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Abstract: In the context of global climate change and the increase in drought frequency, monitoring
and accurately assessing the impact of hydrological process limitations on vegetation growth is
of paramount importance. Our study undertakes a comprehensive evaluation of the efficacy of
satellite remote sensing vegetation indices—Normalized Difference Vegetation Index (MODIS NDVI
product), kernel NDVI (kNDVI), and Solar-Induced chlorophyll Fluorescence (GOSIF product) in this
regard. Initially, we applied the LightGBM-Shapley additive explanation framework to assess the
influencing factors on the three vegetation indices. We found that Vapor Pressure Deficit (VPD) is the
primary factor affecting vegetation in southern China (18◦–30◦N). Subsequently, using Gross Primary
Productivity (GPP) estimates from flux tower sites as a performance benchmark, we evaluated the
ability of these vegetation indices to accurately reflect vegetation GPP changes during drought
conditions. Our findings indicate that SIF serves as the most effective surrogate for GPP, capturing
the variability of GPP during drought periods with minimal time lag. Additionally, our study
reveals that the performance of kNDVI significantly varies depending on the estimation of different
kernel parameters. The application of a time-heuristic estimation method could potentially enhance
kNDVI’s capacity to capture GPP dynamics more effectively during drought periods. Overall, this
study demonstrates that satellite-based SIF data are more adept at monitoring vegetation responses
to water stress and accurately tracking GPP anomalies caused by droughts. These findings not only
provide critical insights into the selection and optimization of remote sensing vegetation product
but also offer a valuable framework for future research aimed at improving our monitoring and
understanding of vegetation growth status under climatic changes.

Keywords: solar-induced chlorophyll fluorescence; vegetation indices; water stress; lightGBM-
Shapley; MODIS; GOSIF; Southern China

1. Introduction

In the current narrative of global climate change, ecosystems are increasingly vulnera-
ble to various challenges. Foremost among these is drought, a critical natural phenomenon
projected to escalate in frequency, duration, and intensity in the upcoming years [1]. The
impacts of drought extend beyond the mere reduction of water resources, which signifi-
cantly influences terrestrial ecosystems, particularly affecting vegetation growth and the
stability of plant community. While a universal definition of drought remains elusive,
it is typically classified into four categories: meteorological, agricultural (soil moisture),
hydrological, and socio-economic droughts [2,3]. Each category interacts with vegetation
uniquely. For instance, decreased soil moisture directly hinders plant growth, whereas
meteorological drought indirectly affects vegetation by altering the climatic conditions [4,5].
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The growth stage of vegetation has a significant impact on the response of NDVI. In the
early growth stage, there is less vegetation coverage and lower NDVI values; As vegetation
growth and coverage increase, NDVI values increase. In the mature stage, NDVI values
may reach high values, reflecting high vegetation density and health status. In the middle
and later stages of the lifecycle, although vegetation begins to decline, the sensitivity of
NDVI values decreases due to the high vegetation coverage, making it difficult to capture
vegetation growth dynamics in a timely manner. kNDVI provides improved sensitivity
for capturing changes in vegetation growth stages, especially in the mid to late stages of
vegetation growth. Due to its data processing method, kNDVI can more accurately reflect
minor changes in vegetation growth and aging processes.

Satellite remote sensing technology has become indispensable for monitoring and
assessing the impact of drought on ecosystems [6]. The Normalized Difference Vegetation
Index (NDVI) has been the predominant proxy index for vegetation monitoring, which
leverages the spectral characteristics of vegetation in the near-infrared and red bands to
detect photosynthetically active substances [7,8]. However, NDVI may experience satura-
tion in regions of dense vegetation or during seasonal peaks [9]. The kernel Normalized
Difference Vegetation Index (kNDVI) offers a non-linear enhancement of NDVI, capturing
a broader range of differences between the near-infrared and red bands [10]. This makes
kNDVI more adept at estimating key vegetation physiological parameters, such as Leaf
Area Index (LAI), Gross Primary Productivity (GPP), leaf and canopy chlorophyll content,
and vegetation light use efficiency, as well as in applications like flux tower-level latent
heat measurements [11].

Solar-Induced Chlorophyll Fluorescence (SIF) provides insights into the dynamic
shifts in plant photosynthesis. Unlike indices based on vegetation reflectance, SIF directly
tracks the efficiency of vegetation photosynthesis [12,13]. However, the effectiveness of
SIF varies across different ecosystems and climatic conditions. For example, its sensitivity
to meteorological drought is especially pronounced in arid areas characterized by high
temperatures during the growing season and low vegetation productivity [14]. While
comparisons between SIF and traditional vegetation indices in drought monitoring have
been conducted, the performance of kNDVI in such comparisons has been limited [15].
Thus, this study aims to address this gap by evaluating the responsiveness of SIF, NDVI and
kNDVI in tracking changes in soil moisture and vapor pressure deficit, and further enhances
our understanding of vegetation physiological status under water stress conditions.

