that when utilizing the Sentinel-2 dataset, the
models demonstrated lower overall performance scores than when using the PlanetScope
dataset. However, they exhibited slightly higher precision and recall scores for shrimp
pond classifications. Both models produced unsatisfactory results for the bare land and
open mangrove classes, whereas a higher performance was achieved when applying the
PlanetScope dataset. The models exhibited noticeable and steady scores in identifying
paddy fields using both datasets. The differences in classification are shown with the
labeled images in Figure 7.

Table 4. Classification results of U-Net and ANN using Sentinel-2 dataset.

LULC Class
IoU F1 Score Precision Recall

U-Net ANN U-Net ANN U-Net ANN U-Net ANN

Water 0.94 0.89 0.94 0.91 0.94 0.94 0.94 0.89
Shrimp pond 0.83 0.91 0.82 0.77 0.81 0.67 0.83 0.91

Bare land 0.53 0.22 0.54 0.34 0.55 0.55 0.53 0.22
Non-mangrove forest 0.89 0.85 0.91 0.87 0.93 0.89 0.91 0.85

Open mangrove 0.60 0.43 0.64 0.49 0.68 0.57 0.64 0.43
Closed mangrove 0.96 0.94 0.93 0.89 0.91 0.84 0.93 0.94

Paddy field 0.92 0.91 0.92 0.91 0.92 0.91 0.92 0.91

Average Score 0.71 0.63 0.87 0.81 0.87 0.81 0.87 0.82

Overall accuracy on testing dataset (%) 86.94 82.08

Note: With a detailed analysis of each class, the U-Net model outperformed the ANN model, with higher scores,
except for IoU, recall of shrimp ponds, and recall of closed mangroves highlighted in bold.



Remote Sens. 2024, 16, 76 12 of 21
Remote Sens. 2024, 16, 76 12 of 21 
 

 

Figure 7. The classification results of Sentinel-2 image, label image, and U-Net-predicted and ANN-
predicted images. 

3.3. LULC Classification Map for the Whole Study Area 
After evaluating the models with different RS datasets, they were applied to produce 

an LULC map of the Wunbaik Mangrove Area. The LULC maps of the entire study area 
were visualized using ArcGIS Pro by comparing true color images and labeled ground 
truth images (Figure 8). The results showed that the LULC map produced by U-Net with 
Planet Scope had a strong correspondence with the labeled ground truth images in all 
classes. However, despite the promising scores in the training and testing phases, the 
ANN model misclassified bare land in most paddy field areas. 

   

(a) (b) (c) 

 

 

Figure 7. The classification results of Sentinel-2 image, label image, and U-Net-predicted and ANN-
predicted images.

3.3. LULC Classification Map for the Whole Study Area

After evaluating the models with different RS datasets, they were applied to produce
an LULC map of the Wunbaik Mangrove Area. The LULC maps of the entire study area
were visualized using ArcGIS Pro by comparing true color images and labeled ground
truth images (Figure 8). The results showed that the LULC map produced by U-Net with
Planet Scope had a strong correspondence with the labeled ground truth images in all
classes. However, despite the promising scores in the training and testing phases, the ANN
model misclassified bare land in most paddy field areas.
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Figure 8. (a) True color image of PlanetScope, (b) labeled image, LULC classification maps classified
by (c) U-Net model with PlanetScope, (d) ANN model with PlanetScope, (e) U-Net model with
Sentinel-2, and (f) ANN model with Sentinel-2 Dataset.

We also exported and visually analyzed the LULC classification maps from the pre-
dictions of the U-Net and ANN models using the Sentinel-2 dataset. Using Sentinel-2
data, the U-Net model produced a classification map that was as accurate as the U-Net
model using Planet Scope. However, there was some noise and misclassified pixels when
identifying bare land in non-mangrove areas. In addition, both the U-Net and ANN models
misclassified bare land areas and open mangroves with unsatisfactory results. Similarly,
using the PlanetScope data, the ANN model could not distinguish between bare land and
paddy fields.

3.4. Estimating LULC Area for Wunbaik Mangrove Forest Managment

Because the U-Net model with Planet Scope produced the highest scores in all metrics
and predicted a promising classification map, we calculated LULC areas using the U-Net
prediction model. According to our prediction result, closed and open mangrove area cover
187.5 km2 and 57.00 km2 while water body cover 149.96 km2 in our study area. As our
study area is a complex ecosystem, we also identified 15.15 km2 of non-mangrove forests.
Our model detected 44.89 km2 of shrimp ponds and 45.36 km2 of paddy fields, which are
the main livelihoods of nearby local communities (Table 5).