Statistical techniques (e.g., correlation and regression analyses) [16–18] and ecosystem
simulation models [19] are commonly employed to assess vegetation response to water
stress. Traditional statistical methods, however, mainly focused on linear relationships
between vegetation changes and their drivers, and correlation does not necessarily denote
causation [17]. Ecosystem models, while addressing nonlinear and dynamic aspects of
vegetation growth under water deficiency, require numerous parameter settings, which
may introduce potential uncertainties. Machine learning approaches, particularly those
based on decision tree models, circumvent the need for predetermined functional forms
between driving factors and responses. They efficiently manage multiple input variables
and pinpoint key influencing factors, thus gaining popularity for analyzing and predicting
vegetation dynamics [20–22]. LightGBM, a distributed gradient boosting framework based
on decision tree algorithms, stands out for its enhanced efficiency and speed compared
to other tree-based models [23]. To analyze the response of different vegetation indices
to water resource variations, this study utilizes LightGBM to construct regression models
of environmental factors and vegetation indices, with integrating the Shapley Additive
Explanations (SHAP) method via TreeExplainer for model interpretation. Traditional
machine learning models often lack transparency in explaining individual predictions or
decisions. The SHAP approach, leveraging TreeExplainer, overcomes this by offering local
explanations for model predictions. It can also identify nonlinear interactions between
features [24]. By calculating the marginal contribution of each feature to the model output,
SHAP can enhance the interpretability of the machine learning models used in this study.
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This study first compares the different response of satellite-derived SIF (GOSIF prod-
uct) and NDVI (MODIS NDVI produdct), kNDVI to long-term changes in water resources,
over China’s subtropical areas with high vegetation coverage. Then we explore their in-
teractions with GPP changes during short-term extreme drought events. Generally, our
research aims: (1) To compare the sensitivity of SIF, NDVI and kNDVI in detecting the im-
pact of water stress on vegetation growth; (2) To analyze the primary environmental factors
influencing vegetation growth using the LightGBM and SHAP method; (3) To evaluate the
ability of SIF, NDVI and kNDVI to capture GPP changes in subtropical vegetation under
drought stress. By contrasting the performance of SIF, NDVI and kNDVI in long-term
responses to changes in water resources and short-term extreme drought events, we aim to
clarify the respective strengths and limitations of these indices in drought monitoring and
vegetation ecological analysis.

2. Materials and Methods
2.1. Study Area

Our research area encompasses thirteen provinces in the southern China (73–135◦E,
18–30◦N), including Hainan Island, Guangxi, Guizhou, Yunnan, Sichuan, Chongqing,
Guangdong, Hunan, Hubei, Tibet, Jiangxi, Fujian, and Zhejiang. The region’s terrain is
complex, including the Hengduan Mountains, Yungui Plateau, Sichuan Basin, Guangxi
Basin, and coastal plains, which is higher in the west and lower in the east. The climate
is notably diverse and variable. The Tibetan Plateau, due to its high altitude, exhibits a
cold and arid plateau climate. The Hengduan Mountain region, with its high mountains
and deep valleys, displays diverse climates, ranging from subtropical to cold temperate.
The Sichuan Basin, surrounded by mountains, often experiences basin effects, resulting in
hot summers and mild winters. The middle and lower reaches of the Yangtze River plain
belong to a subtropical monsoon climate, characterized by distinct seasons and abundant
precipitation.

The vegetation types in southern China are diverse, ranging from subtropical ev-
ergreen broad-leaved forests to cold temperate coniferous forests, exhibiting significant
regional geographical differences in vegetation distribution (Figure 1). Vegetation in the
Tibetan Plateau is dominated by alpine meadows and grasslands, while the Hengduan
Mountain region showcases a variety of vegetation, from subtropical evergreen broad-
leaved forests to cold temperate coniferous forests. The vegetation in the Sichuan Basin
is mainly composed of crops and subtropical forests, while the middle and lower reaches
of the Yangtze River plain are primarily characterized by crops and wetland vegetation,
especially extensive areas of rice cultivation (Figure 1).

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 1. Map of study area (a), (red polygon) and the corresponding vegetation types (b). 

2.2. MODIS Vegetation Indices 
In this study, the monthly optical vegetation indices NDVI and kNDVI for the period 

2001–2020 were synthesized based on the daily MODIS Surface Reflectance (SR) product 
MOD09A1 V6 [25], using monthly averaged method. These products have a spatial reso-
lution of 500 m. The kNDVI, as proposed by Camps-Valls et al. [10], is a novel index de-
signed to address the saturation effects often encountered with NDVI in high-biomass 
regions. It incorporates kernel methods to effectively handle the non-linear relationships 
present in vegetation reflectance data, thus enhancing the performance of vegetation in-
dices in areas with dense biomass. 

The kNDVI uses a Gaussian kernel function to modify the NDVI calculation, allow-
ing for a more accurate representation of biomass changes in densely vegetated areas. The 
calculation formula for kNDVI is given by: 

kNDVI = tanh ��
𝑛𝑛 − 𝑟𝑟

2𝜎𝜎
�
2
� (1) 

In this formula, (σ) is typically simplified for ease of calculation, set as the average of 
the Near-Infrared (NIR) and red reflectance, i.e., (σ = 0.5* (n + r)). However, as indicated 
by research from Wang et al., this oversimplification can reduce the effectiveness of 
kNDVI, suggesting that adjustments to σ should be made for specific applications [11]. In 
this study, a distance heuristic estimation method is employed to estimate the (σ) param-
eter. This method calculates (σ) based on the average distance between all pixels in the 
region: 

𝜎𝜎 =  𝑁𝑁−1� |𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖|
𝑁𝑁

𝑖𝑖
 (2) 

Given that kNDVI is significantly influenced by non-vegetated area pixels [11], we 
applied the pixel quality assurance (QA) layer of MOD09A1 to identify and exclude pixels 
marked as clouds, cloud shadows, aerosols, and snow, ensuring the reliability of the 
kNDVI calculations in our study. 

2.3. Solar-Induced Chlorophyll Fluorescence 
Solar-induced chlorophyll fluorescence (SIF) data were derived from the global 

monthly GOSIF dataset (https://globalecology.unh.edu/data/GOSIF.html, accessed on 1 
December 2023) [26]. GOSIF was developed using a data-driven approach, based on dis-
crete OCO-2 SIF observation data, medium-resolution imaging spectroradiometer 
(MODIS) remote sensing data, and meteorological reanalysis data, covering the period 

Figure 1. Map of study area (a), (red polygon) and the corresponding vegetation types (b).



Remote Sens. 2024, 16, 1735 4 of 19

2.2. MODIS Vegetation Indices

In this study, the monthly optical vegetation indices NDVI and kNDVI for the period
2001–2020 were synthesized based on the daily MODIS Surface Reflectance (SR) product
MOD09A1 V6 [25], using monthly averaged method. These products have a spatial
resolution of 500 m. The kNDVI, as proposed by Camps-Valls et al. [10], is a novel index
designed to address the saturation effects often encountered with NDVI in high-biomass
regions. It incorporates kernel methods to effectively handle the non-linear relationships
present in vegetation reflectance data, thus enhancing the performance of vegetation indices
in areas with dense biomass.

The kNDVI uses a Gaussian kernel function to modify the NDVI calculation, allowing
for a more accurate representation of biomass changes in densely vegetated areas. The
calculation formula for kNDVI is given by:

kNDVI = tanh

((
n − r

2σ

)2
)

(1)

In this formula, (σ) is typically simplified for ease of calculation, set as the average of
the Near-Infrared (NIR) and red reflectance, i.e., (σ = 0.5 ∗ (n + r)). However, as indicated
by research from Wang et al., this oversimplification can reduce the effectiveness of kNDVI,
suggesting that adjustments to σ should be made for specific applications [11]. In this study,
a distance heuristic estimation method is employed to estimate the (σ) parameter. This
method calculates (σ) based on the average distance between all pixels in the region:

σ = N−1∑N
i |NIRi − redi| (2)

Given that kNDVI is significantly influenced by non-vegetated area pixels [11], we
applied the pixel quality assurance (QA) layer of MOD09A1 to identify and exclude pixels
marked as clouds, cloud shadows, aerosols, and snow, ensuring the reliability of the kNDVI
calculations in our study.

2.3. Solar-Induced Chlorophyll Fluorescence

Solar-induced chlorophyll fluorescence (SIF) data were derived from the global monthly
GOSIF dataset (https://globalecology.unh.edu/data/GOSIF.html, accessed on 1 December
2023) [26]. GOSIF was developed using a data-driven approach, based on discrete OCO-2
SIF observation data, medium-resolution imaging spectroradiometer (MODIS) remote
sensing data, and meteorological reanalysis data, covering the period from 2001 to 2020
with a spatial resolution of 0.05◦. The temporal and spatial resolutions of the GOSIF dataset
are monthly and 0.05 × 0.05◦, respectively.

2.4. Climate Datasets

The TerraClimate dataset is an essential component in this study. It provides compre-
hensive monthly climate and climatic water balance data for the global terrestrial surface,
spanning the period 1958–2019. This dataset is commonly used in global-scale ecological
and hydrological studies, which require both high spatial resolution and temporal variabil-
ity. The TerraClimate was developed to bridge the gap in the availability of medium-to-high
spatial resolution global climate data that spans several decades and is freely accessible.
The dataset offers six decades of monthly climate data for the global land surface, presented
on approximately a 4-km grid (1/24 degree). This remarkable spatial resolution is achieved
by merging the spatial attributes from WorldClimV2 with the temporal attributes from
CRU Ts 4.0, and further interpolating through a climate-aided reanalysis product. For our
study, we utilized the TerraClimate data with a spatial resolution of 0.01◦. This resolution
provides detailed insights into precipitation accumulation, downward surface shortwave
radiation, maximum temperature, and minimum temperature. These information are cru-

https://globalecology.unh.edu/data/GOSIF.html
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cial for analyzing and understanding the complex interactions between climate variables
and vegetation dynamics in southern China.

2.5. Drought Indices

In this study, Vapor Pressure Deficit (VPD) is a key variable, representing the difference
between the saturation vapor pressure, which is determined by near-surface temperature,
and the actual vapor pressure. It is a function of both the saturation vapor pressure and
relative humidity. The VPD data used here are derived from the TerraClimate dataset.
This dataset employs climate-aided interpolation to integrate the high spatial resolution
climate normal from the WorldClim dataset with temporally varying data of coarser spatial
resolution from CRU Ts4.0 and the Japanese 55-year Reanalysis (JRA55) [25]. In our study
the spatial resolution of VPD data is 0.01◦. Additionally, soil moisture data are extracted
from the GLEAM V3 dataset. This dataset estimates terrestrial evaporation and root zone
soil moisture based on satellite observations, providing valuable information for large-scale
hydrological applications, climate research, and land-atmosphere feedback studies on
global and regional scales [26,27]. Here, all data are processed as monthly averages and
resampled to a 0.05◦ spatial resolution using bilinear interpolation to facilitate subsequent
analysis.

Moreover, the Standardized Precipitation-Evapotranspiration Index (SPEI) is utilized
as a novel drought index in this research. SPEI quantifies drought severity based on its
intensity and duration and can identify the onset and end of drought events. Its multi-
scalar feature, which distinguishes it from other widely used drought indices, allows
for the identification of different types of droughts and their impacts in the context of
global warming. In this study, the Thornthwaite equation is used to simulate Potential
Evapotranspiration (PET) using mean temperature data from the NOAA, NCEP, CPC,
GHCN_CAMS gridded dataset. Monthly precipitation sums data are obtained from the
‘first guess’ Global Precipitation Climatology Centre (GPCC). The CPC data, originally at a
resolution of 0.5◦, is interpolated to 1◦. Following the calculation procedure, a 3-month SPEI
(SPEI3) dataset for 2001 to 2020 with a spatial resolution of 0.1◦ is generated for analysis.
The 3-month aggregation period of SPEI is particularly relevant for vegetation monitoring.
This time frame aligns well with the growth cycles of many plants and crops, allowing for a
more accurate assessment of drought impacts on vegetation growth [28]. Furthermore, the
aggregation of SPEI over a 3-month period mitigates the influence of isolated anomalous
drought months, making it widely relevant in studies related to vegetation drought [29].