With the aim of contributing up-to-date LULC information to sustainable mangrove
forest management in the Wunbaik area, we extracted used (WRMF) data from the whole
classification map (Figure 9). According to our classification results for 2023, the WRM
comprises 167.38 km2 of closed mangrove, 35.52 km2 of open mangroves, and 72.43 km2

of water bodies. Although there was a small portion of non-mangrove forests on small
mounds inside the WRM, we mainly focused on mangrove forest management. Despite the
large portion of remnant mangrove, due to human disturbances and their effects, we also
detected 20.45 km2 of shrimp pond, 17.77 km2 of paddy fields, and 9.41 km2 of bare land.
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Table 5. LULC information of the whole study area and Wunbaik Reserved Mangrove Forest.

LULC Class
Whole Study Area Wunbaik Reserved Mangrove Forest

Area (km2) Portion (%) Area (km2) Portion (%)

Water 149.96 28.14 72.94 22.51
Shrimp pond 44.89 8.42 17.99 5.55

Bare land 32.98 6.19 11.84 3.65
Non-mangrove forest 15.15 2.84 0.29 0.09

Open mangrove 57.00 10.70 35.52 10.96
Closed mangrove 187.50 35.19 167.38 51.65

Paddy field 45.36 8.51 18.12 5.59
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4. Discussion

For the effective management of mangrove areas, comprehensive LULC information is
pivotal for systematic planning and successful restoration programs. This study conducted
an LULC classification of an intricate ecosystem by comparing two deep learning models, U-
Net and ANN, with confusing classes such as closed and open mangroves, non-mangrove
forests, shrimp ponds, paddy fields, bare land, and water bodies.

4.1. Complexity of Land Use Compared to Land Cover

Some studies have shown promising results in binary classification in which man-
grove are distinguished from non-mangrove classes such as water, human settlement,
and agricultural field [28,29]. However, this study identified multiple classes of intricate
mangrove regions that contributed detailed LULC information for the management of
mangroves. In the LULC classification of mangrove regions, it is straightforward to classify
a binary class, such as mangrove and non-mangrove, or simple land cover classes, such
as mangrove, water, and bare land. However, the complexity of different land uses and
cover types makes the classification process challenging when land use is considered. As a
complicated land use system in our study area, the integration of shrimp ponds and paddy
fields requires more attention when selecting the classification methods and RS datasets.
For instance, shrimp ponds are a type of land use but it possesses water and bare land
as land cover. Shrimp pond areas are sometimes inundated during high tide and have
similar spectral information as water, while being confused with bare land during low tide.
Similarly, the land use and paddy fields after harvesting confused the models with bare
land. Zabaar et al. employed CNN models and compared them with different machine
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learning algorithms using Pléiades VHSR and Sentinel-2A for multiclass LULC mapping of
the Ain Témouchent coastal area situated in western Algeria. Their results showed that the
CNN model outperformed them with a higher OA of 93.5% for Pléiades data and 83.4% for
Sentinel-2A data [56]. Alteraz et al. also demonstrated the superior performance of U-Net
with Sentinel 1 and 2 fusion in multiclass LULC classification compared with other machine
learning models [57]. Therefore, the LULC classification of multiple classes with similar
land covers could lead to misclassification when using traditional approaches. However,
the U-Net model, using PlanetScope with topographic and canopy height information,
produced better performance for the intricate coastal land use system in our study.

Due to an imbalanced class distribution in this research, the water and closed man-
grove classes represented over half of the dataset, while other classes represented less
than 10 percent of the study area (Figure 10). Therefore, the U-Net and ANN models
produced noticeably higher scores than the other classes for both datasets. Considering the
non-mangrove forest class with the smallest portion of the dataset, the proposed U-Net
model outperformed both PlanetScope and Sentinel-2 datasets. In the case of bare land,
which was the second smallest portion, the ANN model overpredicted the PlanetScope
dataset, whereas the model could not be identified in most areas, particularly inside the
mangrove forest with the Sentinel-2 dataset.
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4.2. Integration of DEM and CHM