2.6. Flux Tower Observation Data

We collected GPP dataset from three flux stations to detect its relationship with SIF,
NDVI, and kNDVI as a benchmark for their response to vegetation production under water
stress condition.

(1) Dinghushan Subtropical Evergreen Broadleaf Forest Flux Observation Station
(112◦32′3.8′′E, 23◦10′24′′N), located within the CERN Dinghushan Forest Ecosys-
tem Research Station in the low mountainous hills of Zhaoqing, Guangdong. It is
situated at an elevation range of 14–1000 m, offering unique insights into subtropical
evergreen broadleaf forest ecosystems.

(2) Qianyanzhou Artificial Forest Flux Observation Station (115◦03′29.2′′E, 26◦44′29.1′′N),
is part of the Qianyanzhou Red Soil Hilly Agriculture Comprehensive Development
Experimental Station that is a member station of the Chinese Ecological Research
Network. The station is located on a slope ranging from 2.8◦ to 13.5◦ and is surrounded
by forest cover over 90%. It provides valuable data on artificial forest ecosystems.

(3) Xishuangbanna Tropical Rainforest Flux Observation Station (101◦15′55′E, 21◦55′39′N),
is located in the southern part of Yunnan Province, in the Xishuangbanna Dai Au-
tonomous Prefecture. In this station, we collected the flux data from the flux observa-
tion system within a ‘one-hectare sample plot’ in a tropical rainforest.
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The three flux tower sites provide a comprehensive and diverse range of data. They
are pivotal for the study as they cover a broad spectrum of ecosystems, from subtropical
broadleaf forests to tropical rainforests. This diverse range allows for a more nuanced
understanding of carbon dynamics across different ecosystems in southern China.

3. Method
3.1. Data Normalization

To eliminate amplitude differences between various datasets, we performed a data
normalization operation by calculating the spatially standardized anomaly values for each
variable. For monthly data, deseasonalization is utilized to obtain the anomaly values,
which is calculated using the following formula:

XZij =
Xij − Xi

σi
(3)

where XZij is the anomaly value of variable X and Xij is X value on the ith month of the
ith year. Xi and σi are the mean and standard deviation of X on the ith month of all years,
respectively.

3.2. LightGBM Algorithm

LightGBM (Light Gradient Boosting Machine) represents a sophisticated advance-
ment in machine learning, which is usually adept at navigating complex and nonlinear
relationships. As a framework rooted in decision-tree-based gradient boosting, LightGBM
distinguishes itself through its efficiency and capacity for handling extensive datasets. In
comparison to conventional machine learning methodologies, LightGBM exhibits several
distinctive features and benefits. Primarily, LightGBM integrates two novel technologies:
Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) [30].
GOSS selectively maintains instances with larger gradients while downsampling those with
smaller gradients, effectively reducing data volume without compromising model accuracy.
This approach supersedes traditional random subsampling methods by preserving crucial
information about instances misclassified. Concurrently, EFB, by consolidating sparse
features into denser formats, significantly optimizes computational efficiency, particularly
with large-scale sparse datasets. Furthermore, LightGBM’s parallel training capacities are
notably efficient. It demonstrates substantial superiority over widely used machine learning
techniques, such as Random Forest, in aspects of training speed, memory consumption, and
predictive accuracy. These attributes render LightGBM particularly adept for processing
large datasets while ensuring robust generalization capabilities and stability [31]. In this
study, LightGBM is used to examine the nonlinear interactions between various vegeta-
tion indices (i.e., SIF, NDVI and kNDVI) and a range of environmental factors, including
precipitation, soil moisture, VPD, solar radiation (Srad), and monthly average temperature.

3.3. Shapley Additive Explanations (SHAP)

In this study, SHapley Additive exPlanations (SHAP) were applied to elucidate the
contribution of each input variable towards the prediction of vegetation indices. Originating
from the Shapley value in game theory, SHAP effectively delineates the impact of individual
features in a machine learning model on the predicted outcomes. The essence of the SHAP
approach is the analogy of machine learning features to players in a game, with each
feature’s contribution analogous to its role across various combinations. Diverging from
conventional feature importance assessments in machine learning, SHAP’s distinctiveness
resides in its model-agnostic characteristic and its consistency. This implies that SHAP
furnishes consistent explanations irrespective of the machine learning model employed,
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assuring uniform interpretation of identical input features across varied instances. The
mathematical underpinning of the SHAP algorithm can be summarized as follows:

SHAP(Xi) = ∑S⊆{1,2,...,p}\{i}
|S|!(p − |S| − 1)!

p!
( f
(

S
⋃
{Xi}

)
− f (S)) (4)

In the SHAP algorithm, Xi represents the feature to be explained; S is a subset of other
features; f (S

⋃
{Xi}) is the model output prediction for the input set S that includes the

feature Xi; and p is the total number of features. The SHAP algorithm calculates the SHAP
value for each feature by iterating over all possible subsets of features and then summing
the weighted contributions of each subset. These SHAP values are used to explain the
model predictions, providing a quantified impact assessment for each feature. Since global
importance is needed in our study, the absolute values of each feature’s SHAP values are
averaged across the data to indicate their importance, which is expressed as:

Within the SHAP algorithm framework, Xi denotes the feature under examination.
The subset of other features is represented by S, where f (S

⋃
{Xi}) signifies the predicted

output of the model for the input set S inclusive of the feature Xi. The algorithm operates
on a premise where p is the total number of features. The SHAP value for each feature
is computed by iterating over all potential feature subsets and aggregating the weighted
contributions from each subset. These SHAP values play a pivotal role in interpreting
the model’s predictions, offering a quantifiable impact analysis for each feature. In our
study, a global importance metric is essential. Therefore, we compute this by averaging
the absolute SHAP values of each feature across all data points. This average signifies the
overall importance of each feature and is mathematically articulated as:

Ii =
1
n∑n

j=1

∣∣∣SHAP(Xi)
(j)
∣∣∣ (5)

Furthermore, we also determine the direction of the effect of features on the prediction
outcome by calculating the covariance of SHAP values. If the covariance is positive,
it indicates a positive correlation between the feature and the SHAP value, implying a
positive effect on the predicted value. Conversely, if the covariance is negative, it indicates
a negative correlation between the feature and the SHAP value, leading to a negative
impact on the predicted value. In this study, the SHAP algorithm is applied to explain the
LightGBM regression model, thereby exploring the variations in the influence of climatic
factors on vegetation indices.

Additionally, this research incorporates an analysis of the directional impact of features
on the prediction outcome by computing the covariance of SHAP values. A positive
covariance suggests a positive correlation between the feature and its SHAP value, denoting
a favorable influence on the prediction. In contrast, a negative covariance indicates an
inverse relationship, signifying that the feature adversely affects the predicted outcome. In
the context of this study, the SHAP algorithm is adeptly applied to decipher the LightGBM
regression model. This application enables a nuanced exploration of how varying climatic
factors differentially influence distinct vegetation indices. The SHAP analysis thus not
only quantifies the impact of each climatic factor but also delineates the nature of their
influence—whether augmenting or diminishing the predicted vegetation indices.

4. Result
4.1. SIF, NDVI and kNDVI Responses to Water Stress

Pearson correlation analysis was performed to explore the relationship among the
three vegetation indices with SPEI3 (Figure 2). Our analysis reveals that these three vegeta-
tion indices predominantly exhibit positive correlation coefficients with SPEI3. Specifically,
the percentages of pixels showing a positive correlation with NDVI-GPP, kNDVI-GPP, and
SIF-GPP are 64.29%, 65.61%, and 66.72%, respectively. Notably, these indices demonstrate
significant variation in their distribution across different regions and types of vegetation
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cover. In the Yunnan-Guizhou Plateau, for instance, SIF, NDVI, and kNDVI uniformly
respond positively to SPEI3, exhibiting analogous spatial distribution traits. On contrast,
in the Himalayan regions characterized by grassland cover, NDVI displays a markedly
negative correlation with SPEI3, while kNDVI and SIF predominantly show positive corre-
lations. Furthermore, in the lower altitude areas east of 110◦E, particularly in Guangdong
and Hunan provinces, the correlation between SIF and SPEI3 is comparatively low, which
stands in contrast to the stronger correlation observed with NDVI. When considering
the four types of vegetation cover—farmland, forest, shrub, and grassland—the median
correlation coefficients between SIF and SPEI3 are positive in all categories, suggesting a
robust general relationship between SIF and SPEI3 in these regions. In grassland areas,
although NDVI and kNDVI demonstrate a higher degree of response variability, their
median values are approximately zero, indicating a neutral overall response.
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4.2. SHAP Values of Climatic Factors on Different Vegetation Indices

To detect the effect of climatic changes on vegetation status, we selected six pivotal
climatic variables according to their previously established significance in affecting vege-
tation indices. These variables include VPD, Maximum Temperature (Tmmx), Minimum
Temperature (Tmmn), Solar Radiation (Srad), Soil Moisture (SM), and Precipitation (Prec).
In this study, we utilized the non-linear lightGBM algorithm to simulate the monthly NDVI,
kNDVI, and SIF driven by different factors. The 80% of the time series data in each grid
was used for model training, while the remaining 20% data was applied for model accuracy
evaluation. The lightGBM model demonstrated satisfactory performance in predicting the
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NDVI, kNVDI, and SIF for each grid, with R2 scores higher than 0.9 for all grid cells in the
test dataset (Table 1).

Table 1. Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the coefficient of
determination (R-squared) of lightGBM model.

Model MAE RMSE R2

NDVI 0.1352 0.1895 0.9674
kNDVI 0.1347 0.1886 0.9672

SIF 0.1211 0.1711 0.9703

SHAP values were then employed to evaluate the influence of these climatic variables
on NDVI, kNDVI, and SIF, as illustrated in Figure 3. The SHAP values serve as a metric
for quantifying the contribution of different climatic factors to the accuracy of vegetation
index predictions. A higher absolute SHAP Value signifies a more notable contribution
of a climatic variable. From Figure 3a–c, we can observe the spatial distribution of the
most influential climatic factors for NDVI, kNDVI, and SIF predictions, with key factors
identified by their absolute SHAP values. These maps illuminate the spatial variability in
the impacts of different climatic variables on vegetation indices. A notable observation is the
more dispersed spatial influence on NDVI and kNDVI, compared to a more concentrated
impact on SIF, possibly reflecting the differential sensitivities of these indices to climatic
variables.
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VPD emerges as a predominant factor for all three indices, covering 29.44%, 30.38%,
and 28.79% of the area, respectively. This is particularly evident in the central Yunnan-
Guizhou Plateau. The findings suggest an acute sensitivity of vegetation in this region to
moisture changes, corroborated by the high correlation areas between vegetation indices
and SPEI3. For NDVI and kNDVI, precipitation is the second-largest contributing factor,
while for SIF, solar radiation (Srad) takes this position, indicating distinct sensitivities of
these indices to different climatic variables.