Paying attention to non-mangrove forested areas have similar spectral information to
mangroves despite ecological differences. Scholars have also developed mangrove-specific
vegetation indices, such as the Combined Mangrove Recognition Index (CMRI) [58] the
Enhanced Mangrove Vegetation Index (EMVI) [59], to distinguish mangroves from other
forest types. Paying careful attention to the ecological conditions of the study area, we
applied DEM and CHM instead of using additional indices. According to our fieldwork,
non-mangrove forests grow in terrestrial regions with higher elevations than mangrove
regions. Canopy height information derived from Unmanned Aerial Vehicle (UAV) images,
light detection, and airborne radar (Lidar) data has been applied as a complementary feature
in mangrove classification of specific and small areas. The integration of DEM improved the
distinction between these two forest types, whereas CHM provided more information for
the case of forested and non-forested classes. Maung and Sasaki [34] introduced a Canopy
Height Model derived from SRTM and MERIT DEMs to identify mangrove distribution
in the Wunbaik mangrove region. Their experimental research highlighted that using
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differences of SRTM and MERIT DEMs improved the accuracy compared to CMRI in
mangrove regions. However, they also considered the binary classification of mangroves
and non-mangroves using only an ANN model and Sentinel-2 imagery for intricate coastal
ecosystems. Considering seven LULC classes in the same study area, we explored the U-Net
segmentation model and high-resolution PlanetScope imagery and compared them with the
ANN and Sentinel-2 image used in the binary classification of Maung and Sasaki’s previous
study. Our results show that U-Net was impressively classified using the PlanetScope
dataset, whereas the ANN model produced some misclassifications between paddy fields
and bare land, as shown in Figure 8.

4.3. Model Performance and Labeled Data Requirement

The deep learning models proposed in our study were trained using the training
and validation datasets separately with the same hyperparameters and input shapes of
128 × 128 × 8. The models were monitored during the learning phase using a validation
dataset. As shown in Figure 11, the U-Net learned well with PlanetScope dataset, which
means no significance difference between the training and validating loss. When the U-
Net model was introduced to the Sentinel-2 dataset, there was overfitting with different
trends of training and validation losses after 25 epochs of learning phases. However,
the ANN model significantly reduced the loss during early epochs in both datasets and,
also, a remarkable loss reduction occurred when using PlanetScope as compared to the
Sentinel-2 dataset. The overfitting problem of the U-Net model with Sentinel-2 dataset
was considered a reason for the resampling approach of Sentinel-2 from 10 m to 3 m.
Being a segmentation model, U-Net is sensitive for spatial information of a dataset. In
response to these overfitting challenges, the fusion of PlanetScope and Sentinel-2 data was
not considered in our analysis, as the U-Net model with the Planet dataset had already
yielded satisfactory results in improving LULC information. In our future studies, we are
aiming to explore various state of the art deep learning approaches to compare with our
proposed method.
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Aside from the overfitting, a notable discrepancy in the spatial resolution between
the U-Net and ANN-predicted images occurred when utilizing the Sentinel dataset, as
shown in Figure 7. This discrepancy can be attributed to the resampling process applied to
the Sentinel images, which affected all corresponding predictions. This assumption finds
support in the ANN-predicted image of the PlanetScope dataset, illustrated in Figure 6,
which maintains its original 3 m resolution. In contrast, the U-Net model demonstrated a
notable ability to preserve fine spatial details in both datasets, which were closely aligned
with the resolution of the labeled images. Leveraging its semantic segmentation approach
and skip connections, U-Net showcased superior performance in terms of both classification
accuracy and spatial resolution of the predicted images. However, it is worth trying original
spatial resolution or different resampling approaches for the Sentinel-2 imagery in future
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research. Through a detailed quantitative and qualitative assessment of the model learning
and prediction, we assumed that the U-Net model with PlanetScope bands, NDVI, NDWI,
MERIT DEM, and GCHM, is the best candidates for the LULC classification of the Wunbaik
Mangrove Area.