Consistent with the observations in Figure 4, VPD holds the largest impact across
all vegetation types, highlighting its key role in vegetation water stress. Interestingly,
grasslands exhibit a smaller area influenced by VPD but a relatively greater impact from
precipitation, suggesting a higher dependence of grassland vegetation on precipitation
compared to other vegetation types. This underscores the diverse responses of different
vegetation types to climatic variables.
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The spatial distribution of SHAP values for NDVI, kNDVI, and SIF concerning the six
selected climatic variables were shown in Figure 5. We can observe that, in contrast to NDVI
and kNDVI, the SHAP values for climatic factors associated with SIF demonstrate stronger
spatial continuity, displaying a distinct spatial pattern. Specifically, SIF exhibits an elevated
sensitivity to Precipitation (Prec), Solar Radiation (Srad), and Minimum Temperature
(Tmmn). Predominantly, these sensitivities demonstrate as positive SHAP values across
most regions, suggesting that these climatic factors actively contribute to the enhancement
of SIF values. Conversely, the SHAP values for kNDVI, though bearing spatial resemblance
to NDVI, exhibit a more uniform distribution. This is particularly noticeable in regions
influenced by Precipitation (Prec) and Maximum Temperature (Tmmx). Such a pattern
in kNDVI can potentially be attributed to its ability to reduce data noise and negate the
saturation effect inherent in NDVI. This attribute of kNDVI might be contributing to a
more continuous and accurate representation of the response to climatic variables. This
difference in spatial distribution and sensitivity to climatic factors among NDVI, kNDVI,
and SIF, as revealed through SHAP values, underscores the nuanced and complex nature of
vegetation index responses to climatic variables. It also highlights the potential of kNDVI in
offering a more refined understanding of these relationships, given its enhanced capability
to process and reflect climatic influences.
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4.3. Response of Different Vegetation Indices to Extreme Drought

From the time series anomaly of SPEI during 2001–2020 in southern China, we can
observe a significant drought event between 2009 and 2010 (Figure 6a). The SPEI anomaly
values during this period were below −1, indicating an extreme drought condition in this
region. This led to the selection of GPP data from 2009–2010 to examine the response of
SIF, NDVI, and kNDVI to this drought event, and to evaluate their efficacy in drought
monitoring. between September and October 2009, the Precipitation Anomaly (PrecSA) fell
below −0.5, while the Soil Moisture Anomaly (SMSA) and Vapor Pressure Deficit Anomaly
(VPDSA) reached below −1.0 and above 1.0, respectively (Figure 6b). These values indicated
a severe soil moisture deficiency and high vapor pressure deficit. Following the drought
onset, a decline in the three vegetation indices was observed (Figure 6c), with SIF Anomaly
(SIFSA) beginning to decrease slightly earlier (January 2010) compared to NDVI Anomaly
(NDVISA) and kNDVI Anomaly (kNDVISA), which started in February 2010. All indices
reached their lowest anomaly values in April 2010, with SIFSA showing the most significant
decline, indicating its higher sensitivity to the extreme drought, followed by kNDVISA, and
then NDVISA showing the least decline. To further investigate these three vegetation indices
in monitoring vegetation growth response to drought, GPP estimates from three flux tower
sites (QYZ, DHS, XSBN) were selected as a benchmark for comparison. The results show
that the monthly SIF-GPP relationship at QYZ and XSBN sites was the strongest among all
vegetation indices, with R2 values of 0.98 and 0.75, respectively (Figure 7). The NDVI-GPP
and kNDVI-GPP relationships at all three sites displayed certain similarities. Notably, at
the DHS site, the SIF-GPP relationship (R2 = 0.18) was weaker than the NDVI-GPP and
kNDVI-GPP relationships. Conversely, at the XSBN site, the kNDVI-GPP relationship was
very weak (R2 = 0.03).
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A range of time lags, from direct (0 months) to delayed (up to 4 months) time point,
were explored to assess the response of the vegetation index to GPP (Table 2). We calculated
the Pearson correlation coefficient between VIs and GPP for each specified lag time by tem-
porarily moving the VIs sequence by the considered lag time. Through this analysis process,
we determine the time lag for producing the highest statistically significant correlation
coefficients. This lag is considered as the optimal lag, and it contains the time interval when
VIs responds most significantly to GPP. Generally, the time-lag relationship of SIF with GPP
was shorter than that of NDVI and kNDVI with GPP. At the QYZ site, with a one-month
time lag, the relationships of NDVI and kNDVI with GPP reached their maximum values
(R2 of 0.8 and 0.81, respectively), whereas the SIF-GPP relationship exhibited no time lag.
At the DHS site, no time lag was observed in the relationships between all three vegetation
indices and GPP. However, at the XSBN site, the relationships between the vegetation
indices and GPP showed different time-lag patterns, with the NDVI-GPP relationship
peaking at a two-month lag, the kNDVI-GPP relationship at a three-month lag, and the
SIF-GPP relationship at a one-month lag.

Table 2. Coefficient of determination (R2) for correlation analysis between monthly GPP and NDVI,
kNDVI and SIF at different time lags. Red color indicates a significance test pass (p < 0.05), with
darker shades representing a larger lag coefficient of determination.

Sites VIs
R2 Values between VIs and GPP at Different Time Lags (Months)

0 1 2 3 4

QYZ
NDVI 0.79 0.8 0.4 0.05 0.07

kNDVI 0.72 0.81 0.53 0.12 0.02
SIF 0.92 0.63 0.37 0 0.24

DHS
NDVI 0.38 0.21 0.03 0 0.12

kNDVI 0.37 0.19 0.08 0.1 0.03
SIF 0.18 0 0.07 0.03 0

XSBN
NDVI 0.35 0.5 0.59 0.41 0.1

kNDVI 0.03 0.07 0.37 0.61 0.48
SIF 0.75 0.78 0.42 0.05 0

4.4. kNDVI Sensitivity with Changing σ

kNDVI has been developed to mitigate the saturation effect observed in the standard
NDVI by capturing higher-order differences between the near-infrared and red spectral
bands. According to Wang et al. [11], the efficacy of kNDVI hinges on the selection
of the kernel function and its hyperparameters. In our study, we opted for the Radial
Basis Function (RBF) as the kernel and employed a spatial averaging heuristic method to
estimate the optimal kernel parameter σ. Despite these measures, we noted that while
kNDVI demonstrated higher spatial consistency with SIF compared to NDVI, and increased
sensitivity during drought events, it presented the lowest correlation with site-specific GPP.

This reduced correlation can be attributed to the influence of neighboring pixels in the
estimation of the optimal kernel parameter σ, even after accounting for cloud and water
body pixels. To address this issue, we recalculated kNDVI employing a temporal averaging
heuristic method for estimating the optimal kernel parameter σ, focusing particularly on
the 2009–2010 drought period (as illustrated in Figure 8). The outcomes of this recalibration
revealed a marked improvement in kNDVI’s (temporal) ability to capture GPP changes,
surpassing kNDVI(spatial). At all three examined sites, the correlation between kNDVI
(temporal) and GPP was consistently higher than that of kNDVI (spatial). Furthermore,
kNDVI (temporal) exhibited a more immediate response in capturing GPP changes induced
by drought. It showed no time lag at the QYZ and DHS sites and only a one-month lag at
the XSBN site (Table 3). This response time was faster than that of both kNDVI (spatial),
and comparable to that of SIF.
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Table 3. R2 values resultant from correlations between monthly GPP and monthly kNDVI (temporal)
at different time lags.

Sites
R2 Values between kNDVI (Temporal) and GPP at Different Time Lags (Months)

0 1 2 3 4

QYZ 0.83 0.82 0.47 0.04 0.06
DHS 0.58 0.33 0.18 0 0.35

XSBN 0.38 0.63 0.6 0.2 0.03

These findings highlight the potential of kNDVI for effective monitoring of drought
induced GPP changes in vegetation, especially when calculated using temporal heuristic
algorithms, which show a higher correlation with GPP than and kNDVI (spatial). The
results emphasize the crucial role of selecting the optimal kernel parameter σ to enhance
kNDVI’s performance in practical applications.

5. Discussion
5.1. Vegetation Indices Response to Water Stress

The spatial analysis of the correlation between vegetation indices and SPEI3 reveals
notable differences in the responses of SIF, NDVI, and kNDVI to moisture stress. These
differences are particularly pronounced in the Tibetan Plateau and Guangdong Province.
In the Tibetan Plateau, SIF demonstrated a positive correlation with SPEI3. In contrast, the
relationships between NDVI-SPEI3 and kNDVI-SPEI3 were less significant, exhibiting no
correlation or even negative correlation in certain areas. SPEI3, which accounts for factors
such as precipitation and potential evaporation [32], is a critical indicator in assessing the
water balance on the surface. The precipitation changes over time are especially crucial
in determining the carbon balance of the Tibetan Plateau [33,34]. Our findings suggest
that NDVI may not adequately capture the impact of moisture variations on vegetation
in this region. This disparity likely arises from the differing sensitivities and mechanisms
through which NDVI, kNDVI, and SIF reflect the physiological state of vegetation [35].
NDVI primarily indicates vegetation cover and biomass, while SIF is more directly related
to the photosynthetic activity of plants [36,37]. Historical data from 2001 to 2020 show an
increase in grassland areas and an upward trend in NDVI in the Tibetan Plateau, which
may have partially obscured the response of NDVI to moisture changes [38]. In Guangdong
province, earlier studies have identified temperature as a primary factor affecting vegetation
growth [39,40]. The saturation effect in NDVI may have contributed to the high positive
correlation observed between NDVI and SPEI3. Conversely, kNDVI, with its desaturation
property, exhibited a lower correlation with SPEI3, suggesting a more minor different
response to moisture conditions. The spatial heterogeneity of vegetation density and
growth stages is also an important factor in evaluating the performance of NDVI and
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kNDVI. In regions with high spatial variability, kNDVI may be better than NDVI because
it can better handle this spatial complexity.

The SHAP interpretations for SIF, NDVI and kNDVI all underscore the importance of
VPD as a key influencing factor for subtropical terrestrial vegetation growth over south-
ern China. A notable region of high correlation between these three vegetation indices
and SPEI3 is the southwestern Yunnan-Guizhou Plateau. This area, characterized by its
energy-limited and alpine nature, is highly sensitive to temperature variations, impacting
vegetation growth and surface water storage [41]. The diverse landforms of this region,
including plateaus, basins, and hills, coupled with unique climatic characteristics and
topography, facilitate rapid vegetative responses to changes in moisture conditions. VPD, a
primary factor influencing vegetation growth in the Yunnan-Guizhou Plateau, indicates
drier air conditions at higher levels, which can enhance water loss through transpiration
and stress vegetation [42,43]. Furthermore, SHAP values for SIF reveal that maximum tem-
perature (Tmmx) is a significant influencing factor for vegetation in Guangdong province.
In contrast, SHAP interpretations for NDVI indicate that VPD predominantly affects NDVI
variations in this region. This finding aligns with the correlation analysis, suggesting that
in Guangdong, SIF is less influenced by moisture conditions compared to NDVI, which
shows a more significant response to these factors.