Semantic segmentation models such as U-Net are pivotal for accurately categorizing
objects in images, particularly in remote sensing, where access to fully labeled images
is common. With full labels, the model can capture intricate patterns, leading to a more
precise and nuanced segmentation. By contrast, partial labels may hinder the model’s
ability to distinguish between similar classes or subtle distinctions. However, it is important
to acknowledge the challenge of acquiring substantial amounts of labeled data, which is
resource intensive and time consuming. In some cases, partially labeled datasets may
be more practical, and exploring techniques such as semi-supervised learning or active
learning can optimize the labeling resources. Marsocci and Scardapane investigated con-
tinual self-supervised learning for remote sensing semantic segmentation by employing
heterogeneous remote sensing sensors, resolutions, acquisitions, and scenes with varying
levels of labeled data (10%, 50%, and 100%) [60]. Their findings revealed that the proposed
model, Continual Barlow Twins (CBTs), achieved satisfactory IoU scores with 10% and 50%
partially labeled images from the US3D dataset derived from the WorldView 3 satellite,
whereas using a 100% labeled dataset produced the highest IoU score. To address the
challenge of labeled data dependence in remote sensing image semantic segmentation, Li
et al. introduced a semi-supervised segmentation network called SegMind, tested with
partially labeled datasets (5%, 10%, and 20%) [61]. Their experimental results demonstrated
competitive IoU scores compared with other state-of-the-art deep learning models. Saha
et al. conducted unsupervised single-scene segmentation with different input datasets
and no labeled data [62]. Their proposed method outperformed other models, despite low
metric scores and limitations in segmenting small classes. Given the rapid developments in
computer science and remote sensing applications, it is essential to consider both model
performance and resource effectiveness in future studies.

4.4. Challenges and Opportunities of Sustainable Wunbaik Mangrove Mangement

To better manage mangrove forests, other land use information from a reliable LULC
map needs to be considered. Some researchers have explored mangrove mapping on a
global and large scale to better understand mangrove distribution and dynamic changes
as the foundation of international collaboration [63]. Detailed, accurate, and up-to-date
regional information is of utmost importance when considering practical strategies for im-
plementing regional mangrove restoration projects. Despite a massive remnant mangrove
track, the Wunbaik Mangrove Area is also facing human disturbances such as the extension
of shrimp ponds and paddy fields, and illegal firewood extraction due to growth in popula-
tion with low income and lack of job opportunities. Over the years, conversion into shrimp
ponds and paddy fields has led to mangrove deforestation, whereas overexploitation of fuel-
wood has downgraded the mangrove status. Other studies have also pointed out mangrove
loss in Wunbaik due to human disturbances, such as shrimp ponds and agricultural expan-
sion, except for mangrove plantation, but there are no particular programs in which local
communities can participate in mangrove restoration projects [34]. According to our LULC
map, shrimp ponds and paddy fields still exist, even in the Wunbaik Reserved Mangrove
Forest. Being a vulnerable mangrove area due to many interactions with local livelihoods,
it would be impossible to implement mangrove restoration programs without the active
participation of local people. Therefore, based on our findings of LULC information, we
would recommend mangrove projects, such as community forestry, mangrove-friendly
aquaculture systems other than plantations, and the constitution of reserved forests. In
pursuit of a long-term mangrove management strategy for the Wunbaik Reserved Forest,
policymakers, conservationists, and local communities can leverage the LULC information
to formulate a collective land use policy across all government sectors. The insights derived
from our LULC information lay the groundwork for a comprehensive forest management
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plan, in which the creation of buffer zones between existing mangrove areas and anthro-
pogenically disturbed zones is recommended to curtail the expansion of shrimp ponds and
paddy fields. With the goal of mitigating the impact of climate change, our accurate and
up-to-date LULC data serve as a benchmark for estimating mangrove carbon sequestration,
thereby contributing to improved accuracy of global carbon accounting efforts.

5. Conclusions

This study provides reliable and up-to-date LULC information for an intricate man-
grove ecosystem using the U-Net model in conjunction with multisource remote sens-
ing datasets of PlanetScope, Sentinel-2, MERIT DEM, and Global Canopy Height Model.
Through different scenarios of the U-Net and ANN models using different dataset combi-
nations, the U-Net model using PlanetScope, topography, and canopy height information
achieved the highest OA (94.05%), IoU (0.82), and a mean F1 score, recall, and precision of
0.94. Our proposed model could predict LULC classes in the entire study area and produce
an accurate LULC map for the mangrove management regime. According to the LULC
results, Wunbaik Reserved Mangrove Forest is endowed with varying states of closed
and open mangroves. However, disturbances due to human activities in shrimp ponds
and paddy fields are still occurring in reserved forests, thereby altering for the need of
conservation. To safeguard this remnant mangrove area, immediate attention should be
paid to restoration approaches in which local communities can participate under expert
guidance. In summary, our study not only proposes a promising classification method but
also an urgent call for conservation measures for this unique mangrove ecosystem.
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