5.2. The Outperformance of SIF in Capturing GPP Changes during Drought

Our study highlights the significant advantages of SIF over NDVI and kNDVI in
capturing the changes in GPP caused by drought, particularly during the extreme drought
event of 2009–2010. SIF exhibited a more sensitive and rapid response to drought stress
compared to NDVI and kNDVI. This heightened sensitivity of SIF is attributed to the
direct impact of drought conditions on plant photosynthesis. SIF, as a direct measure of
photosynthetic activity, can more acutely and promptly reflect changes resulting from
environmental stresses like drought [44]. In contrast, NDVI, which primarily represents
the overall greenness and biomass of vegetation, can continue to show a relatively healthy
vegetative state even under conditions where plants are stressed, and photosynthetic
activity is reduced [45]. This disparity arises because NDVI is more a reflection of vegetation
cover and biomass, rather than a direct measure of the physiological state of the plants.

Moreover, SIF provides a more precise and timely method for capturing the dynamics
of vegetation GPP during drought events. Owing to its direct correlation with the immedi-
ate changes in plant photosynthesis, SIF demonstrates a smaller response lag to drought.
This characteristic allows it to indicate short-term drought conditions more rapidly. NDVI
and kNDVI, on the other hand, exhibit a time lag in reflecting the impacts of drought. This
lag is likely due to the time required for significant changes in plant health and biomass
to manifest, thus limiting the ability of these indices to provide a real-time indication of
drought stress [46].

It is noteworthy that the relationship between SIF and GPP may be affected by the
physiological and structural information of SIF, especially under drought conditions [47,48].
Drought stress triggers various physiological responses in plants, such as stomatal closure
to reduce water loss through transpiration. This closure reduces the availability of carbon
dioxide for photosynthesis, which can lead to a decrease in GPP. Additionally, the changes
of canopy structure can influence the amount of light absorbed and emitted by leaves, which
will affect both SIF and GPP. It is reported normalizing SIF by the near-infrared radiance of
vegetation provides an efficient strategy to normalize SIF to canopy structure [49].

Physiological and structural information of plants under drought conditions can
influence the SIF-GPP relationship by affecting photosynthetic efficiency, chlorophyll fluo-
rescence, and other related processes [50,51]. Understanding these relationships is crucial
for assessing plant responses to environmental stressors and predicting ecosystem produc-
tivity under changing climatic conditions.
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5.3. The Performance of kNDVI Is Affected by Hyperparameters

The kNDVI leverages the RBF kernel to enhance the sensitivity and accuracy of
vegetation monitoring. A key feature of this approach is the σ parameter, which plays
a pivotal role in modulating the index’s sensitivity to vegetation density. For densely
vegetated regions, increasing the σ value lowers the kNDVI’s derivative with respect to the
NIR and red bands. This adjustment enhances its sensitivity to dense vegetation, enabling
the index to capture the nuances of vegetation health that might be missed by traditional
indices due to saturation effects. Conversely, reducing the σ value increases kNDVI’s
sensitivity to changes in sparsely vegetated areas. This adjustment allows for the detection
of subtle vegetation dynamics in environments where traditional vegetation indices may
not perform well. The kNDVI effectively captures the spatial characteristics of vegetation
drought through the application of a spatial heuristic algorithm. However, it exhibits a low
correlation with the GPP of vegetation during drought periods. This correlation with GPP
during drought can be enhanced by employing the σ parameter, which is estimated using
a temporal heuristic algorithm. This approach underscores the potential for improving
kNDVI’s sensitivity to the productivity dynamics of vegetation under drought stress
by integrating temporal heuristics. The adjustment of kNDVI’s sensitivity through the
σ parameter is underpinned by the RBF kernel’s mathematical properties. The kernel
effectively models spatial relationships within spectral data, emphasizing the influence
of spectral points that are close in the feature space while reducing the impact of more
distant points. This local sensitivity is crucial for adapting the index to specific vegetation
conditions, ensuring accurate monitoring across varied ecological landscapes.

6. Conclusions

This research employs the LightGBM-SHAP regression model to conduct a comprehen-
sive examination of the differences between SIF remote sensing data, NDVI, and kNDVI in
monitoring vegetation water stress and quantifying the variability of GPP due to drought
during the period 2001–2020. The findings reveal that SIF exhibits a higher degree of
sensitivity and accuracy in characterizing the anomalous dynamics of GPP during drought
periods in comparison to NDVI and kNDVI.

A notable aspect of SIF is its capacity to reflect vegetation response to drought con-
ditions earlier than the other indices, with a time lag of only 0–1 month. This contrasts
with NDVI and kNDVI, which demonstrate time lags of 0–3 months and 0–4 months,
respectively. This difference is likely attributable to direct correlation of SIF with plant pho-
tosynthesis, whereas NDVI primarily indicates overall vegetation greenness and biomass.
Moreover, the study underscores that VPD is the predominant climatic factor affecting
vegetation changes in regions south of 30◦N in China. In terms of kNDVI performance,
the research highlights the significant influence of the choice of kernel parameter σ values.
Appropriately estimating this parameter can substantially improve the effectiveness of
kNDVI in monitoring vegetation drought conditions. Therefore, we suggest that the use of
kNDVI should be adapted to the vegetation coverage and growth cycle of the study area to
achieve the best results.

Overall, our study validates the advantages of using satellite-based SIF data for
monitoring changes in vegetation affected by water resources, particularly in capturing sub-
tropical vegetation GPP changes during droughts. These findings offer valuable guidance
in selecting remote sensing indices for timely monitoring and precise assessment of the
impacts of hydrological processes on vegetation growth. Furthermore, they pave the way
for future research directions, such as exploring the combined impact of additional climatic
factors and further refining algorithms and parameter optimization for more accurate
monitoring of vegetation status.
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